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In this paper, we discuss the role of an external magnetic field on the dynamically generated fermion mass
in even-flavor QED in three space-time dimensions. Based on some reasonable approximations, we present
analytic arguments on the fact that, for weak fields, the magnetically induced mass increases quadratically with
increasing field, while at strong fields one crosses over to a mass scaling logarithmically with the external field.
We also confirm this type of scaling behavior through quenched lattice calculations using the non-compact
version for the gauge field. Both the zero and finite temperature cases are examined. A preliminary study of the
fermion condensate in the presence of magnetic flux tubes on the lattice is also included.

PACS numbgs): 11.15.Ha, 11.10.Kk, 11.15.Me

[. INTRODUCTION models, the scaling of the thermal conductivity with the ex-
ternal field is different between the gaufjg8] and four-
The particle mass generation via dynamical symmetnfermion theories[15]. Thus, a detailed study of the
breaking has been a much-studied scenario in particle physaagnetically-induced chiral symmetry breaking phenom-
ics as well as in condensed-matter systems. In recent yeaesion in the context of QEPis phenomenologically desir-
this phenomenon has been studied in the presence of bacible, given that such studies may lead to more detailed ex-
ground fields, such as constant external magnetic fieldperiments in the spirit of13], that can probe deep in the
[1-9], following and extending the formalism developed by structure of the novel high-temperature superconductors.
Schwinger[10]. The formalism has been applied to models In 2+1 dimensions chiral symmetry can be defined only
that had gauge and/or four-fermion interactions. It was foundf the number of fermion flavors is evei6]. This fact is
that such constant background configurations can enhandelevant for a planar higfi; superconducting antiferromag-
the dynamical symmetry breaking by driving the critical cou-netic system[11,17] which comprises of two sublattices.
pling to a smaller value and thus catalyzing the symmetr)Vithin a generalized12] spin-charge separation framework
breaking. A concrete example of this phenomenon, of rell18], there will be two species of charged fermion excitations
evance to us in this work, is the dynamical chiral symmetry(called holong one associated with each sublattjdd, 12
breaking of chiral symmetry in massless QED three and T inally, the (2+1)-dimensional theory with even number of
four dimensions in the presence of an external magneticfermlon fIavqrs[?] can be wew_ed as ad|mgn3|onal reduction
field [1,2,6—§ where the dynamically generated fermion of the four-dimensional _effectlve ITagrang|an [‘fjﬂ'
mass depends on the value of the external field. In QED3’ the magnetic cat_alysg of the thral symmetry
The magnetically catalyzed mass generation(2e1)- breaking for_strong external flglds is established by looking
dimensional QED may have interesting condensed-matt ?t the SchW|nger-Dy§on equatiof7]. In these works the.
o . : Malq andau level formalism was used to truncate the fermion
applications [7.8], given the suggestlor'ls that h'gh' ropagators to the lowest Landau level. This formalism is
temperature superconductors can be described effectively Ryistactory for certain aspects of the magnetic catalysis for
field theories such as three-dimensional QED (QERLL]  gyong magnetic fieldg7], but for weak fields the result can
or by non-Abehanlgauge models based on the grouRiefinitely be questioned, given that in that case the spacing
SU(2)xU(1) [12,7. Indeed, there is experimental evi- penyveen Landau levels becomes small, and one effectively
dence for the opening of a secofgliperconductinggap at  geyjates from the lowest Landau level description. Recently
the nodes of the gap in certainwave supergonductors inthe two of us [19] have looked at the role of higher Landau
presence of strong external magnetic fie[dS]. As re-  |gyels and showed that they contribute by inducingarity-
marked in[14], in the context of condensed-matter-lnsplredVio|ating) magnetic moment which scales with the applied
magnetic field. Moreover, the role of higher Landau levels in
inducing a critical temperature even in the free fermion case,
The relativistic(Dirac) nature of the fermion fields is justified by under certain circumstances, was emphasizg@jinFor all
the fact that they describe the excitations about nbdesof a  of the above reasons it is important to incorporate the effects
d-wave superconducting gap. of all the higher Landau levels in the Schwinger-Dyson for-
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malism, avoiding the use of the mean field Landau leveimodel is given(in Euclidean metric, which we use hereafter

decomposition altogether. This is what we shall attempt tdy [20,7],

do in the first(analytio part of this paper. We shall compare

these results by performing some preliminéuenchedlat- 1 , 1 5, = —

tice analyses in the second part of the paper. In the latter L=~ Z(Fw) N Z(gw) +WiD,y, Vi mY

respect we have to mention that the quenched approximation (2.2

for fermions employed here allows for the ladder gauge

guantum fluctuations in the fermion free energy to be incor-\NhereDM=o’!M—iglai—igzcraBa’M, andF,,, G,, are the

porated, but prevents the use of internal fermion loops, as theorresponding field strengths for an abeli@istatistical”)

treatment of the latter requires an algorithm for treating dy-U¢(1) gauge fieldai and a non-abeliarf“spin”) SU(2)

namical fermions which is currently under construction.  gauge fieldB?, , respectively. Because of the antiferromag-
The paper is organized as follows. In Sec. Il we give anetic nature of the condensed matter system the fermigns

brief review of theSU(2) X Ug(1) model of[12], as well as  are four-component spinor$=1,---N. We note that¥,

the Dirac algebra in three-dimensional spacetime with amay be written as

even number of fermion flavors. In Sec. Il we review the

Schwinger-Dyson(SD) equation for the fermion propagator %

in the absence of the the external magnetic field. In Sec. IV \Ifiz(q,_ )

we present the results for the case of strong external fields, 2

where a logarithmic scaling of the induced condensate with . .

the external magnetic field occurs. In Sec. V we present thé "en the Lagrangian decomposes into two parts, on#'fer

SD equations for the weak magnetic fields ignoring the pho-ahnd one f?ﬂ'#* which will bfer(]:alled “ferm|gn spfe;mesj’ in
ton polarization to make contact with the lattice result pre-t_e sequel. The presence of the even number of fermion spe-
es allows us to define chiral symmetry and parity in three

sented in the second half of the paper. We show that undef. . . .
certain approximations, the scaling behavior of the Conden_lmen3|on5[16], Wh'Ch. we discuss below. The bare MasS
sate with the external magnetic field can be found. In thd®'™ iS parity conserving and has been added by hand in the
next section, we attempt to go beyond the quenched approxi-29rangian(2.1). In the model of12,7], this term is gener-
mation analytically, by including the photon polarization ang@ted dynamically via the formation of the fermion conden-
modify accordingly the Schwinger-Dyson equations. Thesate(?W') by the strongUg(1) coupling. However, for our
analysis becomes very complicated to be handled analytpurposes, the details of the dynamical mass generation is not
cally for finite temperatures, and this is the reason why wamportant and hence it will be sufficient to include a bare
turn to the lattice formulation of the problem in Sec. VII, mass term for the holons representing the mass generated by
where we set up the formalism and relevant notations. Irthe (strongly coupletl Ug(1) interactions in the supercon-
Sec. VIII the lattice results are presented for both zero anducting phase.
finite temperatures; in addition, a preliminary extension of In what follows we shall ignore for simplicity the non-
the results to the non-uniform magnetic field cases is atAbelian gauge group structure and concentrate only in the
tempted by examining the magnetic catalysis phenomenon iAbelian model in the presence of axternal electromag-
the case of flux tubes. This model may constitute a prototypeetic field, which should not be confused with the statistical
for the study of the effects of electromagnetic vortices inAbelian gauge fieldJg(1). Theincorporation of the gauged
condensed matter systems, which are of relevance to higlsU(2) structure leads to a much richer phase structure
temperature superconductivity. Conclusions and outlook arf24,19 and we reserve the discussion for future publication.
presented in Sec. IX. For even-flavor models a convenient representation for
the y,, ©=0,1,2, matrices is the reduciblex# represen-
tation of the Dirac algebra in three dimensidis$]:

(2.2

II. THE MODEL AND ITS SYMMETRIES

. | g3 O | g1 0
The SU(2)x U (1) model of[20] is a toy model for dy- yoz( ] ) ylz( ) )
namical electroweak gauge symmetry breaking in three di- 0 -—iog 0 —ioy
mensions, while in the context of condensed-matter systems,
the SU(2)XUg(1) model of[12] is based on a gauged ) oy 0

particle-hole symmetrwia a suitable extension of the spin- Y= 2.3

charge separatiofil8]. The holons transform as a doublet

under theSU(2) (particle-holg symmetry. In this respect the whereo are 2x 2 Pauli matrices and theontinuun) space-

model is d|ffere_nt fror_n otherSU(2)><U(1_) spm-charge .time is taken to have Euclidean signature. P

separated theories, which are based on either direct gauging As well known[16] there exist two & 4 matrices which

of genuine spin rotatiorBU(2) symmetries[21], or non- anticommute withy —012:

