2,630 research outputs found

    Landau-Zener Tunnelling in Waveguide Arrays

    Full text link
    Landau-Zener tunnelling is discussed in connection with optical waveguide arrays. Light injected in a specific band of the Bloch spectrum in the propagation constant can be transmitted to another band, changing its physical properties. This is achieved using two waveguide arrays with different refractive indices, which amounts to consider a Schr\"odinger equation in a periodic potential with a step. The step causes wave "acceleration" and thus induces Landau-Zener tunnelling. The region of physical parameters where this phenomenon can occur is analytically determined and a realistic experimental setup is suggested. Its application could allow the realization of light filters.Comment: 4 pages, 6 figure

    Interaction-induced localization of anomalously-diffracting nonlinear waves

    Full text link
    We study experimentally the interactions between normal solitons and tilted beams in glass waveguide arrays. We find that as a tilted beam, traversing away from a normally propagating soliton, coincides with the self-defocusing regime of the array, it can be refocused and routed back into any of the intermediate sites due to the interaction, as a function of the initial phase difference. Numerically, distinct parameter regimes exhibiting this behavior of the interaction are identified.Comment: Physical Review Letters, in pres

    Bistable light detectors with nonlinear waveguide arrays

    Full text link
    Bistability induced by nonlinear Kerr effect in arrays of coupled waveguides is studied and shown to be a means to conceive light detectors that switch under excitation by a weak signal. The detector is obtained by coupling two single 1D waveguide to an array of coupled waveguides with adjusted indices and coupling. The process is understood by analytical description in the conservative and continuous case and illustrated by numerical simulations of the model with attenuation.Comment: Phys. Rev. Lett., v.94, (2005, to be published

    Crossover from self-defocusing to discrete trapping in nonlinear waveguide arrays

    Get PDF
    We predict a sharp crossover from nonlinear self-defocusing to discrete self-trapping of a narrow Gaussian beam with the increase of the refractive index contrast in a periodic photonic lattice. We demonstrate experimentally nonlinear discrete localization of light with defocusing nonlinearity by single site excitation in LiNbO3_3 waveguide arrays.Comment: 6 pages, 4 figure

    Discrete interband mutual focusing in nonlinear photonic lattices

    Full text link
    We study nonlinear coupling of mutually incoherent beams associated with different Floquet-Bloch waves in a one-dimensional optically-induced photonic lattice. We demonstrate experimentally how such interactions lead to asymmetric mutual focusing and, for waves with opposite diffraction properties, to simultaneous focusing and defocusing as well as discreteness-induced beam localization and reshaping effects.Comment: 8 pages, 6 figures. To download the associated .avi movie, go to http://www.rsphysse.anu.edu.au/~crr124/mut_focus

    Self-Chaotization in Coupled Optical Waveguides

    Full text link
    We consider theoretically two coupled optical waveguides with a varying barrier height along the waveguides direction. The barrier could be constructed by the elongated island with a reduced refractive index (which acts as a potential barrier), such that in the middle region it splits a waveguide into two weakly coupled parts. It is predicted by numerical simulations and analytical consideration that the presence of some imperfection of the system parameters can cause splitting of injected laser beam and one will observe two intensity maximums at the output, while for small imperfections the input and output beam intensity distributions will be the same. The switching between two regimes could be achieved changing spectral width of the beam or refractive index of the island. This nontrivial effect is explained by possibility of transitions between the different eigenstates of the system in the region of large potential barrier heights. The mentioned effect could be used for all-optical readdressing and filtering purposes

    Discrete gap solitons in modulated waveguide arrays

    Full text link
    We suggest a novel concept of diffraction management in waveguide arrays and predict the existence of discrete gap solitons that possess the properties of both conventional discrete and Bragg grating solitons. We demonstrate that both the soliton velocity and propagation direction can be controlled by varying the input light intensity.Comment: 4 pages, 3 figure

    Power dependent switching of nonlinear trapping by local photonic potentials

    Full text link
    We study experimentally and numerically the nonlinear scattering of wave packets by local multi-site guiding centers embedded in a continuous dielectric medium, as a function of the input power and angle of incidence. The extent of trapping into the linear modes of different sites is manipulated as a function of both the input power and incidence angle, demonstrating power-controlled switching of nonlinear trapping by local photonic potentials.Comment: Submitted to Optics Letter
    corecore