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In this paper, we discuss the role of an external magnetic field on the dynamically generated fermion mass
in even-flavor QED in three space-time dimensions. Based on some reasonable approximations, we present
analytic arguments on the fact that, for weak fields, the magnetically induced mass increases quadratically with
increasing field, while at strong fields one crosses over to a mass scaling logarithmically with the external field.
We also confirm this type of scaling behavior through quenched lattice calculations using the non-compact
version for the gauge field. Both the zero and finite temperature cases are examined. A preliminary study of the
fermion condensate in the presence of magnetic flux tubes on the lattice is also included.

PACS number~s!: 11.15.Ha, 11.10.Kk, 11.15.Me
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I. INTRODUCTION

The particle mass generation via dynamical symme
breaking has been a much-studied scenario in particle p
ics as well as in condensed-matter systems. In recent y
this phenomenon has been studied in the presence of b
ground fields, such as constant external magnetic fie
@1–9#, following and extending the formalism developed
Schwinger@10#. The formalism has been applied to mode
that had gauge and/or four-fermion interactions. It was fou
that such constant background configurations can enh
the dynamical symmetry breaking by driving the critical co
pling to a smaller value and thus catalyzing the symme
breaking. A concrete example of this phenomenon, of
evance to us in this work, is the dynamical chiral symme
breaking of chiral symmetry in massless QED~ in three and
four dimensions! in the presence of an external magne
field @1,2,6–8# where the dynamically generated fermio
mass depends on the value of the external field.

The magnetically catalyzed mass generation in~211!-
dimensional QED may have interesting condensed-ma
applications @7,8#, given the suggestions that high
temperature superconductors can be described effectivel
field theories such as three-dimensional QED (QED3) @11#
or by non-Abelian gauge models based on the gro
SU(2)3U(1) @12,7#1. Indeed, there is experimental ev
dence for the opening of a second~superconducting! gap at
the nodes of the gap in certaind-wave superconductors in th
presence of strong external magnetic fields@13#. As re-
marked in@14#, in the context of condensed-matter-inspir

1The relativistic~Dirac! nature of the fermion fields is justified b
the fact that they describe the excitations about thenodesof a
d-wave superconducting gap.
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models, the scaling of the thermal conductivity with the e
ternal field is different between the gauge@7,8# and four-
fermion theories @15#. Thus, a detailed study of th
magnetically-induced chiral symmetry breaking pheno
enon in the context of QED3 is phenomenologically desir
able, given that such studies may lead to more detailed
periments in the spirit of@13#, that can probe deep in th
structure of the novel high-temperature superconductors

In 211 dimensions chiral symmetry can be defined on
if the number of fermion flavors is even@16#. This fact is
relevant for a planar high-Tc superconducting antiferromag
netic system@11,17# which comprises of two sublattices
Within a generalized@12# spin-charge separation framewo
@18#, there will be two species of charged fermion excitatio
~called holons!, one associated with each sublattice@11,12#.
Finally, the ~211!-dimensional theory with even number o
fermion flavors@7# can be viewed as a dimensional reducti
of the four-dimensional effective Lagrangian of@5#.

In QED3, the magnetic catalysis of the chiral symmet
breaking for strong external fields is established by look
at the Schwinger-Dyson equations@6,7#. In these works the
Landau level formalism was used to truncate the ferm
propagators to the lowest Landau level. This formalism
satisfactory for certain aspects of the magnetic catalysis
strong magnetic fields@7#, but for weak fields the result ca
definitely be questioned, given that in that case the spac
between Landau levels becomes small, and one effecti
deviates from the lowest Landau level description. Recen
two of us @19# have looked at the role of higher Landa
levels and showed that they contribute by inducing a~parity-
violating! magnetic moment which scales with the appli
magnetic field. Moreover, the role of higher Landau levels
inducing a critical temperature even in the free fermion ca
under certain circumstances, was emphasized in@8#. For all
of the above reasons it is important to incorporate the effe
of all the higher Landau levels in the Schwinger-Dyson fo
©2000 The American Physical Society05-1
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malism, avoiding the use of the mean field Landau le
decomposition altogether. This is what we shall attemp
do in the first~analytic! part of this paper. We shall compar
these results by performing some preliminary~quenched! lat-
tice analyses in the second part of the paper. In the la
respect we have to mention that the quenched approxima
for fermions employed here allows for the ladder gau
quantum fluctuations in the fermion free energy to be inc
porated, but prevents the use of internal fermion loops, as
treatment of the latter requires an algorithm for treating
namical fermions which is currently under construction.

The paper is organized as follows. In Sec. II we give
brief review of theSU(2)3US(1) model of@12#, as well as
the Dirac algebra in three-dimensional spacetime with
even number of fermion flavors. In Sec. III we review t
Schwinger-Dyson~SD! equation for the fermion propagato
in the absence of the the external magnetic field. In Sec
we present the results for the case of strong external fie
where a logarithmic scaling of the induced condensate w
the external magnetic field occurs. In Sec. V we present
SD equations for the weak magnetic fields ignoring the p
ton polarization to make contact with the lattice result p
sented in the second half of the paper. We show that un
certain approximations, the scaling behavior of the cond
sate with the external magnetic field can be found. In
next section, we attempt to go beyond the quenched appr
mation analytically, by including the photon polarization a
modify accordingly the Schwinger-Dyson equations. T
analysis becomes very complicated to be handled ana
cally for finite temperatures, and this is the reason why
turn to the lattice formulation of the problem in Sec. V
where we set up the formalism and relevant notations
Sec. VIII the lattice results are presented for both zero
finite temperatures; in addition, a preliminary extension
the results to the non-uniform magnetic field cases is
tempted by examining the magnetic catalysis phenomeno
the case of flux tubes. This model may constitute a protot
for the study of the effects of electromagnetic vortices
condensed matter systems, which are of relevance to h
temperature superconductivity. Conclusions and outlook
presented in Sec. IX.