Abelian bosonization techniqué®2,23. The phase diagram pr BTELE

of the model off 12], and the associated symmetry-breaking 0 1 0o 1

patterns, are quite different from these other models. y =( ) y =i( ) (2.4)
The three-dimensional continuum Lagrangian of the 311 o) 7® -1 0

0 _i0'2
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where the substructures arex2 matrices. These are the
generators of the *“chiral” symmetry for the massless-
fermion theory:

¥ —exp(ifys)V
FIG. 1. One-loop vacuum polarization for photamgavy lineg

V—explioys)V. (2.5  in QED;,. The solid lines with crosses represent fermions in the

) o presence of an external magnetic field.
Note that these transformations do not exist in the fundamen-

ta] two-component representation of the three—di.mens.ionza‘}\,h“e the current corresponding to the generatds always
Dirac algebra, and therefore the above symmetry is valid fopongerved, even in the presence of a fermion mass. The situ-

theories with even fermion species o_nly. . ation is parallel to the treatment of tI8dJ(2) X SU(2) chiral
_For later use we note that the Dirac algebra int(®)  gymmetry breaking in low-energy QCD and the partial con-
dimensions satisfies the identity: servation of axial currentPCAC). The bilinears

1 0 _ _ _
Y S 735i7375:(0 _1) A=Wyl A= Tyel, A=
Yy =y B1,=V7,75¥, By, =Vy,ys¥, By, =Wy, AW,
YOy yiyt= — 5190~ 3rs€! 1=0,1,2 (2.12

VO I BT O | R
YYYYy 307 73y’€ transform adriplets underSU(2). TheSU(2) singlets are
YEylY Yiyt=— 8y 8y + Iy (2.6 — —

A=VAVY, B, ,=Vy, ¥ (2.13
which is specific to three dimensions only. Here the Greek
indices are space time indices, and repeated indices denqtg, the singlets are the parity violating mass term, and the
summation. o . ~ four-component fermion number.

Parlty in this formalism is defined as the transformation We now notice that in the case where the fermion con-
densateA; is generated dynamically, energetics prohibits the
generation of a parity-violating gauge invarig®t(2) term
and it is easy to see that a parity-invariant mass term¥for E)ZS],k:\[r;(]j . hsgs?J ga”t)’(;conjgrvmt% maLSJS 1tern; tr(;cre[(iel?sanly
amounts to masses withppositesigns between the two spe- riar ted by th ( g)gr”lﬂﬁ tri>\<Nirr11 twars- ng )ns nct not ti’ n
cies[16], while a parity-violating one corresponds to masse enerated by thes Faull ma o-component notation.

P: W(x%x5x?)——iy3y'W(x%,—xt,x?) (2.7

of equal signs. Jpon C(_)upling the_system to extern_al electromagnetic poten-
The set of generators t!a_ls, this phase with massive fermions shasuperconduc-
tivity. The superconductivity is strongly type[ll1,7] as the

G={1, 73,75, A=iy3ys} (2.8  Meissner penetration depth of external magnetic fields turn

out to be very largé,and hence the study of the response of
form[20,17 a globalU(2)=SU(2) X Ug(1) symmetry. The the system to the external electromagnetic fields is justified
identity matrix 1 generates th&J5(1) subgroup, while the (see Fig. 1
other three form the S@) part of the group. The currents

corresponding to the above transformations are lll. THE SCHWINGER-DYSON EQUATION FOR THE

r = FERMION
J,=Vy IV I'=ry;3,vys,i 2.9 , . o .

K Y [EARENRELE @9 QED; is a super-renormalizable theory which is confining

and areconservedn theabsencef a fermionicmassterm. It in the infrared regime. Accordingly, it acts as a simple pro-
can be readily verified that the corresponding charQ@es totype for the analysis of the chiral symmetry breaking in

=[d2x VT ¥ lead to anSU(2) algebra20]: QCD. The standard tools for investigating the chiral symme-
try breaking are the celebrated Schwinger-Dyson equations.
[Q3,Q5]=2iQ, [Qs5,0,]1=2iQ5 In this section, let us set up the Schwinger-Dyson equations
for the fermion propagatadisee Fig. 2
[Q4,Q3]=2iQ5. (2.10 The Schwinger-Dyson equation concerning the fermion

propagatoiSg(p) (for zero bare fermion magss given by
In the presence of a mass term, these currents are not con-
served:

2The high-temperature superconducting oxides are strongly type I

.
9", =2mPTV¥, (21D superconductors.

045005-3



FARAKOS, KOUTSOUMBAS, MAVROMATOS, AND MOMEN

(e ) o (e )T j::ll

FIG. 2. The Schwinger-Dyson equation for the fermion self-
energy. The curly line indicates thég(1) statistical photon. Solid
lines with crosses represent fermions in the presence of the exter
magnetic field. Blobs indicate quantum correctiglmps, which
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PPy PPy
(5’”_ p? o pz)
Sp)= - 37
T pa-ne) oy, 9
8p

n‘?he gap equation thus obtained in the absence of the mag-

are ignored in the ladder approximation. Quantum dynamics of th@etic field can be solved using the bifurcation metfid.

electromagnetic field has been suppressed.

d3k
(2m)®

Y*Se(K)I"(k,p—=K)D,,,(p—K)
(3.2

Sﬁl(p)=7-p—gf

whereI'” is the fermion-photon vertex function amdl,, is

There are two solutions namely,

S1(p)~p YN, Sy(p)~pt TN (39
whereN is the (large number of fermion flavors. However,

it is natural to expect that these solutions will change in the
presence of the external magnetic field; we will discuss this
generalization in the following sections.

the exact photon propagator. However, to this order, let us

make the following approximations:
(1) Use the bare vertex function, namely

I'"(k,p—k)=gv7", (3.2
so that the gap equation reads
—1 2 d3k v
Sri(p)=v-p—9 J 3 Y Se(K) " (k,p—k)
(2)
XD, (p—k). (3.3

(2) Now, we choose the following ansatz for thél fer-
mion propagator:

SFHP) =A(P)Y’Po+B(P) ¥ p+2(p). (3.9

IV. THE DYNAMICALLY GENERATED FERMION MASS
AT STRONG MAGNETIC FIELDS

As mentioned above, hereafter we consider only the Abe-
lian gauge groupJg(1) in the presence of an external elec-
tromagnetic potentiah®*', corresponding to a constant mag-
netic field B, perpendicular to the spatial plane. The
dynamics is described by the Lagrangian

1 — —
L==7(Fu)*+¥D,y,¥—m¥¥ (4.1)

WhereDﬂzaM—igai—ieAiXt. The massn here should be
viewed as an(infrared regulator mass. In the dynamical
mass generation scenario investigated below via the SD
methodm should be set to zero, given that the dynamics of
the gauge field and the magnetic field are both responsible
for the appearance of a mass in the fermion propagator. For
the lattice analysis, on the other hand, the presence of an

Using this ansatz, let us now perform a trace over the gammgitia| small “bare” regulating massn+0 appears necessary
matrices in Eq(3.1). This gives us the following gap equa- [8].

tion:

d3k 3(k) S b (k)
(2m)3 A2+ B2+ 32(k) % pal P
(3.9

s(p)-07|

(3) To further simplify the gap equation let us use the
zeroth order result for the wavefunction renormalization,
namelyA(p) =B(p)=1, which is often justified in the large

N argumen{ 16] (see howevef27]) so that Eq.(3.5) reads

d3k 3 (k)
(27)3 [k3+K2+32(k)]

D,u(p—k).
(3.9

E(p)=92f

(4) The photon propagatd® ,,(k) can be replaced by the
ladder resummed propagator which can be justified in th
largeN limit. The resummed propagatdin the absence of

the magnetic fielgis given by

We commence our analysis by noting that the presence of
an external magnetic field, perpendicular to the spatial plane
X1X,, breaks Lorentz and translational invariance. The con-
figuration space form of the fermion two-point function
G(x,y) for the three-dimensional problem at hand has the
generic form[6]:

G(x,y)=e><p(g(x—y)"Ai“(Xer) G(x-y) (4.2

where Ai’“ denotes the external electromagnetic potential,
corresponding to a constant homogeneous magnetic field
perpendicular to the spatial plane;x,: Afj‘tz (O,
—(B/2)x,,(B/2)x;) (in an obvious notation The field-
dependent phase factor in E@.2) breaks translational in-
variance, implying that, in generag(x,y) does not admit a
Fourier transform expressible in terms of a single momentum

évector) variablek.

