67 research outputs found

    Magnetic catalysis and anisotropic confinement in QCD

    Full text link
    The expressions for dynamical masses of quarks in the chiral limit in QCD in a strong magnetic field are obtained. A low energy effective action for the corresponding Nambu-Goldstone bosons is derived and the values of their decay constants as well as the velocities are calculated. The existence of a threshold value of the number of colors NcthrN^{thr}_c, dividing the theories with essentially different dynamics, is established. For the number of colors NcNcthrN_c \ll N^{thr}_c, an anisotropic dynamics of confinement with the confinement scale much less than ΛQCD\Lambda_{QCD} and a rich spectrum of light glueballs is realized. For NcN_c of order NcthrN^{thr}_c or larger, a conventional confinement dynamics takes place. It is found that the threshold value NcthrN^{thr}_c grows rapidly with the magnetic field [Ncthr100N^{thr}_c \gtrsim 100 for eB(1GeV)2|eB| \gtrsim (1{GeV})^2]. In contrast to QCD with a nonzero baryon density, there are no principal obstacles for checking these results and predictions in lattice computer simulations.Comment: 10 pages, 1 figure. REVTeX. Minor correction. To appear in Phys. Rev.

    Constructing the fermion-boson vertex in QED3

    Get PDF
    We derive perturbative constraints on the transverse part of the fermion-boson vertex in massive QED3 through its one loop evaluation in an arbitrary covariant gauge. Written in a particular form, these constraints naturally lead us to the first non-perturbative construction of the vertex, which is in complete agreement with its one loop expansion in all momentum regimes. Without affecting its one-loop perturbative properties, we also construct an effective vertex in such a way that the unknown functions defining it have no dependence on the angle between the incoming and outgoing fermion momenta. Such a vertex should be useful for the numerical study of dynamical chiral symmetry breaking, leading to more reliable results.Comment: 13 pages, 2 figure

    Effect of Dynamical SU(2) Gluons to the Gap Equation of Nambu--Jona-Lasinio Model in Constant Background Magnetic Field

    Get PDF
    In order to estimate the effect of dynamical gluons to chiral condensate, the gap equation of SU(2) gauged Nambu--Jona-Lasinio model, under a constant background magnetic field, is investigated up to the two-loop order in 2+1 and 3+1 dimensions. We set up a general formulation allowing both cases of electric as well as magnetic background field. We rely on the proper time method to maintain gauge invariance. In 3+1 dimensions chiral symmetry breaking (χ\chiSB) is enhanced by gluons even in zero background magnetic field and becomes much striking as the background field grows larger. In 2+1 dimensions gluons also enhance χ\chiSB but whose dependence on the background field is not simple: dynamical mass is not a monotone function of background field for a fixed four-fermi coupling.Comment: 20 pages, 5 figure

    Dynamical Symmetry Breaking in Spaces with Constant Negative Curvature

    Full text link
    By using the Nambu-Jona-Lasinio model, we study dynamical symmetry breaking in spaces with constant negative curvature. We show that the physical reason for zero value of critical coupling value gc=0g_c = 0 in these spaces is connected with the effective reduction of dimension of spacetime 1+D1+11 + D \to 1 + 1 in the infrared region, which takes place for any dimension 1+D1 + D. Since the Laplace-Beltrami operator has a gap in spaces with constant negative curvature, such an effective reduction for scalar fields is absent and there are not problems with radiative corrections due to scalar fields. Therefore, dynamical symmetry breaking with the effective reduction of the dimension of spacetime for fermions in the infrared region is consistent with the Mermin-Wagner-Coleman theorem, which forbids spontaneous symmetry breaking in (1 + 1)-dimensional spacetime.Comment: minor text changes, added new reference

    Universality and the magnetic catalysis of chiral symmetry breaking

    Full text link
    The hypothesis that the magnetic catalysis of chiral symmetry breaking is due to interactions of massless fermions in their lowest Landau level is examined in the context of chirally symmetric models with short ranged interactions. It is argued that, when the magnetic field is sufficiently large, even an infinitesimal attractive interaction in the appropriate channel will break chiral symmetry.Comment: 24 pages, 6 figures, REVTeX. The final version with minor corrections. To appear in Phys Rev D60 (1999

    Faraday rotation in graphene

    Full text link
    We study magneto--optical properties of monolayer graphene by means of quantum field theory methods in the framework of the Dirac model. We reveal a good agreement between the Dirac model and a recent experiment on giant Faraday rotation in cyclotron resonance. We also predict other regimes when the effects are well pronounced. The general dependence of the Faraday rotation and absorption on various parameters of samples is revealed both for suspended and epitaxial graphene.Comment: 10 pp; v2: typos corrected and references added, v3, v4: small changes and more reference

    On magnetic catalysis in even-flavor QED3

    Get PDF
    In this paper, we discuss the role of an external magnetic field on the dynamically generated fermion mass in even-flavor QED in three space-time dimensions. Based on some reasonable approximations, we present analytic arguments on the fact that, for weak fields, the magnetically-induced mass increases quadratically with increasing field, while at strong fields one crosses over to a mass scaling logarithmically with the external field. We also confirm this type of scaling behavior through quenched lattice calculations using the non-compact version for the gauge field. Both the zero and finite temperature cases are examined. A preliminary study of the fermion condensate in the presence of magnetic flux tubes on the lattice is also included.Comment: 38 pages latex, 18 figures and a style file (axodraw) incorporated (some clarifying remarks concerning the validity of the approximations made and some references were added correcting an earlier version; no effect on conclusions; version to appear in Phys. Rev. D.

    QED in a Strong External Magnetic Field: Beyond the Constant Mass Approximation

    Get PDF
    We solve the Schwinger-Dyson equations for QED in 2+1 or 3+1 dimensions in the presence of a strong homogeneous external magnetic field. The magnetic field is assumed strong enough, so that the lowest Landau level approximation holds, but the usual assumption of a momentum-independent self-energy is not made. In 2+1 dimensions, the scaling with logarithm changes to a square root dependence on the magnetic field, but the most spectacular result takes place in 3+1 dimensions, where the constant mass approximation turns out to be unreliable and the (momentum-dependent) dynamical mass is larger by several orders of magnitude compared to what has been found till now using the constant mass approximation.Comment: 21 pages, 8 figures, plain latex, references adde

    Inverse magnetic catalysis in field theory and gauge-gravity duality

    Full text link
    We investigate the surface of the chiral phase transition in the three-dimensional parameter space of temperature, baryon chemical potential and magnetic field in two different approaches, the field-theoretical Nambu-Jona-Lasinio (NJL) model and the holographic Sakai-Sugimoto model. The latter is a top-down approach to a gravity dual of QCD with an asymptotically large number of colors and becomes, in a certain limit, dual to an NJL-like model. Our main observation is that, at nonzero chemical potential, a magnetic field can restore chiral symmetry, in apparent contrast to the phenomenon of magnetic catalysis. This "inverse magnetic catalysis" occurs in the Sakai-Sugimoto model and, for sufficiently large coupling, in the NJL model and is related to the physics of the lowest Landau level. While in most parts our discussion is a pedagogical review of previously published results, we include new analytical results for the NJL approach and a thorough comparison of inverse magnetic catalysis in the two approaches.Comment: 37 pages, 11 figures, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Axial vector current in an electromagnetic field and low-energy neutrino-photon interactions

    Full text link
    An expression for the axial vector current in a strong, slowly varying electromagnetic field is obtained. We apply this expression to the construction of the effective action for low-energy neutrino-photon interactions.Comment: 6 pages, references updated, final version to appear in Phys. Rev.
    corecore