II. THE MODEL AND ITS SYMMETRIES

The SU(2)3U(1) model of@20# is a toy model for dy-
namical electroweak gauge symmetry breaking in three
mensions, while in the context of condensed-matter syste
the SU(2)3US(1) model of @12# is based on a gauge
particle-hole symmetry, via a suitable extension of the spin
charge separation@18#. The holons transform as a doubl
under theSU(2) ~particle-hole! symmetry. In this respect th
model is different from otherSU(2)3U(1) spin-charge
separated theories, which are based on either direct gau
of genuine spin rotationSU(2) symmetries@21#, or non-
Abelian bosonization techniques@22,23#. The phase diagram
of the model of@12#, and the associated symmetry-breaki
patterns, are quite different from these other models.

The three-dimensional continuum Lagrangian of t
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model is given~in Euclidean metric, which we use hereafte!
by @20,7#,

L52
1

4
~Fmn!22

1

4
~Gmn!21C̄ iDmgmC i2mC̄ iC i

~2.1!

whereDm5]m2 ig1am
S2 ig2saBa,m , andFmn , Gmn are the

corresponding field strengths for an abelian~‘‘statistical’’ !
US(1) gauge fieldam

S and a non-abelian~‘‘spin’’ ! SU~2!
gauge fieldBm

a , respectively. Because of the antiferroma
netic nature of the condensed matter system the fermionsC i
are four-component spinors,i 51,•••N. We note thatC i
may be written as

C i[S C i1

C i2
D . ~2.2!

Then the Lagrangian decomposes into two parts, one forC i1
and one forC i2, which will be called ‘‘fermion species’’ in
the sequel. The presence of the even number of fermion
cies allows us to define chiral symmetry and parity in thr
dimensions@16#, which we discuss below. The bare massm
term is parity conserving and has been added by hand in
Lagrangian~2.1!. In the model of@12,7#, this term is gener-
ated dynamically via the formation of the fermion conde

sate^C̄C& by the strongUS(1) coupling. However, for our
purposes, the details of the dynamical mass generation is
important and hence it will be sufficient to include a ba
mass term for the holons representing the mass generate
the ~strongly coupled! US(1) interactions in the supercon
ducting phase.

In what follows we shall ignore for simplicity the non
Abelian gauge group structure and concentrate only in
Abelian model in the presence of anexternal electromag-
netic field, which should not be confused with the statisti
Abelian gauge fieldUS(1). Theincorporation of the gauged
SU(2) structure leads to a much richer phase struct
@24,19# and we reserve the discussion for future publicatio

For even-flavor models a convenient representation
the gm , m50,1,2, matrices is the reducible 434 represen-
tation of the Dirac algebra in three dimensions@16#:

g05S i s3 0

0 2 i s3
D g15S i s1 0

0 2 i s1
D

g25S i s2 0

0 2 i s2
D ~2.3!

wheres are 232 Pauli matrices and the~continuum! space-
time is taken to have Euclidean signature.

As well known@16# there exist two 434 matrices which
anticommute withgm , m50,1,2:

g35S 0 1

1 0D , g55 i S 0 1

À1 0D ~2.4!
5-2
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where the substructures are 232 matrices. These are th
generators of the ‘‘chiral’’ symmetry for the massles
fermion theory:

C→exp~ iug3!C

C→exp~ ivg5!C. ~2.5!

Note that these transformations do not exist in the fundam
tal two-component representation of the three-dimensio
Dirac algebra, and therefore the above symmetry is valid
theories with even fermion species only.

For later use we note that the Dirac algebra in (211)
dimensions satisfies the identity:

gmgn52dmn2t3emnlgl; t3[ ig3g55S 1 0

0 À1D
gmglgm5gl

gmg0g ig jgm52d i j g023t3e i j

gmg ig jgm523d i j 2t3g0e i j

gmg jg igkgm52d i j gk2d ikg j1d jkg i ~2.6!

which is specific to three dimensions only. Here the Gre
indices are space time indices, and repeated indices de
summation.

Parity in this formalism is defined as the transformatio

P: C~x0,x1,x2!→2 ig3g1C~x0,2x1,x2! ~2.7!

and it is easy to see that a parity-invariant mass term foC
amounts to masses withoppositesigns between the two spe
cies@16#, while a parity-violating one corresponds to mass
of equal signs.

The set of generators

G5$1,g3 ,g5 ,D[ ig3g5% ~2.8!

form @20,12# a globalU(2).SU(2)3US(1) symmetry. The
identity matrix 1 generates theUS(1) subgroup, while the
other three form the SU~2! part of the group. The current
corresponding to the above transformations are

Jm
G5C̄gmGC G5g3 ,g5 ,ig3g5 ~2.9!

and areconservedin theabsenceof a fermionicmassterm. It
can be readily verified that the corresponding chargesQG

[*d2xC†GC lead to anSU(2) algebra@20#:

@Q3 ,Q5#52iQD @Q5 ,QD#52iQ3

@QD ,Q3#52iQ5 . ~2.10!