The translationally-invariant pa(x—y) has a Fourier
transformSe(k) of the form[10]

045005-4
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'éF(k) =i dese—s(kg+ m?+ kz(tanhZ/Z))[(m_ y- k)
0

—i(y1ko— y2ky)tanhz](1—ivy; yotanhz)

PHYSICAL REVIEW D 61 045005

statisticalU (1) gauge field and the electromagnetic chagge
The Schwinger propagator admits the following expansion in
terms of the Landau leve[R6]:

o0

4.3 S (k)=ie KeBY — , B#0, (4.9
) ) n=0 kg+m-+2enB
wherem is the mass of the fermion, arm=seB Note that
we are distinguishing between the coupling constgior the  with
|
) k? ) k? 1 2k?
Dn(Ko,K)=(m—1yoko)| (1=iy1y2)Ly B —(1+iy1y2)lna B +4(y- KLy, B (4.5
(2K 2k? 2k? L [2K
=(m—yoko)| L, eB/ "' 73Y0 Ln B +Ln-1 B +4(y-KLy_, eB/ (4.9
|
For QED; the scaling of the dynamically generated fer- B ,
mion mass with the external magnetic field had been dis- E(p)ngJ’ d’ke™7*P—o
cussed by Shpagif6] and two of ug7]. Let us begin with (p—k)
the case when the external magnetic field is very strong. As 2
stated in the Introduction, in this case it is sufficient to trun- x| 1- (Po—ko) f dko 2(k)
cate the fermion propagatgin the absence of th&g(1) (p—k)2 (2m)% A%Z+32(k)’
interactiong to the lowest Landau levél.4), so that we get 411

= 2 1 ,
St (k) =ie k/eB—m+yOk0(l—lylyz). 4.7

As we will be dealing with the lowest Landau levels only, it

is expedient to choose the ansatz for the “exact” propagator 3(0)=g? | e k/e8?2

for the lowest Landau level fermions to be of the form

1

SLLL(k) =i KeB
P (l=le 3 (k) + A(k) y°K°

(1=iy'y).
(4.9
Hence, following 6], the gap equation for the lowest Landau

level fermion is given by

(k)
2/eB

——  Dyo(p—k).
AZKZ+3.2(K) ool P~ )

4.9

d3k
E(D):ng (27)387'(

According to[6] the photon vacuum polarization gets sup-
pressed as Y€B at strong magnetic fields and the photons

become almost free. Thus in the strong field limit the photon
propagator is given in the Landau gauge by the expression

5 _PuPu
nv pz 1
D,u(P)= 5 7 . (4.10
p? 1+o.14037E)

Accordingly, we have

d?k
(k§+k?)?

whereg?=g?/[1+0.14037¢?/ JeB)]. Let us sefp to zero.
dko % (k)
(2m)% A%kZ+32(k)

Then,
J
(4.12

For strong fieldseB—«, we suppose that setting (k)
~3(0) andA~1 yield a sufficiently good approximation
[27]. Settingk?=x, the gap equation becomes

9° X 1
1=—J dkOJ dxe™ ¥/e8— 5 :
872 (k2+x)% k3+32(0)

(4.13

Assuming that the dynamically generated fermion mass is
much smaller than the external magnetic field, 20)
</eB, we cut off thex integration by\/eB and after thek,
integration we get the transcendental equation

9% (VeB 2 o[2 33(0) 3(0)°

0)~—| dye Ve8| —— =

2O 27 )™ (y y? y* )
(4.149

The final result reads

- [ \eB 3(0) ~ ¢

E(O)~2aln(2(0) +0 \/53 , where =,
(4.15
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This equation can be solved numerically a$#h leading to  can still have a Fourier transform, based on a single momen-
a logarithmic scaling of the induced fermion condensate withtum variable, which takes thepproximateform
the magnetic field3 (0)~In(\eB/a).

Note that the most important aspect of this type of behav-
ior comes from the presence of the exponential factor in the
form of the free propagator in E¢4.7). However, when the
external magnetic field is weak, one has to include all the
higher Landau levels as the levels become closely spacedll the qualitative information about the effects of the exter-
Also, the wave functions for these levels grow with momen-nal field B is encoded inside the coefficients. As we shall see
tum as they involve Laguerre polynomials. Hence, one has ttater on, by comparison with the preliminary lattice results in
work with a generic ansatz for the fermion propagator, suchthe quenched approximation, the qualitative features of the
as Eq.(3.4). However, in view of the breaking of transla- scaling of the magnetically-induced chiral condensate with
tional invariance by the field-dependent phase factor in Eqthe external field seem to be correctly captured by the above
(4.2), a straightforward application of this ansatz is not pos-ansatz. It is understood, of course, that these results should
sible. Nevertheless, as we shall discuss below, such an ansdde taken with caution and viewed only as preliminary. A
can still give qualitatively correct predictions for the scaling complete lattice analysis involving dynamical fermions,

S (p)=[Ao+A1y1Y2]YoPo+ Cy-p+ [20+217172(]5- )

of the induced condensate with the external field. which will settle these issues, is still pending. Hopefully it
will constitute the topic of a forthcoming work.
V. THE DYNAMICAL FERMION MASS IN WEAK Under the above approximation, the Schwinger-Dyson
EXTERNAL MAGNETIC FIELDS UNDER QUENCHED equation for the fermion propagator in the massless limit
APPROXIMATION assumes the form
We are looking at the leading scaling behavior with the .
magnetic field intensity of the dressed fermion propagator in__,, . ~_4 , [ dk Y
the presence of an external magnetic fieBlfor the case of (P) =S (P)lm=0—9 (277)_3D’”(p_ k) y*Se(k)I'™.
weak fieldseB<2(0) whereX(0)=m is a dynamically (5.2

generated mass due to the statistidgf1) interactions in
the model. Obviously, sincenxg?, whereasy denotes the
coupling of these interactions, the weak field limit is It is sufficient for our purposes to use the bare photon vertex
achieved for relatively strong gauge interactions. However{I'"= "), and set the wave-function renormalization to one.
as stated earlier, we are interested in the behavior of th&hese will be justified later on.
system under weak magnetic fields as well and in this regime Taking the trace in the above equation, we obtain
the Landau level decomposition is not particularly helpful.
This is a techr_lically invplved problem, and we shall not 4%k
attempt to solve it exactly in what f_ollows. Instead We_shall 43.(p)= _ng —3Dw(p_ K) Tr(y“S:(k) ")
make an attempt to present approximatetreatment, which (27)
hopefully captures the importawualitative features of the (5.3
phenomenon. As we shall see later on, preliminary lattice

calculations will support the results obtained in this section. . .
bp where we denoted,; by 2 (p). A more important remark is

The main complication arises from the fact, mentioned in hat inside the i I h : d
the previous section, that the presence of an external fieldhat inside the integral we have approximated ingknown

perpendicular to the spatial plane, breaks, in addition to Lorfermion propagatoSg(k) by the form Sg(k) of Eq. (4.3),

entz invariance, also translational invariance in the spatiajvhich is the propagator in a homogeneous external magnetic
plane. This is apparent from the configuration space forniield. One has

(4.2) of the fermion Green’s function. The breaking of trans-

lational invariance is manifested through the field-dependent w

phase factor in Eq(4.2). A Schwinger-Dyson equation for Tr(y#3(k) y")zf dse Sko+K¥(tante/z) +3)

G(x,y) can then be obtained asli6], but unfortunately, due 0

to the form (4.2), a passage to momentum space with an

) . . X “(—y-k+ v
appropriate Fourier transform based on a single momentum Ty y-kt2(k)y

variable is not feasible. +iy*(—=2(k)+ y-K)y,y,y'tante
Below we shall make a modest attempt to calculate ana- )
lytically the scaling behavior of the chiral condensate with =1y (yika— y2Ky)

the magnetic field, at least qualitatively, and then compare
with the lattice results. This is possible by adopting an ansatz
for the fermion propagator in momentum spaSé,l(p), as

if the translational invariance breaking phase factor in EqSince we work in the Landau gaugb,,,(q) is given by
(4.2) was absent. Specifically, we assume that the fermioquéw—qﬂq,,)/q“. Using the following identities of they
propagator in the presence of\eakexternal magnetic field matrices in Euclidean space:

Xtante(1—ivy,y,tante) y"]. (5.9
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Tr(y,y*)=-12

(q-y)*=—¢°

2
Tr(y*Oy")Du(q)=— ?Tro (5.9

whereQ is any operator, one can write E¢.4) in the form

D,.,(p—K) Tr(y*Se(k) y")

- : fdsz(k)e_s(k 5+12 (tante/2) +32(k).
(p-k)?

(5.9
Using Eq.(5.6), Eq. (5.3) becomes

(2 )SJ J(k— p)?
(5.7)

Settingp=0 and approximating (k)=2,(0)=m in the in-
tegrand yields

S (ke s(k§+K3(tante/2) + 32(K))

2(p)=

- s(k§+ k2 (tante/z) +m?)

