953 research outputs found

    Scalar Field Cosmologies with Viscous Fluid

    Full text link
    We investigate cosmological models with a free scalar field and a viscous fluid. We find exact solutions for a linear and nonlinear viscosity pressure. Both yield singular and bouncing solutions. In the first regime, a de Sitter stage is asymptotically stable, while in the second case we find power-law evolutions for vanishing cosmological constant.Comment: 8 pages, LaTeX. To be published in International Journal of Modern Physics

    Observation of the beam-size effect at HERA

    Full text link
    A precise measurement of the spectrum of the photons from epep bremsstrahlung with the ZEUS luminosity monitor at HERA is reported. The measurement shows a reduced rate compared to the Bethe-Heitler spectrum for photon energies below 5~GeV. This suppression, called the beam-size effect, is explained by the finite transverse size of the beam overlap relative to the typical impact parameter in the process of epep bremsstrahlung at HERA energies.Comment: 12 pages, late

    Realization of rights for Roma in Europe: The swedish political debate

    Get PDF

    Relaxation dominated cosmological expansion

    Get PDF
    The behavior near the singularity of an isotropic, homogeneous cosmological model with a viscous fluid source is investigated. This turns out to be a relaxation dominated regime. Full extended irreversible thermodynamics is used, and comparison with results of the truncated theory is made. New singular behaviors are found and it is shown that a relaxation dominated inflationary epoch may exist for fluids with small heat capacity.Comment: 7 pages, LaTeX. To be published in Physics Letters

    Time-Symmetrization and Isotropization of Stiff-Fluid Kantowski-Sachs Universes

    Get PDF
    It is shown that growing-entropy stiff-fluid Kantowski-Sachs universes become time-symmetric (if they start with time-asymmetric phase) and isotropize. Isotropization happens without any inflationary era during the evolution since there is no cosmological term here. It seems that this approach is an alternative to inflation since the universe gets bigger and bigger approaching 'flatness'.Comment: 9 pages, no figure

    Asymptonic states of Friedman universe and the energy conditions using the phase variable method

    Get PDF
    The evolution of Friedman models with arbitrary pressure p = p(ε\varepsilon, H) in the phase plane: Hubble function-energy density a is presented. The conclusions are: critical points of the phase plane and their stability depend on energy conditions but not on the actual form of pressure; models with constant viscosity violate the condition e + p \geq 0; the weak and the strong energy conditions are preserved if the viscosity coefficient is proportional to ε1/2\varepsilon^{1/2}

    Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?

    Full text link
    We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe predicted by the model according to their past, present and future evolution and we test its viability performing a Bayesian statistical analysis using the SCP ``Union'' data set (307 SNe Ia), imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient \zeta and comparing the predicted age of the universe by the model with the constraints coming from the oldest globular clusters. The best estimated values found for \zeta and the Hubble constant Ho are: \zeta=1.922 \pm 0.089 and Ho=69.62 \pm 0.59 km/s/Mpc with a \chi^2=314. The age of the universe is found to be 14.95 \pm 0.42 Gyr. We see that the estimated value of Ho as well as of \chi^2 are very similar to those obtained from LCDM model using the same SNe Ia data set. The estimated age of the universe is in agreement with the constraints coming from the oldest globular clusters. Moreover, the estimated value of \zeta is positive in agreement with the second law of thermodynamics (SLT). On the other hand, we perform different forms of marginalization over the parameter Ho in order to study the sensibility of the results to the way how Ho is marginalized. We found that it is almost negligible the dependence between the best estimated values of the free parameters of this model and the way how Ho is marginalized in the present work. Therefore, this simple model might be a viable candidate to explain the present acceleration in the expansion of the universe.Comment: 31 pages, 12 figures and 2 tables. Accepted to be published in the Journal of Cosmology and Astroparticle Physics. Analysis using the new SCP "Union" SNe Ia dataset instead of the Gold 2006 and ESSENCE datasets and without changes in the conclusions. Added references. Related works: arXiv:0801.1686 and arXiv:0810.030
    corecore