In the presence of a mass term, these currents are not
served:

]mJm
G52mC̄GC, ~2.11!
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while the current corresponding to the generator1 is always
conserved, even in the presence of a fermion mass. The
ation is parallel to the treatment of theSU(2)3SU(2) chiral
symmetry breaking in low-energy QCD and the partial co
servation of axial current~PCAC!. The bilinears

A1[C̄g3C, A2[C̄g5C, A3[C̄C

B1m[C̄gmg3C, B2m[C̄gmg5C, B3m[C̄gmDC,

m50,1,2 ~2.12!

transform astriplets underSU(2). TheSU(2) singlets are

A4[C̄DC, B4,m[C̄gmC ~2.13!

i.e. the singlets are the parity violating mass term, and
four-component fermion number.

We now notice that in the case where the fermion co
densateA3 is generated dynamically, energetics prohibits t
generation of a parity-violating gauge invariantSU(2) term
@25#, and so a parity-conserving mass term necessa
breaks@7# the SU(2) group down to at3-U(1) sector@11#,
generated by thes3 Pauli matrix in two-component notation
Upon coupling the system to external electromagnetic po
tials, this phase with massive fermions showssuperconduc-
tivity. The superconductivity is strongly type II@11,7# as the
Meissner penetration depth of external magnetic fields t
out to be very large,2 and hence the study of the response
the system to the external electromagnetic fields is justi
~see Fig. 1!.

III. THE SCHWINGER-DYSON EQUATION FOR THE
FERMION

QED3 is a super-renormalizable theory which is confini
in the infrared regime. Accordingly, it acts as a simple p
totype for the analysis of the chiral symmetry breaking
QCD. The standard tools for investigating the chiral symm
try breaking are the celebrated Schwinger-Dyson equatio
In this section, let us set up the Schwinger-Dyson equati
for the fermion propagator~see Fig. 2!.

The Schwinger-Dyson equation concerning the ferm
propagatorSF(p) ~for zero bare fermion mass! is given by

2The high-temperature superconducting oxides are strongly typ
superconductors.

FIG. 1. One-loop vacuum polarization for photons~wavy lines!
in QED3. The solid lines with crosses represent fermions in
presence of an external magnetic field.
5-3
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SF
21~p!5g•p2gE d3k

~2p!3
gmSF~k!Gn~k,p2k!Dmn~p2k!

~3.1!

whereGn is the fermion-photon vertex function andDmn is
the exact photon propagator. However, to this order, let
make the following approximations:

~1! Use the bare vertex function, namely

Gn~k,p2k!5ggn, ~3.2!

so that the gap equation reads

SF
21~p!5g•p2g2E d3k

~2p!3
gmSF~k!gn~k,p2k!

3Dmn~p2k!. ~3.3!

~2! Now, we choose the following ansatz for thefull fer-
mion propagator:

SF
21~p!5A~p!g0p01B~p!g•p1S~p!. ~3.4!

Using this ansatz, let us now perform a trace over the gam
matrices in Eq.~3.1!. This gives us the following gap equa
tion:

S~p!5g2E d3k

~2p!3

S~k!

A2k0
21B2k21S2~k!

(
m

Dmm~p2k!.

~3.5!

~3! To further simplify the gap equation let us use t
zeroth order result for the wavefunction renormalizatio
namelyA(p)5B(p)51, which is often justified in the large
N argument@16# ~see however@27#! so that Eq.~3.5! reads

S~p!5g2E d3k

~2p!3

S~k!

@k0
21k21S2~k!#

Dmm~p2k!.

~3.6!

~4! The photon propagatorDmn(k) can be replaced by th
ladder resummed propagator which can be justified in
large-N limit. The resummed propagator~in the absence o
the magnetic field! is given by

FIG. 2. The Schwinger-Dyson equation for the fermion se
energy. The curly line indicates theUS(1) statistical photon. Solid
lines with crosses represent fermions in the presence of the ext
magnetic field. Blobs indicate quantum corrections~loops!, which
are ignored in the ladder approximation. Quantum dynamics of
electromagnetic field has been suppressed.
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Dmn~p!5

S dmn2
pmpn

p2 D
p2
„12P~p!…

5

S dmn2
pmpn

p2 D
p2S 11

g2

8pD . ~3.7!

The gap equation thus obtained in the absence of the m
netic field can be solved using the bifurcation method@16#.
There are two solutions namely,

S1~p!;p28/p2N, S2~p!;p128/p2N ~3.8!

whereN is the ~large! number of fermion flavors. However
it is natural to expect that these solutions will change in
presence of the external magnetic field; we will discuss t
generalization in the following sections.

IV. THE DYNAMICALLY GENERATED FERMION MASS
AT STRONG MAGNETIC FIELDS

As mentioned above, hereafter we consider only the A
lian gauge groupUS(1) in the presence of an external ele
tromagnetic potentialAm

ext , corresponding to a constant ma
netic field B, perpendicular to the spatial plane. Th
dynamics is described by the Lagrangian

L52
1

4
~Fmn!21C̄DmgmC2mC̄C ~4.1!

whereDm5]m2 igam
S2 ieAm

ext . The massm here should be
viewed as an~infrared! regulator mass. In the dynamica
mass generation scenario investigated below via the
methodm should be set to zero, given that the dynamics
the gauge field and the magnetic field are both respons
for the appearance of a mass in the fermion propagator.
the lattice analysis, on the other hand, the presence o
initial small ‘‘bare’’ regulating massmÞ0 appears necessar
@8#.