(277
(5.9

Now we use the parametrizatiok;=k cosé, k?=k?sir?é,
and get

2 —sn?

g e

o +1
fdsf dx ,
4773/2 0 -1 tanhz
s|x2+(1—x?)

z

1:

(5.9

with x=cos6. Then thex integration can be performed:

¢

4’7T3/2\/e_B

xfxdzefz(mz’EB) 1 o \/_+ Jz—tanhe 5.10
0 \/z—tanhz \/_ Vz—tanke

where we have set=eBs At this point we define two di-
mensionless variableg.=2m(m/g?), f=2m(\/eB/g?), and
write the last equation in terms @f andf:

1 l * _ 2,62 1 \/E"‘ \ Z—tanhZ

1=——f dze #r7f9) log .

27 tlo Jz—tanre \z—\z—tante
(5.11
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FIG. 3. Solution of Schwinger-Dyson equations for the
guenched and dynamical fermions.

very easily to the language of dimensionful parameters, as
well as to the lattice parameters. Notice that up to now there
is no restriction to weak fields.

One may also derive an analytical approximation for the
regime of weak magnetic fields. Starting from Eq.
(5.8 we write the term e (@2 in the form
e~ sk, g~ sk(lanwz-1) " eypand the second exponential in a
power series o= eBsfor weak fields and retain the terms
which are at most of sixth order i@B. Then the same pa-
rametrization as before is used and the integrations kver
andx are similarly carried out. Then the equation involving
the integral over is replaced by

2 773e°B6

960

1 1e82 7e4B4

g
Y N

122—

+O(e888)1
(5.12

For weak fields we may solve E¢6.12 by substituting the

expansionm=my+ m,(eB)2+m,(eB)*+ ... in Eq.(5.12

and equating the coefficients of equal powerg Bfto deter-
mine the coefficientsm,. The resulting solution of Eq.

(5.12 is

g° 47%e’B?  4007%e*B* 534208r'%°B°

m=—|1+ -

2T 398 9916 135924

+ O(eSBB)) , (5.13
which may also be written as

1 25 8237
— _f4_ 8 12 16
pn=1+ 12f 144f 8640f +0O(f*°). (5.19

The above relations show that for weak magnetic fields the
dynamically generated mass is quadratic in B. For somewhat
bigger magnetic fields, however, the quadratic behavior is
compensated by a negative quartic contribution and the in-

For each value of the above relation gives a corresponding crease with the magnetic field resembles very closely a linear

value for . The result is a universal curye(f), which we

dependence. Of course for even bigger magnetic fields

depict in Fig. 3 as a dashed line. This result can be translateaigher order contributions take over.
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Although we have already depicted in Fig. 3 the full so-
lution w(f), we also plot the solution of E@5.12 [we note IT,.(p)= —ng
here that we did not actually use the soluti@13, but
rather the one which results if E¢p.12) is quenched to order _
B? before solving; this is done to gain some feeling about WhereS(k) is the fermion propagator in the presence of the
the accuracy of the quadratic approximation, which will beexternal magnetic fiel@.3. _ .
the only possible approach in the case where also dynamical The calculation of the polarization tensor is straightfor-

fermions are taken into account. The approximate solution j{{/ard- Due to the fermionic loop, the effects of the transla-
the full line and is restricted in the region of small B, wheretlonal Invariance b_reakmg phase factors in £42) c_ancel

o o . and one can go directly to momentum space as in the zero
it is appropriate; it is quite good up tpeB/g°~0.1.

. X L external field situation. For our case, the photon polarization
As we have just seen, in the quenched approximation on

! . &an be obtained easily by performing a dimensional reduc-
uses '.[he free photpn propagator as the fermion |¢oech tion of the four-dimensional resul80,31. We end up with
modifies the fermion propagajomre ignored. In the next

section, we examine whether the inclusion of the photon po —(n2s _ 26 _

larization modifies the scaling behavior of the gap function-H’”(p) (P20 = PuPy)No(P) (P10~ PLuPLyINA(P)

with eB discussed above. = pZPWNO(p) + pZPMVNl(p), (6.2
Before closing this section two important remarks are in

order. First, it should be noted that the presence of the tran:wherepzzpf with p, ,=(0,p1,p2) and

lational invariance breaking phase factors in E2), which

have been ignored in the above treatment, will affect the g®> (=ds[+1

d3k
)

2n (.80 7,Sk=p)) (6.1

numerical coefficients of the even powersBin Eq. (5.13. No(p)=— 8nlo Js) 1 dVe_sd’OSinhz
This can be seen easily from the fofdh2) by an expansion
in powers of the weak fiel& (and restriction to the real part, X[ coshzv —v cotlz sinhzv ]

assuming hermiticity of the translational invariant pari$he

important issue is the sign of the various terms. As we shall 92 [=ds (1

see later on, comparison with tliguenched lattice results N.i(p)=— W dve SPo—
confirms the scaling wittB given in Eq.(5.13, thereby jus- 8m¥2)o s)-1 sink’z
tifying the above approximate method of dealing with the X[ coshz— coshzv]—No(p) 6.3

problem, at least for qualitative purposes. Second, the above
analytic treatment, leading to E¢.13, was based on the i
approximation of replacing. (k) inside the integrals in the

pertinent integral form of the gap equation by a constant 1—v?2 ,  coshz—coshzy
3 (0)=m, the so-called “constant-mass approximation.” Po=m?+ Pot : P’
e - o . 4 2zsinhz
This is sufficient for the qualitative purposes of this work,
where the main interest lies on the scaling of the induced
z=eBs (6.4

condensate with the magnetic field. It should be remarked
though, that attempts to go beyond the “constant mass ap- ) L )
proximation” have been made in the literature, specificaIIyAn outline of the derivation of the above-mentioned formu-

in the context of three-dimensional QED in the absence of2S IS Provided in the appendix. _

external fields[28]. The result is that the value of the in-  FOr weak magnetic fields, we will havd@<<_2(0),
duced massn, obtained by keeping the momentum depen-Where X(0) is the dynamically generated fermion mass.
dence of the gap function inside the pertinent integrals in thé\ote that it is the opposite to the limit encountered in the

Schwinger-Dyson equation, is half the value of the mass gapase for the strong magnetic fief@,20]. In the weak-field
obtained under the “constant mass approximation,” i.e. thdimit, we can expand the above functions in a power series of

zero-field limit B—0) in Eq. (5.13 should bem=g2/4.  2=S2%(0)[€B/%*(0)] and take the leading and next to lead-
This should be taken into account in quantitative analyses df'd order behavior az—0. _ _

the phenomenon, and possible detailed applications in, We have, asz—0, the following expansions to order
condensed-matter physics, which, however, go beyond th@&B*:

scope of the present work. 5 5

2_ %
4 28!

Po=32+ 1-v?)?p?+0(z%), (6.5

VI. BEYOND THE QUENCHED APPROXIMATION

2 o
To take into account the contribution of internal fermion No(p) = 9 ds+1

loops we begin with a study of the one-loop vacuum polar- 8m32)o \s)-1
ization graph in QERin the case of even number of fermion
flavors. The polarization tensor in the one-loop approxima-
tion is given by

dve S%o(1—v?)

2

><121 2
6( v?)

+0(2Y), (6.6)
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g2 [=ds [+1 2 where we have used the parametizatids k?sir6, as be-
Ni(Pp)=——5;| = dve*5¢01—2(—3+ 2v2+v?) fore. Hereafter we will be using the approximatiof@s1l)
8m7eJo \/g -1 and(6.12 which are justified in the weak-field case.
+O(2%. 6.7) As in the case with the quenched treatment let us proceed

to get the gap equation. Again we shall adopt the approxi-
Note that wherz—0 the termN,(p) vanishes and we re- Mate qualitative approach of the previous section as regards

cover the usual form for the polarization tensor. the effects of the translational invariance breaking phase fac-
e 5% in a power series iz so that take account of the photon propagator, we can invoke the

large-N argument to sum up the photon propagator in the

2023 ladder approximation

e
~so— @~ SEZH[(1-v)lp?)| 1 4
e e 1 18

(1—v2)2p2).
6.9 D,.(p)=D},(p)+D% . (p)II,,(p)D,(p)+- - -
(6.13

where DOV is the free photon propagator. To facilitate our
calculations let us use the Landau gauge for the zeroth order

This simplifies thes-integrals. We then end up with

2 2
__ 9 1237 propagator, so that
No(p)—— m (§_F> SIn "k
3 2e’B%[ | 23k%(3+2«P) _ PuPy
B - 2 SIn “"k— T v pz
P DY,(p)=———. (6.14
5e?B2%( | 25 k¥(15+10k%+8x%) P
* 2p® sk 15p Using the algebraic properties of the projectors
(6.9
PLu(P)P,,(P)=P,.(P)
2e’B?[ | 3— k’+6k*

