We investigate the surface of the chiral phase transition in the
three-dimensional parameter space of temperature, baryon chemical potential and
magnetic field in two different approaches, the field-theoretical
Nambu-Jona-Lasinio (NJL) model and the holographic Sakai-Sugimoto model. The
latter is a top-down approach to a gravity dual of QCD with an asymptotically
large number of colors and becomes, in a certain limit, dual to an NJL-like
model. Our main observation is that, at nonzero chemical potential, a magnetic
field can restore chiral symmetry, in apparent contrast to the phenomenon of
magnetic catalysis. This "inverse magnetic catalysis" occurs in the
Sakai-Sugimoto model and, for sufficiently large coupling, in the NJL model and
is related to the physics of the lowest Landau level. While in most parts our
discussion is a pedagogical review of previously published results, we include
new analytical results for the NJL approach and a thorough comparison of
inverse magnetic catalysis in the two approaches.Comment: 37 pages, 11 figures, to appear in Lect. Notes Phys. "Strongly
interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K.
Landsteiner, A. Schmitt, H.-U. Ye