We commence our analysis by noting that the presenc
an external magnetic field, perpendicular to the spatial pl
x1x2, breaks Lorentz and translational invariance. The c
figuration space form of the fermion two-point functio
G(x,y) for the three-dimensional problem at hand has
generic form@6#:

G~x,y!5expS ie

2
~x2y!mAm

ext~x1y! D G̃~x2y! ~4.2!

where Am
ext denotes the external electromagnetic potent

corresponding to a constant homogeneous magnetic
perpendicular to the spatial planex1x2 : Am

ext5„0,
2(B/2)x2 ,(B/2)x1… ~in an obvious notation!. The field-
dependent phase factor in Eq.~4.2! breaks translational in-
variance, implying that, in general,G(x,y) does not admit a
Fourier transform expressible in terms of a single moment
~vector! variablek.

The translationally-invariant partG̃(x2y) has a Fourier
transformS̃F(k) of the form @10#

-

nal

e
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S̃F~k!5 i E
0

`

dse2s„k0
2
1m21k2~ tanhz/z!…@~m2g•k!

2 i ~g1k22g2k1!tanhz#~12 ig1g2tanhz!

~4.3!

wherem is the mass of the fermion, andz5seB. Note that
we are distinguishing between the coupling constantg for the
r-
dis

A
n

it
to

u

p-
ns
to
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04500
statisticalU(1) gauge field and the electromagnetic chargee.
The Schwinger propagator admits the following expansion
terms of the Landau levels@26#:

S̃F~k![ ie2k2/eB(
n50

`
~21!nDn~k0 ,k!

k0
21m212enB

, BÞ0, ~4.4!

with
Dn~k0 ,k![~m2g0k0!F ~12 ig1g2!LnS 2k2

eBD2~11 ig1g2!Ln21S 2k2

eBD G14~g•k!Ln21
1 S 2k2

eBD ~4.5!

5~m2g0k0!FLn
21S 2k2

eBD1 i t3g0XLnS 2k2

eBD1Ln21S 2k2

eBD CG14~g•k!Ln21
1 S 2k2

eBD . ~4.6!
is
For QED3 the scaling of the dynamically generated fe
mion mass with the external magnetic field had been
cussed by Shpagin@6# and two of us@7#. Let us begin with
the case when the external magnetic field is very strong.
stated in the Introduction, in this case it is sufficient to tru
cate the fermion propagator@in the absence of theUS(1)
interactions# to the lowest Landau level~4.4!, so that we get

S̃F
LLL~k!5 ie2k2/eB

1

m1g0k0
~12 ig1g2!. ~4.7!

As we will be dealing with the lowest Landau levels only,
is expedient to choose the ansatz for the ‘‘exact’’ propaga
for the lowest Landau level fermions to be of the form

SF
LLL~k!5 ie2k2/eB

1

S~k!1A~k!g0k0
~12 ig1g2!.

~4.8!

Hence, following@6#, the gap equation for the lowest Landa
level fermion is given by

S~p!5g2E d3k

~2p!3
e2k2/eB

S~k!

A2k0
21S2~k!

D00~p2k!.

~4.9!

According to @6# the photon vacuum polarization gets su
pressed as 1/AeB at strong magnetic fields and the photo
become almost free. Thus in the strong field limit the pho
propagator is given in the Landau gauge by the express

Dmn~p!5

dmn2
pmpn

p2

p2

1

p2S 110.14037
g2

AeB
D . ~4.10!

Accordingly, we have
-

s
-

r

n
n

S~p!5g̃2E d2ke2k2/eB
1

~p2k!2

3S 12
~p02k0!2

~p2k!2 D E dk0

~2p!3

S~k!

A2k0
21S2~k!

,

~4.11!

whereg̃2[g2/@110.14037(g2/AeB)#. Let us setp to zero.
Then,

S~0!5g̃2E e2k2/eBk2
d2k

~k0
21k2!2E dk0

~2p!3

S~k!

A2k0
21S2~k!

.

~4.12!

For strong fieldseB→`, we suppose that settingS(k)
'S(0) and A'1 yield a sufficiently good approximation
@27#. Settingk2[x, the gap equation becomes

15
g̃2

8p2E dk0E dxe2 x/eB
x

~k0
21x!2

1

k0
21S2~0!

.

~4.13!

Assuming that the dynamically generated fermion mass
much smaller than the external magnetic field, i.e.S(0)
!AeB, we cut off thex integration byAeB and after thek0
integration we get the transcendental equation

S~0!'
g̃2

4pES(0)

AeB
dye2y2/eBS 2

y
2

3S~0!

y2
1

S~0!3

y4 D .

~4.14!

The final result reads

S~0!'2ã lnS AeB

S~0!
D 1OS S~0!

AeB
D , where ã[

g̃2

4p
.

~4.15!
5-5
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This equation can be solved numerically as in@7#, leading to
a logarithmic scaling of the induced fermion condensate w
the magnetic field,S(0); ln(AeB/ã).