Nl(p):_ 27Tp5 Sin “k—p 62 (61() Puv(p)PJ_Vp(pJ_):PJ_Vp(pL)

where k?=p?/(432+ p?). Note that for physical processes
0<k<1. When,eB=0 and>=0 (i.e. k=1) we recover
the known results[Eq. (3.7)], namely Nqo(p)=—g?%/8p,
N1(p)=0.
On the other hand, in the presence of the magnetic field
one can readily see that in the linkit—0 the functionN,(p) 1
blows up whenk—1 (i.e., the massless casdue to the D.u(p)= 2
presence of the fact® in the denominator. However, for a P“(1—=No(p))
super renormalizable theory this seems unphysical. A reso- p)
lution to this puzzle can be provided by the generation of a Nl(p)p_
dynamical fermion masE ( however sma)lin the presence 2
of the magnetic field. This observation points to the magnetic X| Pt Pru p?
catalysis even in the case for the weak fields in three- 1—| No(p)+—=Ni(p)
dimensional QED. Generation of such a mass would prevent p
the appearance of the divergences. (6.16
For £ #0, Ny(p) and N,(p) behaves, whex, <p and
p—0, as To go beyond the case of quenched approximation which we
discussed in the previous section, we need to include the
polarization effects in our analysis treatment. To perform this
), (6.10) improvement we replace the photon propagator in &)
by the ladder resummed one, given by E6.16). For the
fermion propagator we proceed as we did previously for the
5 oin quer;ched case: starting from E&.4) wezexparz'ld the term
Ny (D)= — g%e’B (77 4p) 6.12 e sz ang get the expressio S¢. g~ Sk(taniez—1)
5 Then we expand the second exponential in powers of

PL/.LV(pL)PLVp(pL):PLVp(pL) (615}

we can sum the series in E@.13 to get

9° 4e’B? 5e?B2sirte
- T p?
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z=eBs retain the terms which are at most of second orderBrand integrate over s. Taking traces over the Diyanatrices
we finally get

- )(p—k)2
3 2R212 DL 12
2(p)=ng d3k S(k) ( .\ 2e2B%k ) 1 - (p—kK)
(2m)% (k§+K>+22(k)) (22+k?3) (p—Kk)2(1—Ng(p—k)) (p—k)?
No(p—K)+———=N;(p—k)
(p—k)?

(6.17

Let us now sep=0 and as in the case of the quenched aprroximation let us make the subsii(itioa> (0)=m to get

2e282k2 2
— Ny (K) —
- Zf d3k ( (M2+k2)3 1 - itz 618
9 (2m)%  (K3+k2+m?) Kk?(1—Ng(k)) k2 '
- No(k)+EN1(k)
Now ask?=k3+k? and we can use the parametrizatiqp=k cosg and |k| =k sin 6. Let us write, using Eq(6.11),
No(p)=E(p)+F(p)sir’g (6.19
whereE(p) = — (g%/8p)(1—4e?B?/p*) andF(p) = —5g%e’B?/8p°. Accordingly, we can rewrite E¢6.18 as
w siné N, (Kk)sir?e 2e?B%Kksir g
gt [ 2L [, | ]
(27)2 ( k2+m )Jo (1—E(k)—F(k)sm20) s Eo(K)—[F(K)+ Ny (k)]sir?6) (M2+k?)3
(6.20

The angular integral can be performed by making a change of varigblessé, so that we end up with

ng 1 1 ( 2e?B2k3(b%+1)| 1 (1) e’B%k? ) e?B2kN,(k)
== | dk—>—| =~ ————— o (pan =] -2 +
2] (k24 m?) [ F(K) (k*+m?)3 | b (k2 +m?)3) (kK24 m?)3F (k) (F (k) +Ny(k))

b

1 2(b%+1)e’B%k?| b2+1 (1 2(a®+1)e’B%k?| a?+1 (1
—— tan i —| =< 1+ tan 1| —| ||, (6.2
2(1—E(k)) (m2+ k2)3 b b (m2+k2)3 a a
|
where b?=(1-E—F)/F and a’=(1—-E—F—N;)/(N; 2 [ 2
+ F) AOZ— dx > > ) (623
However, this equation is difficult to handle, so we prefer mHIo (X D[+ h(p,x)]
instead to expand E@6.20 in powers ofe’B? beforedoing , .
the angular integration. After some rather tedious algebraic - _ 128 J"”dx X 6.24
manipulations we end up with ! 3u® Jo T (X2 +1)*h(u,x) '
12873 (= 12x*+x°
eB f? 1-Ag To=—F f dx———— 5
—_—=—= ) (6.22 9u® Jo  (4+x9)*(x*+1)[h(u,Xx)]
g* 4 T+T> (6.29

In the above expressions we have used the notatfons
The quantities appearing on the right hand side are given by27(\/eB/g?) and u=2m(m/g?), already used in the pre-
the following expressions: vious section; moreover, we have employed the expression
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h( ) 11+X2_4-71 X Ay(n nn)—+B(n 1),n,%N,A,(ny,N,ns)
X)=— sin . 2(Ng,N2,N3)=7 (N —1),N3 ANy, N, N3

o I 2X N 2

Numerical computation of the integrals yieldgg? as a =4 ;(N+1)(n1_1)- (7.3

function of \JeB/g?, which can be used to produce the lower

branch in Fig. 3. This represents the solution of the SD equa-

tions in the region of small magnetic fieldfNote that only ~ whereN?® is the number of points on theubig lattice. It is
the smallB part of the curve is depictedWe see that the trivial to check out that all plaquettes starting af (n,,ns),
dynamically generated mass in this case is substantiallwith the exception of the one starting at,(N,n3), equalB.
smaller than in the previous section. Presumably this reflect$he latter plaquette equals {IN?)B=B— (N?B). One may
the fact that, due to the Pauli principle, the condensate tendsay that the flux is homogeneous over the entipe, cross

to decrease. We note that in the quenched case the bagkction of the lattice and equals The additional flux of
reaction of the fermions is not really felt, so this fact has no— (N?B) can be understood by the fact that the lattice is a

consequences in that case. torus, that is a closed surface, and the Maxwell equation
V-B=0 implies that the magnetic flux through the lattice
VII. LATTICE FORMULATION should vanish. This means that, if periodic boundary condi-

tions are used for the gauge field, the total flux of any con-

figuration should be zero, so tlipositive, say flux B, pen-

etrating the majority of the plaquettes, will be accompanied

by a compensating negative flux (N?B) in a single

B _ plaguette. This compensating flux should be “invisible,”

S="2 2 F(0F*(X)+ 2 ¥,.Qun¥, (7.)) thatis it should have no observable physical effects. This is
2 X n.n’ the case if the flux is an integer multiple ofm2N2B

We now proceed with a description of the lattice formu-
lation of the problem. The lattice action is given by the for-
mulas given below:

=m27—B=m(27/N?), wherem is an integer. Thus we

—AaS S, S S
F () =a;(x)+aj(x+pu) —a (x+v)—aj(x) may say(disregarding the “invisible” fluy that the mag-
netic field3 is homogeneous over the entire cross section of
Q=S — KZ (e a(r+72)UnaVas the lattice” The integemm may be chosen to lie in the interval

[0,N?/2], with the understanding that the model with integers
: ; m betweenN?/2 and N? is equivalent to the model with
Fonn-n(r=y)U Voo o integers taking on the valug$?—m, which are among the
ones that have already been considered. It follows that the
The indicesn,n’ consist actually of three integers each, magnetic field strength B in lattice units lies between 0 and
(N1, Nz, ng), labeling the lattice sites, whilp. denotes di- 7. The physical magnetic fielB,pys is related toB through
rections.r |sS the Wilson parameteK the hopping parameter, B:ea25phys, and the physical field may go to infinity let-
Un;zeigaan,;, Vn/;zeieaAn,;_ 0‘:;1 represents the statistical ting th(_e lattice spacing go to zero, whileB is .kept co_nstant.
gauge potential and,;, the external electromagnetic poten- AN important remark is that the magnetic field is not al-
tial. Be=1/g%a is related to the statistical gauge coupling lowed to be too big in lattice units, since then the perturba-
constant in the usual way. On the other hand, we denote by tive expansion of the expressio§** would yield signifi-

. . : : 2 g3 bt - :
the dimensionless electromagnetic coupling constant of théant B, B, ... contributions with the accompanying
external electromagnetic field. In our treatment we will useVertices, in addition to the desirable terms which are linear in

naive fermions, so we set=0. Initially we will consider a B. A trivial estimate of the critical field strength is obtained
homogeneous magnetic field; thus one should construct fé_om the demqnq that the cyclotron radius correspond.ing toa
lattice version of the homogeneous magnetic field. This hagiven magnetic field should not be less ttiaay two lattice
already been done before[ia9] in connection with the Abe- SPacings. This trivial calculation yield8< /8. Of course
lian Higgs model. We more or less follow them, but follow a the above limitations apply strictly only to the case where the
slightly different prescription, which we describe bel8l. _statlst|cal gauge field has been turned off; in the “mte_ract-
Since we would like to impose an external homogeneoudd” case, one does not really know whether there exists a
magnetic field in themissing xs direction, we choose the Critical magnetic field, after which discretization effects are
external gauge potential in such a way that the plaquettes iffnPortant. With this remark in mind, we depict in the figures
thex,x, plane equal B, while all other plaquettes equal zero Of the following sections the results for the whole range of

One way in which this can be achieved is through the choicethe magnetic field, from 0 ter. o
As(ny,n,,n3)=0, forall ny, n,, ns, and For the fermion fields we used antiperiodic boundary con-

ditions in the time direction and “fixed” boundary condi-

"

B
Al(n11n21n3):_ (nz_l)vnl#:N!Al(Nln21n3)

3To check this translational invariance we measured the fermion
(N+1)(n,—1), (7.2) condensate at every point in tixgx, plane. The results were the
same at all points within the error bars, confirming homogeneity.

2
B
2
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fermion condensate for betag=0.10, vol=1643 fermion condensate for betag=0.15, vol=16"3
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FIG. 4. (\I_NI’) versus the magnetic field strength at strong cou-

pling for three masses and extrapolation to the zero mass limit. FIG. 5. (W) versus magnetic field strength at intermediate

coupling for three masses.

tions in the spatial directions; the latter boundary conditionsstrong and weak magnetic field regimes we find a nice quali-
mean that we consider fermion fields vanishing on theative agreement of the analytical solutions with the Monte

boundaries. Carlo results. In the figure we have also included the ex-
trapolation to the zero mass limit.
VIIl. LATTICE RESULTS The magnetic_field has b_een character_ized as “strong” or
“weak” through its comparison with the fine structure con-
A. Zero temperature results stant a=g?/47 and the dynamically generated mass

We are now going to present the results pertaining to thé==(0). Since Fig. 4 contains the strong coupling data, it
T=0 case. The first set consists of measurements of the fewould be interesting to explore the fate of the whole picture
mion condensate versus the magnetic field for lasice in ~ Shown in Fig. 4 as the gauge coupliggnoves away from
the strong coupling regime for the statistical gauge fieldthe strong coupling regime. One would naively expect that
(Bs=0.10) for three values of the bare m45ay. 4). Before the magnetic fields will be more easily characterized as
going on with the specific features of these results, let usStrong,” as compared to the smaller and smaller scale set
remark that to facilitate comparison with the analytic results2Y the gradually weaker coupling constant. Thus, the almost
we measured the magnetic field in units of its maximallinear part should be restricted to the very small magnetic
value: thus we used the parametbr defined by: b fI§|dS and _eve.ntuglly dlsapp'ear. This is wha't one may see in
EB/Bmax:EBphysaz/eBphysa2|max- SiNceB =, as ex- Fig. 5, which is S|m|I§1r to Fig. 4, t_he only_dlffere_znce belng
plained previously, we geb=B/ andb runs from 0 to 1. that the gauge coupling constant is now in the mterm_edlate
We see in Fig. 4 that for all three masses the plot consists ffPUP!iNg regime, rather than the strong coupling of Fig. 4.
two parts with qualitatively different behavior. Fbrsmaller e see that the almost linear part is now restricted in the
than about 0.3 we find a dependence of the condensate on tHIoN betweem=0 andb~0.12-0.15. We may also have
external magnetic field, which is nearly linear, however, in@ SéMi-quantitative estimate of the new “critical” magnetic
view of the analytical results obtained in Sec. V about thefi€ld bc, defined as the maximur which fits into the al-
quenched case, we understand that we see the quadratic JBOS! linear behavior. Inspired by the inequaliyB
havior found there; however, there is a negative quartic terni<(9°/4m)*, let us suppose thaB.=x(g/4m)*, with x a
coming into the game, as we also saw, and this “straighten¥ery small number; we also n_1ake the further assumption that
out” the quadratic curve and makes it almost linear. For bigk does not depend og. We will check crudely whether this
magnetic fields we find points that could possibly be fitted t@SSUmPption is reasonable given our results. Converting ev-
a logarithmic type of curve. The logarithmic dependence  erything to lattice units, we find thdt.=(x/167°)(1/83).

From this we infer be,=b. (Bs,/Bs,)? Using Bg,
3(0) JeB
o

o

=0.10, 8,=0.15 andb, =0.3, we find forb. , the value
0.13, which is surprisingly close to the value given by the
data of Fig. 5. Of course, theﬁ?_; dependence di tells us

has been found12] by an approximate solution of the that the weak field behavior will be even more suppressed as
Schwinger-Dyson equations in the regime of strong magnetieve move towards the weak gauge coupling; this is what we
fields. We have included such a logarithmic fit fon have seen in direct simulations in this regime. Thus, it is
=0.050 in Fig. 4. In addition, for this mass some points inplausible that the dependence of the “critical” magnetic
the intermediate region are included. They show a smootfield has a 182 dependence.

interpolation between the two regions. Thus in both the We now make contact with the results [&], where we

In a=g—2
’ _4771
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fermion condensate for m=0.10 fermion condensate for b=0.188, vol=16"3
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FIG. 7. (q_qu> versus m for a typical value of the magnetic field

FIG. 6. <\5\If) versus the magnetic field for two small values of strength and various values gt .

the gauge coupling constant and three volumes.

gauge coupling which dominates in the formation of the con-
studied the model with the statistical gauge field turned offdensate. In the third cas@g=0.35), which lies in the weak
We had found there that for big enoughthe condensate coupling, one can no longer fit to a straight line; a quadratic
stopped showing a monotonous increase Wwitatb=0.5it  fit has proved necessary for @ values smaller than 0.2.
had a local minimum and then had a succession of maxima Figure 8 contains the zero mass limit of the condensate
and minima, up td=1. Moreover, there was a spectacular (obtained through the procedure illustrated in Figv@rsus
volume dependence. One expects, of course that this “free’ ;| for four values of the external field. We observe that in
case will be reached for big enougl . In Fig. 6 we show  the strong coupling region the b-dependence of the conden-
the results forz=0.5 andBz=1.0 for various volumes. sate is rather weak; on the contrary, at weak coupling, the
For B=0.5 the curve shows the first sign of non monoto-external field is the main generator of the condensate, and we
nous behavior ab=0.5, while atB;=1.0 the succession of find an increasingly big b-dependence, as we move to large
maxima and minima is clear. However, there is no detectabl@; . Note that the biggest value dfwe have used in sys-
volume dependence, so we can be sure that, even at this larggnatic measurements, such as the ones in Fig. 8, is 0.3. This
Be, the limit of switching the gauge field off has not yet takes into account that for larger valuestothe function of
been reached; it will presumably be reached for even biggethe condensate stops being monotonous for Iggeas may
values of Bg. One should add that in the “free” case the be seen on Fig. 6. Thus we have restricted our studyho a
role of the bare mass is very important, since it is eventuallyegion which is safe for all values of the coupling. From this
the only source of mass generation. This is at the root of th@reliminary quenched study we conclude that a non-
large volume dependence showing up in the *free” case: a(/anishing value fof W) develops for this small volume

fixed volume the condensate goes over to zero for vanishin S
) . . ven at weak ling in the presen f an external mag-
bare mass. In the full model, though, the interaction with theg en at weak coupling In the presence of an external mag

gauge field generates a dynamical mass, independently from
the value of the bare mass. This is why in the “interacting” o2 P
case the volume dependence is small, permitting a smootl oo
transition to the thermodynamic, as well as to the massless’” [ o000
limit. os |
The simulations are done at finite values for flbare x
mass; the massless limit is taken by extrapolating the resultos | 8
for several bare masses to the limit—0. Figure 7 shows
the process of this extrapolation for three values of the gaugé* | x
coupling constant. The external magnetic field has been se | a x v
equal to a typical valuel(=0.188); the picture is similar for x x
all values of the magnetic field strength. FBg=0.10, o2 o * ]
which lies in the strong coupling region, the extrapolation is ® )
linear with negative slope. This line is pointing to a relatively *'[ .
big value for the condensate in the chiral limit. For some- | ) ) ) ) ) N L a_
what weaker coupling £;=0.20), the curve is still a o1 02 03 04 0 06 o7 08 08 !
straight line, but the slope is positive and it points to a .
smaller value am—0. In both of these cases the mass de- FIG. 8.(¥V) versusBg n the zero mass limit for four values of
pendence is not very pronounced, because it is the strorge magnetic field strength.

fermion condensate (zero mass limit}, vol=1643
T T T T

0% %+

o+
+
1

oa%x X +

5
betag
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Wilson Line for 3d non-compact QED fermion condensate (zero mass limit), b=0.1
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FIG. 11. Condensate versi; for b=0.1. Comparison of zero

FIG. 9. Wilson line versu@g for N,=4 and three spatial sizes. S
temperature with finite temperature.

netic field. We have not tried to study systematically thex 4. This is due to the fact that the former lattice is closer to

approach to the continuum limit. the zero temperatu@ymmetrig lattices, as compared to the
latter. The value oBg, above which there i8¢ dependence
B. Finite temperature results is substantially bigger foN =6 than forN,=4 or N,=2.