Note that the most important aspect of this type of beh
ior comes from the presence of the exponential factor in
form of the free propagator in Eq.~4.7!. However, when the
external magnetic field is weak, one has to include all
higher Landau levels as the levels become closely spa
Also, the wave functions for these levels grow with mome
tum as they involve Laguerre polynomials. Hence, one ha
work with a generic ansatz for the fermion propagator, su
as Eq.~3.4!. However, in view of the breaking of transla
tional invariance by the field-dependent phase factor in
~4.2!, a straightforward application of this ansatz is not po
sible. Nevertheless, as we shall discuss below, such an a
can still give qualitatively correct predictions for the scali
of the induced condensate with the external field.

V. THE DYNAMICAL FERMION MASS IN WEAK
EXTERNAL MAGNETIC FIELDS UNDER QUENCHED

APPROXIMATION

We are looking at the leading scaling behavior with t
magnetic field intensity of the dressed fermion propagato
the presence of an external magnetic fieldeB for the case of
weak fieldseB!S(0) where S(0)[m is a dynamically
generated mass due to the statisticalUS(1) interactions in
the model. Obviously, sincem}g2, whereasg denotes the
coupling of these interactions, the weak field limit
achieved for relatively strong gauge interactions. Howev
as stated earlier, we are interested in the behavior of
system under weak magnetic fields as well and in this reg
the Landau level decomposition is not particularly helpfu

This is a technically involved problem, and we shall n
attempt to solve it exactly in what follows. Instead we sh
make an attempt to present anapproximatetreatment, which
hopefully captures the importantqualitative features of the
phenomenon. As we shall see later on, preliminary lat
calculations will support the results obtained in this secti

The main complication arises from the fact, mentioned
the previous section, that the presence of an external fi
perpendicular to the spatial plane, breaks, in addition to L
entz invariance, also translational invariance in the spa
plane. This is apparent from the configuration space fo
~4.2! of the fermion Green’s function. The breaking of tran
lational invariance is manifested through the field-depend
phase factor in Eq.~4.2!. A Schwinger-Dyson equation fo
G(x,y) can then be obtained as in@6#, but unfortunately, due
to the form ~4.2!, a passage to momentum space with
appropriate Fourier transform based on a single momen
variable is not feasible.

Below we shall make a modest attempt to calculate a
lytically the scaling behavior of the chiral condensate w
the magnetic field, at least qualitatively, and then comp
with the lattice results. This is possible by adopting an ans
for the fermion propagator in momentum space,SF

21(p), as
if the translational invariance breaking phase factor in E
~4.2! was absent. Specifically, we assume that the ferm
propagator in the presence of aweakexternal magnetic field
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can still have a Fourier transform, based on a single mom
tum variable, which takes theapproximateform

SF
21~p!5@A01A1g1g2#g0p01Cg•p1@S01S1g1g2#.

~5.1!

All the qualitative information about the effects of the exte
nal fieldB is encoded inside the coefficients. As we shall s
later on, by comparison with the preliminary lattice results
the quenched approximation, the qualitative features of
scaling of the magnetically-induced chiral condensate w
the external field seem to be correctly captured by the ab
ansatz. It is understood, of course, that these results sh
be taken with caution and viewed only as preliminary.
complete lattice analysis involving dynamical fermion
which will settle these issues, is still pending. Hopefully
will constitute the topic of a forthcoming work.

Under the above approximation, the Schwinger-Dys
equation for the fermion propagator in the massless li
assumes the form

SF
21~p!5S̃F

21~p!um502g2E d3k

~2p!3
Dmn~p2k!gmSF~k!Gn.

~5.2!

It is sufficient for our purposes to use the bare photon ver
(Gn5gn), and set the wave-function renormalization to on
These will be justified later on.

Taking the trace in the above equation, we obtain

4S~p!52g2E d3k

~2p!3
Dmn~p2k!Tr~gmS̃F~k!gn!

~5.3!

where we denotedS0 by S(p). A more important remark is
that inside the integral we have approximated the~unknown!
fermion propagatorSF(k) by the form S̃F(k) of Eq. ~4.3!,
which is the propagator in a homogeneous external magn
field. One has

Tr„gmS̃F~k!gn
…5E

0

`

dse2s„k0
2
1k2(tanhz/z)1S2

…

3Tr@gm
„2g•k1S~k!…gn

1 igm
„2S~k!1g•k…g1g2gntanhz

2 igm~g1k22g2k1!

3tanhz~12 ig1g2tanhz!gn#. ~5.4!

Since we work in the Landau gauge,Dmn(q) is given by
(q2dmn2qmqn)/q4. Using the following identities of theg
matrices in Euclidean space:
5-6
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Tr~gmgm!5212

~q•g!252q2

Tr~gmOgn!Dmn~q!52
2

q2
TrO ~5.5!

whereO is any operator, one can write Eq.~5.4! in the form

Dmn~p2k!Tr„gmS̃F~k!gn
…

52
8

~p2k!2E0

`

dsS~k!e2s„k0
2
1k2 ~ tanhz/z! 1S2(k)….

~5.6!

Using Eq.~5.6!, Eq. ~5.3! becomes

S~p!5
2g2

~2p!3E0

`

dsE d3k

~k2p!2
S~k!e2s„k0

2
1k2(tanhz/z)1S2(k)….

~5.7!