The Wilson line for the N.=2 case approaches an

We expect that the fermion condensate, generated by anysy mntotic value for larg@s . This is not very obvious in
mechanismexplicit mass term, gauge interactions, extemnal,q gther two cases, because they lie farther from the infinite

fields) should vanish at high temperatures. This is the studyemperature limit. Also in this case the statistical fluctuations
we now turn to: we employ asymmetric lattices and consider, o very large, resulting in big errors. With this in mind we
the behavior of the condensate vergls. Before describing o\ /o put in the figure only the errors for the case=2.

the behavior of the condensate, let us first seg3gelepen- Figure 11 contains the zefbare mass extrapolations for
dence of the Wilson line. _ _ the condensate as a function 8. The external magnetic

Figure 9 depicts the Wilson line versy, for lattices of  fig|q is set tob=0.1. The uppermost curve contains the re-
tempo_ral S'Ze_NT:A' and various spatial volumes. We 0P~ sults for a symmetric lattice (£6) It is easily seen that it is
serve in the figure not only the decrease of the Wilson ling, 4 ite smooth curve and presents no apparent discontinui-
W|_th increasing spatial yolume, but also the fact that '”'t'a"yties of any sort. The data for the asymmetric latticé18
this quantity is almost independent ¢, but atBe=0.25  {o|10\y the ones of the symmetric lattice at strong coupling:
its dependence 0fi starts showing up. Itis important that j, the weak coupling region the condensate for the asymmet-
this value of¢ is independent from the spatial volume. yic |attice appears substantially smaller than it§ ¢6unter-

In F_|g. 10 we show the relationship between Wilson Ilnespart_ This is what one should explain on account of the sym-
on lattices withN,=2 V,erSL‘{SNT:‘}, andN,=6. The result a4y restoration scenaria at finite temperatures. The 16
for the 166 lattice lies “below” the result for the 6 4 §ata can be described by two branches, one containing

the strong and the other the weak coupling results; the two
04 . . . : Fomrees 7 branches join at aboyg;=0.4, but their slopes do not co-
I RN incide. There is a discontinuity at this value B, which
035 - ] we interpret as the symmetry restoring transition at finite
temperature. On the same figure we have put the results for a
: lattice of bigger spatial volume (24 4), away from the
025 | I x - “critical” Bg=0.4 value. These data do not differ substan-
= tially from the ones for 16x 4.
02 = * ] Figure 12 contains results similar to the ones of Fig. 11,
ol x x i | but the value of the external magnetic field diffets:
=0.305. The same basic picture appears here, as well: we
01 b . y i may again spot the discontinuity #i;=0.4 for N;=4. In
x * addition to the data of Fig. 11 we have put the data for a
005 | + PR 1 242X 6 lattice, which is expected to lie closer to zero tem-
, . . . . . . perature. The data are smoother than the ones fox 4éand

0 02 04 08 g O 1 12 they lie much closer to the f@esults; this makes it more

difficult than before to spot a sudden change in slope; how-

FIG. 10. Wilson line versugg for N,=2, N,.=4 andN,=6. ever, this change is present even in this case. The new ele-

Wilson Line for 3d non-compact QED
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08 fermion condensate (zero mass limit), b=0.305 0.45 fermion condensate for fermion mass=0.025, betag=0.60, vol=16"3
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FIG. 12. Condensate versys; for b=0.3. Comparison of zero FIG. 14. Time evolution o(‘l_f\lf> for a symmetric (18) lattice
temperature with finite temperature. The error Hat shown are  and two values of the magnetic field.
almost of the size of the symbols.

The situation in Fig. 14 changes in the asymmetric lattices

ment here is the data fot,= 2. The change in slope here is and the r_esults of Fig. 14 should be contrasted against the
very pronounced and substantiates our claim that we have @es in Figs. 15 and 16. In Fig. 15 we have exactly the same
phase transition arounflg=0.4. parameters as in Fig. 14, however now we have ax¥b
Since we now have data for several asymmetric Iattices'f"‘tt'ce- It is ewden'_[ that the fluctuations have grown about
we are in a position to show the temperature dependence &€ order of magnitude larger.
the condensate. This is done in Fig. 13, in the weak coupling The statistical fluctuations grow even larger for thé 16
regime, for two values of the magnetic field. The zero mass<?2 lattice, whose results are shown in Fig. 16. Moreover,
extrapolation of the results has been used and the temperBUS figure gives a feeling of the way the average of the
ture in lattice units is M,, as usual. We observe the fall of condensate is approaching zero at high enough temperatures.
the condensate at high temperatures, which is more dramatid'® outcome spends most of its time at small values and has
for the smallest value db. This figure is of the same quali- SOme exceptional big spikes from time to time; these latter
tative form with Figure 2 of8], which was derived analyti- become more and more rare as the spatial volume increases.
cally for the case where we had no statistical gauge field at
all. C. Non-uniform magnetic field

In Fig. 14 we show the time evolution of the condensate |, the previous sections we have considered the case of a
for two values of the magnetic field at weak coupling for anitorm external magnetic field. There is however potential
symmetric lattice. The important feature here is the Ve€Yphysical interest in the effects of non-uniform fields, which
sma[l magnitude of the statistical fluctuations, resulting inacome important in case the above model has relevance to
relatively small errors. the physics of high-temperature superconductors. Indeed, it

will be of interest to examine the effect of electromagnetic

fermion condensate versus T (zero fermion mass, betag=0.60, L_s=16)
T T

0.4 T T T
b=0.305 + fermion condensate (bare fermion mass=0.025, betag=0.60, b=0.305)
0102  x 0.8 T T T T T T T T T
+ o+ o+ . vol=16*16"4 ——

0.35 |- _

0.7 4
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FIG. 13. (\I_”If> versus the temperature for two values of the _
magnetic field. FIG. 15. Time evolution of ) for a 16X 4 lattice.

045005-15



FARAKOS, KOUTSOUMBAS, MAVROMATOS, AND MOMEN PHYSICAL REVIEW D61 045005

fermion condensate (bare fermion mass=0.025, betag=0.60, b=0.305) 1643, m=0.05, flux only in the central 6x6 area
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FIG. 16. Time evolution of W) for a 1€x 2 lattice. FIG. 17.(¥W¥) versus magnetic field strength where the flux is

non zero only in a central region extending ovex & plaquettes.
The condensate at sites labeled 9, 12,(dée text is shown. The

vortex lines on the induced fermigholon) condensate at the corresponding distances from the center of the flux tube are 0, 3, 7.

nodes ofd-wave superconducting gapg|. A simple-minded

model for such vortex lines could be that of flux tubes of
magnetic field. The full problem would be to take into ac-
count interactions among the flux tubes, which could shed
light also in the confining aspects of the gauge groups in
three dimensions. It is only by lattice methods that one may

n3:1,...,N

AAz(nl,Nz,n3): +B, nlle+ 1'Nl+ 2, e ,N,

treat the problem, in view of the very big computational n3=1,...N.
difficulties in the analytical approach. In this first treatmentFor N; =N we impose
of the problem we switch off the fluctuating statistical gauge
field and consider the response of the fermions to the back- AA;{(N,ny,n3)=—B, ny=N,+1N,+2,... N,
ground field only. A full treatment of the problem, including
the statistical gauge interactions is left for the future. ny=1,...N
Let us describe the technical procedure to construct a non-
uniform magnetic field on the lattice. We will considit AA,(ng,n,,n3)=0 everywhere,
X M plaquettes parallel to the x, plane, around the center
of the lattice, which will be penetrated by magnetic flux while for N,=N
equal toB each. The remaining plagquettes will not carry any
flux. Then we are going to measure the condensate at the AA;1(ng,N,n3)=0 everywhere,
center (N/2,N/2N/2) and along a line passing through it and
consisting of the sites N/2N/2+1N/2), (N/2N/2 AAx(ng,Nyng)=B, ny=N;+1N;+2,...N,
+2N/2),..., N/2N,N/2).
The fact remains that the total flux through the lattice nz=1,... N.