Settingp50 and approximatingS(k).S(0)[m in the in-
tegrand yields

15
2g2

~2p!3E0

`

dsE d3k
1

k0
21k2

e2s(k0
2
1k2 (tanhz/z) 1m2

….

~5.8!

Now we use the parametrization:k05k cosu, k25k2sin2u,
and get

15
g2

4p3/2
E

0

`

dsE
21

11

dx
e2sm2

AsXx21~12x2!
tanhz

z
C ,

~5.9!

with x[cosu. Then thex integration can be performed:

15
1

4p3/2

g2

AeB

3E
0

`

dze2z(m2/eB)
1

Az2tanhz
log

Az1Az2tanhz

Az2Az2tanhz
, ~5.10!

where we have setz[eBs. At this point we define two di-
mensionless variables:m[2p(m/g2), f [2p(AeB/g2), and
write the last equation in terms ofm and f:

15
1

2Ap

1

f E0

`

dze2z(m2/ f 2)
1

Az2tanhz
log

Az1Az2tanhz

Az2Az2tanhz
.

~5.11!

For each value off the above relation gives a correspondi
value form. The result is a universal curvem( f ), which we
depict in Fig. 3 as a dashed line. This result can be transl
04500
ed

very easily to the language of dimensionful parameters
well as to the lattice parameters. Notice that up to now th
is no restriction to weak fields.

One may also derive an analytical approximation for t
regime of weak magnetic fields. Starting from E
~5.8! we write the term e2sk2(tanhz/z) in the form
e2sk2

•e2sk2(tanhz/z21), expand the second exponential in
power series ofz5eBs for weak fields and retain the term
which are at most of sixth order ineB. Then the same pa
rametrization as before is used and the integrations ovk
andx are similarly carried out. Then the equation involvin
the integral overz is replaced by

15
g2

2p F 1

m
1

1

12

e2B2

m5
2

7

48

e4B4

m9
1

773

960

e6B6

m13
1O~e8B8!G .

~5.12!

For weak fields we may solve Eq.~5.12! by substituting the
expansionm5m01m2(eB)21m4(eB)41 . . . in Eq. ~5.12!
and equating the coefficients of equal powers ofeB to deter-
mine the coefficientsmk . The resulting solution of Eq
~5.12! is

m5
g2

2p S 11
4p4e2B2

3g8
2

400p8e4B4

9g16
1

534208p12e6B6

135g24

1O~e8B8!D , ~5.13!

which may also be written as

m511
1

12
f 42

25

144
f 81

8237

8640
f 121O~ f 16!. ~5.14!

The above relations show that for weak magnetic fields
dynamically generated mass is quadratic in B. For somew
bigger magnetic fields, however, the quadratic behavio
compensated by a negative quartic contribution and the
crease with the magnetic field resembles very closely a lin
dependence. Of course for even bigger magnetic fie
higher order contributions take over.

FIG. 3. Solution of Schwinger-Dyson equations for th
quenched and dynamical fermions.
5-7
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Although we have already depicted in Fig. 3 the full s
lution m( f ), we also plot the solution of Eq.~5.12! @we note
here that we did not actually use the solution~5.13!, but
rather the one which results if Eq.~5.12! is quenched to orde
B2 before solving#; this is done to gain some feeling abo
the accuracy of the quadratic approximation, which will
the only possible approach in the case where also dynam
fermions are taken into account. The approximate solutio
the full line and is restricted in the region of small B, whe
it is appropriate; it is quite good up toAeB/g2'0.1.

As we have just seen, in the quenched approximation
uses the free photon propagator as the fermion loops~which
modifies the fermion propagator! are ignored. In the nex
section, we examine whether the inclusion of the photon
larization modifies the scaling behavior of the gap funct
with eB discussed above.

Before closing this section two important remarks are
order. First, it should be noted that the presence of the tr
lational invariance breaking phase factors in Eq.~4.2!, which
have been ignored in the above treatment, will affect
numerical coefficients of the even powers ofB in Eq. ~5.13!.
This can be seen easily from the form~4.2! by an expansion
in powers of the weak fieldB ~and restriction to the real par
assuming hermiticity of the translational invariant parts!. The
important issue is the sign of the various terms. As we s
see later on, comparison with the~quenched! lattice results
confirms the scaling withB given in Eq.~5.13!, thereby jus-
tifying the above approximate method of dealing with t
problem, at least for qualitative purposes. Second, the ab
analytic treatment, leading to Eq.~5.13!, was based on the
approximation of replacingS(k) inside the integrals in the
pertinent integral form of the gap equation by a const
S(0)5m, the so-called ‘‘constant-mass approximation
This is sufficient for the qualitative purposes of this wor
where the main interest lies on the scaling of the indu
condensate with the magnetic field. It should be remar
though, that attempts to go beyond the ‘‘constant mass
proximation’’ have been made in the literature, specifica
in the context of three-dimensional QED in the absence
external fields@28#. The result is that the value of the in
duced massm, obtained by keeping the momentum depe
dence of the gap function inside the pertinent integrals in
Schwinger-Dyson equation, is half the value of the mass
obtained under the ‘‘constant mass approximation,’’ i.e.
zero-field limit (B→0) in Eq. ~5.13! should bem5g2/4p.
This should be taken into account in quantitative analyse
the phenomenon, and possible detailed applications
condensed-matter physics, which, however, go beyond
scope of the present work.

VI. BEYOND THE QUENCHED APPROXIMATION

To take into account the contribution of internal fermio
loops we begin with a study of the one-loop vacuum pol
ization graph in QED3 in the case of even number of fermio
flavors. The polarization tensor in the one-loop approxim
tion is given by
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Pmn~p!52g2E d3k

~2p!3
tr„gmS̃~k!gnS̃~k2p!… ~6.1!

whereS̃(k) is the fermion propagator in the presence of t
external magnetic field~4.3!.

The calculation of the polarization tensor is straightfo
ward. Due to the fermionic loop, the effects of the trans
tional invariance breaking phase factors in Eq.~4.2! cancel,
and one can go directly to momentum space as in the z
external field situation. For our case, the photon polarizat
can be obtained easily by performing a dimensional red
tion of the four-dimensional result@30,31#. We end up with

Pmn~p!5~p2dmn2pmpn!N0~p!1~p'
2 dmn2p'mp'n!N1~p!

[p2PmnN0~p!1p2P'mnN1~p!, ~6.2!

wherep2[p'
2 with p'm5(0,p1 ,p2) and

N0~p!52
g2

8p3/2E0

` ds

As
E

21

11

dve2sf0
z

sinhz

3@coshzv2v cothz sinhzv#

N1~p!52
g2

8p3/2E0

` ds

As
E

21

11

dve2sf0
2z

sinh3z

3@coshz2coshzv#2N0~p! ~6.3!

with

f05m21
12v2

4
p0

21
coshz2coshzv

2z sinhz
p2;

z[eBs. ~6.4!

An outline of the derivation of the above-mentioned form
las is provided in the appendix.

For weak magnetic fields, we will haveAeB!S(0),
where S(0) is the dynamically generated fermion mas
Note that it is the opposite to the limit encountered in t
case for the strong magnetic field@6,20#. In the weak-field
limit, we can expand the above functions in a power serie
z5sS2(0)@eB/S2(0)# and take the leading and next to lea
ing order behavior asz→0.

We have, asz→0, the following expansions to orde
e2B2:

f05S21
12v2

4
p22

z2

48
~12v2!2p21O~z4!, ~6.5!

N0~p!52
g2

8p3/2E0

` ds

As
E

21

11

dve2sf0~12v2!

3F12
z2

6
~12v2!G1O~z4!, ~6.6!
5-8
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N1~p!52
g2

8p3/2E0

` ds

As
E

21

11

dve2sf0
z2

12
~2312v21v4!

1O~z4!. ~6.7!

Note that whenz→0 the termN1(p) vanishes and we re
cover the usual form for the polarization tensor.

To simplify the integrals, we also expand the exponen
e2sf0 in a power series inz so that

e2sf0;e2s„S21[(12v2)/4]p2
…S 11

e2B2s3

48
~12v2!2p2D .

~6.8!

This simplifies thes-integrals. We then end up with

N0~p!52
g2

2pp F S 1

2
2

2S2

p2 D sin21k

1
S

p
2

2e2B2

p4 H sin21k2
2Sk2~312k2!

3p J
1

5e2B2p2

2p6 H sin21k2
2Sk2~15110k218k4!

15p J G
~6.9!

N1~p!52
g2e2B2

2pp5 Fsin21k2p
32k216k4

6S G ~6.10!

wherek2[p2/(4S21p2). Note that for physical processe
0<k<1. When,eB50 and S50 ~i.e. k51) we recover
the known results@Eq. ~3.7!#, namely N0(p)52g2/8p,
N1(p)50.

On the other hand, in the presence of the magnetic fi
one can readily see that in the limitS→0 the functionN1(p)
blows up whenk→1 ~i.e., the massless case! due to the
presence of the factorS in the denominator. However, for
super renormalizable theory this seems unphysical. A re
lution to this puzzle can be provided by the generation o
dynamical fermion massS ~ however small! in the presence
of the magnetic field. This observation points to the magn
catalysis even in the case for the weak fields in thr
dimensional QED. Generation of such a mass would prev
the appearance of the divergences.

For SÞ0, N0(p) and N1(p) behaves, whenS!p and
p→`, as

N0~p!'2
g2

8p S 12
4e2B2

p4
1

5e2B2sin2u

p4 D , ~6.11!

N1~p!'2
g2e2B2

2pp5 S p

2
2

4p

3S D ~6.12!
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where we have used the parametizationk25k2sin2u, as be-
fore. Hereafter we will be using the approximations~6.11!
and ~6.12! which are justified in the weak-field case.

As in the case with the quenched treatment let us proc
to get the gap equation. Again we shall adopt the appro
mate qualitative approach of the previous section as reg
the effects of the translational invariance breaking phase
tors in Eq.~4.2! due to the presence of the external field. T
take account of the photon propagator, we can invoke
large-N argument to sum up the photon propagator in
ladder approximation

Dmn~p!5Dmn
0 ~p!1Dmk

0 ~p!Pkr~p!Drn
0 ~p!1•••

~6.13!

whereDmn
0 is the free photon propagator. To facilitate o

calculations let us use the Landau gauge for the zeroth o
propagator, so that

Dmn
0 ~p!5

dmn2
pmpn

p2

p2
. ~6.14!

Using the algebraic properties of the projectors

Pmn~p!Pnr~p!5Pmr~p!

Pmn~p!P'nr~p'!5P'nr~p'!