should be zero, because of d@w0. Thus, for each flux B ) ) ) o
penetrating a given plaquette, there should be an opposité the following we consider the model with the statistical
flux somewhere else in the lattice. To construct the magnetig@uge field turned off. We start with vanishing gauge poten-
field that we mentioned above, we followed the strategy tdials everywhere on the lattice, go through the plaquettes in
build it up plaguette by plaguette taking care that we put thdhe central region and add the aba¥é, quantities to the
compensating opposite flux through the plaquette starting &torresponding links. In this way we end up with the figin

the point (N,N,ns). If we already have a configuration of the central plaquettes and the compensating flux for all the
gauge potentials on a lattice, the procedure to add a plaquettéquettes at M,N,ng). The flux through these latter
of flux B at the plaquette atN;,N,,n3) (with the corre- plaguettes should be “|nV|S|bIe,2” as explained |n28ec. VII,
sponding compensating flux B at (N,N,ns)), consists of SO B must take the values ZM)n, n=0,1,... M%/2.
adding to the preexisting links the quantities denoted By, In Fig. 17 we show the results for a central region of
below. AAs(n;,Nn,,N3) is set to zero for all values of the no:?—vamshmg flux of extent.BB. More ;pecnflcally, for the
integersn; ,n,,ns. AA; andAA, are also set to zero, except 16° lattice we h.ave been using, the region with consta_nt non-
for the links where an explicit different statement is made.Zero flux contains the plaquettes startingrag,62,n3), with

For the p|aquette Starting at the Siml(’Nz’nS)’Nl;é N’N2 6Sn1$ 11 and &n2$ 11, while N3 takes all values. Note

+#N, we choose that nothing depends on the value wf. The uppermost
curve in the figure depicts the result for the condensate at the
AA;(Ng,n;,n3)=—B, n,=N,+1N,+2,... N, site (9,9,9). The remaining curves represent the correspond-
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0.075 , 163, m-0.05, B-0-111, flux in 2 6x6 area , It should be stressed that the analytic methods that lead to
this scaling are approximate, and should be considered only
as giving a qualitative treatment of the phenomenon. The
important effect of the external field is the breaking of trans-
lational invariance on the spatial plane, and this leads to
technical complications in solving the pertinent Schwinger-
Dyson equations in the case of weak magnetic fields, mixing
configuration and momentum space integrals. To bypass this
problem, we adopted an ansatz for the fermion propagator in
the presence of a weak external field, which although main-
tains formally a translational invariant lodin the sense of

its being expressed in terms of a Fourier transform depend-
ing on a single momentum variab)dowever it incorporates

0.045 . s . . . . the effects of the magnetic field in the pertinent coefficients.

2

4 6 8 10 12 14 16

site Comparison with the quenched lattice results showed that the

0.07

0.065

0.06

psibarpsi

0.055

0.05

_ predicted scaling of the induced condensate with the mag-
FIG. 18. (W) along a straight line passing from the center of netic field is(qualitatively) captured by this ansatz.
the lattice if the magnetic field parameteris set to 0.111. The In addition to the uniform external field case, we have
central region of non-zero flux is>6. also presented preliminary quenched lattice results in the
case of flux tubes of magnetic field. This situation might also
De of relevance to realistic situations in high-temperature su-
erconductors, as being related to the effects of electromag-
etic vortex lines on the opening of a fermion gap at the

ing results for the sites (9,12,9), and (9,16,9). The curve
with n,=10,n,=11 are quite similar to th@,=9 curve.
The first substantial change takes place at the site (9,12,9

which lies exactly on the boundary of the above region. The,,yeq of the superconductor, within the context of the gauge
remaining curves dive together to a value which is accounte eory approach]. Our results in the non-uniform magnetic

for by the explicit mass term and has very little to do with jo|q case have indicated that the fermion chiral condensate is

the external magnetic field. Thus, we find a drop in the COny 5 ;61 and scales with the magnetic field of the flux tube at

densate value taking place exactly on the boundary of thg,e core of the latter, but decays very fast outside the tube.
central region. Our considerations did not properly take into account inter-
To visualize the fall of the condensate on the boundarygtions among flux tubes. The latter is an important issue,
we fixed theb parameter to 0.11(a typical valug and plot-  \hich might also bear some relation with the issue of con-
ted the value of the condensate along a straight line passing,ement of the three-dimensional theory. We expect that a
from the center of the lattice. We find the symmetric bell- b oner treatment of this problem will become available only
shaped plot shown in Fig. 18. upon the use of dynamical fermions on the lattice.
Another important issue we would like to address for fu-
IX. CONCLUSIONS ture work is the computation of thermal conductivities in the

In this work we have studied in detail, by means of ana-context of the model of Sec. II, used in our simulation of the

lytic and lattice methods, the phenomenon of magnetic calYSIcS of planar high-temperature superconductors. As dis-
talysis in even-flavor QER namely the magnetic induction cussed .In.[14] there are scaling differences of the thermal
of a chiral-symmetry breaking fermion condensate as a resufiductivity between the gauge (QE)Dand four-fermion

of the influence of an external magnetic field. We haveMOd€ls, which would be important to analyze in detail in the
shown that the scaling behavior of the induced condensafgPntext discussed in this work for comparison with experi-
with the external field varies according to the strength of thdnents of h_|gh-temperature superconduc(dﬁﬁ. At present,
latter. In the weak-field regime, there is a quadratic increasd® analysis of the thermal conductivity has been performed
of the condensate with increasing external field, to be con" t_he real time formal|_sr_1[15,l4], and the extension o a
trasted with the logarithmic scaling behavior in the regime oflattice a_naly5|_s is not trivial. We_hope to return to this im-
strong external magnetic fields. However, it seems that th@0rtant issue in a future publication.

transition from weak to strong fields is smooth, at least as far
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APPENDIX A: CALCULATION OF THE ONE-LOOP Let us begin with the one-loop vacuum polarization graph
VACUUM POLARIZATION IN THE PRESENCE OF THE (2). The polarization tensor to this approximation is given by
EXTERNAL MAGNETIC FIELD

The photon polarization tensor for QED in the presence of ) d3k
the electromagnetic field was first performed by T88,31. I,.(p)=-9 3
X X (2m)
Here, for the sake of completeness, we outline his calcula-
tions but we will work in three-dimensions instead of four- where the Fermion propagator is the one in the presence of
dimensions. the constant external magnetic figttD]

[ y*S(k)y"S(p—k)] (A1)

(k) =i f dseskarm* k] (m— 5. k) — i (7K, — yoky)tanhz](1—i y, ystanhz)
0

=i f dse—5<m2+k3+k2(tanh2/2>><(m—yoko)(l—iylyztanhz)—(y-k) ) (A2)
0 costz
wherez=eBs Accordingly, Eq.(A2) leads us to
II (p):_ng o’k fwds jwdsze_(XO(Sl:k)‘*'XO(Spr_k))
3% (277)3 0 1 0
) 1
Xtr| y#| (M= yoko) (L—iy1y.tanhzy) — (- k)
cositz,
) 1
Xy [m=yo(p—K)ol(1—iyiystanhzy) —[y- (p—Kk)] (A3)
costtz,
|
wherez;=eBs, i=1,2 and The loop integrals can then be performed very easily via
standard Gaussian integrations some of which are listed be-
, o tanhz low:
Xxo(s,k)=s| m“+kz+k (A4)
d’k ) 1 z
|oEf e sPl= T spgtoshzicoshz,
Let us now make the change of variables (2m) (47s)”=sinhz A8)
1-v 1+v 3
Si1=—5—S, S;=———5, (A5) ke, LTV
2 2 (277)3e $P1P k= 5 Polo (A9)
with se[0,0) and —1,1]. Accordingly, we get
€[0°) andv e[ ] gly, we g ok k tanhz,
| e ke s (ALO)
Xo(S1,K) + xo(S2,p—K) =S[ ¢o(p) + p1(p,K)] (A6) (2m) anhz, ~tanhz;
. 3
with f d°k o 510K k:1+v tanhz, lopop
(2m)3 " 2 tanhz;+tanhz, °°
_, 1-v®* , coshzv—coshz , (A11)
Po(P)=M"+ —5—Pot —5 Ginhz ; ,
j d k e_s¢1(prk)kikj: &) plpJ
1+v \? tanhz;+tanhz, (21)3 tanhz, + tanhz,
$1(p.K)=| ko= —5—Po| +——
z
tanhz, 2 ~ s(tanhz, + tanhz,) 9 } '
B tanhz; +tan hzzp (A7) (A12)
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We will also need the following identity for the gamma where

matrices:
tr[(1—iy,ystanhz)y,y,]

=—4(5,,—tanhz( 57 5,— 6165))

F
=—4\5,,—tanhz—

z (A13)

where F, , is the covariant representation of the external
magnetic field strength. The other traces can also be evalu-

ated by the use of the Dirac algeli&6).
Putting everything togethdB80,31] one getsafter an in-
tegration by parts

dsdv z
ﬁ 2 sinhz

e %l ,, (Al4)

2
0= 2|

Li=[(8,,0%= PP, Ro(P) + (85,02 =P, P, )R1(P)]
(A15)

with

Ro(p) = (coshzv —v cothz sinhzv) (A16)

Ri(p)=

= ——[coshz— coshzv]—Ry(p).
sinifz

(A17)

Note that, unlike its four-dimensional counterpart, the
vacuum polarization tensor in three dimensions is not diver-
gent and there is no need to add any counterterms. One can
see this by checking the absence of poles-at0, which is
the place where poles usually show up in proper time meth-
ods.
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