P'mn~p'!P'nr~p'!5P'nr~p'! ~6.15!

we can sum the series in Eq.~6.13! to get

Dmn~p!5
1

p2
„12N0~p!…

3F Pmn1P'mn

N1~p!
p2

p2

12FN0~p!1
p2

p2
N1~p!G G .

~6.16!

To go beyond the case of quenched approximation which
discussed in the previous section, we need to include
polarization effects in our analysis treatment. To perform t
improvement we replace the photon propagator in Eq.~5.3!
by the ladder resummed one, given by Eq.~6.16!. For the
fermion propagator we proceed as we did previously for
quenched case: starting from Eq.~5.4! we expand the term
e2sk2(tanhz/z) and get the expressione2sk2

•e2sk2(tanhz/z21).
Then we expand the second exponential in powers
5-9
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z5eBs, retain the terms which are at most of second order ineB and integrate over s. Taking traces over the Diracg matrices
we finally get

S~p!5g2E d3k

~2p!3

S~k!

„k0
21k21S2~k!…

S 11
2e2B2k2

~S21k2!3D 1

~p2k!2
„12N0~p2k!…F 21

N1~p2k!
~p2k!2

~p2k!2

12FN0~p2k!1
~p2k!2

~p2k!2
N1~p2k!G G .

~6.17!

Let us now setp50 and as in the case of the quenched aprroximation let us make the substitutionS(k).S(0)[m to get

15g2E d3k

~2p!3

S 11
2e2B2k2

~m21k2!3D
~k0

21k21m2!

1

k2
„12N0~k!…F 21

N1~k!
k2

k2

12FN0~k!1
k2

k2
N1~k!G G . ~6.18!

Now ask25k0
21k2 and we can use the parametrizationk05k cosu and uku5k sinu. Let us write, using Eq.~6.11!,

N0~p!5E~p!1F~p!sin2u ~6.19!

whereE(p)52(g2/8p)(124e2B2/p4) andF(p)525g2e2B2/8p5. Accordingly, we can rewrite Eq.~6.18! as

15g2E dk

~2p!2

1

~k21m2!
E

0

p

du
sinu

„12E~k!2F~k!sin2u…
F21

N1~k!sin2u

„12E0~k!2@F~k!1N1~k!#sin2u…
G S 11

2e2B2k2sin2u

~m21k2!3 D .

~6.20!

The angular integral can be performed by making a change of variablesy5cosu, so that we end up with

15
g2

p2E dk
1

~k21m2!
F 1

F~k!
XH 11

2e2B2k2~b211!

~k21m2!3 J 1

b
tan21S 1

bD22
e2B2k2

~k21m2!3
C1

e2B2k2N1~k!

~k21m2!3F~k!„F~k!1N1~k!…

2
1

2„12E~k!…
XH 11

2~b211!e2B2k2

~m21k2!3 J b211

b
tan21S 1

bD2H 11
2~a211!e2B2k2

~m21k2!3 J a211

a
tan21S 1

aD CG , ~6.21!
fe

ra

b
s
-
ion
where b2[(12E2F)/F and a2[(12E2F2N1)/(N1

1F).
However, this equation is difficult to handle, so we pre

instead to expand Eq.~6.20! in powers ofe2B2 beforedoing
the angular integration. After some rather tedious algeb
manipulations we end up with

eB

g4
[

f 2

4p2
5A 12A0

T11T2
. ~6.22!

The quantities appearing on the right hand side are given
the following expressions:
04500
r

ic

y

A05
2

pmE0

`

dx
x2

~x211!@x21h~m,x!#
, ~6.23!

T15
128p3

3m5 E
0

`

dx
x4

~x211!4h~m,x!
, ~6.24!

T25
128p3

9m6 E
0

`

dx
12x41x6

~41x2!3~x211!@h~m,x!#2
.

~6.25!

In the above expressions we have used the notationf
[2p(AeB/g2) andm[2p(m/g2), already used in the pre
vious section; moreover, we have employed the express
5-10
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h~m,x![
1

m F11
x224

2x
sin21S x

Ax214
D G .

Numerical computation of the integrals yieldsm/g2 as a
function ofAeB/g2, which can be used to produce the low
branch in Fig. 3. This represents the solution of the SD eq
tions in the region of small magnetic fields.~Note that only
the small-B part of the curve is depicted.! We see that the
dynamically generated mass in this case is substant
smaller than in the previous section. Presumably this refl
the fact that, due to the Pauli principle, the condensate te
to decrease. We note that in the quenched case the
reaction of the fermions is not really felt, so this fact has
consequences in that case.

VII. LATTICE FORMULATION

We now proceed with a description of the lattice form
lation of the problem. The lattice action is given by the fo
mulas given below:

S5
bG

2 (
x,m,n

Fmn~x!Fmn~x!1 (
n,n8

C̄nQn,n8Cn8 ~7.1!

Fmn~x![am
S~x!1an

S~x1m!2am
S~x1n!2an

S~x!

Qn,n85dn,n82K(
m̂

@dn8n1m̂~r 1gm̂!Unm̂Vnm̂

1dn8,n2m̂~r 2gm̂!Un2m̂,m̂
†

Vn2m̂,m̂
†

#.

The indicesn,n8 consist actually of three integers eac
(n1 , n2 , n3), labeling the lattice sites, whilem denotes di-
rections.r is the Wilson parameter,K the hopping parameter

Unm̂[eigaa
nm̂

S

, Vnm̂[eieaAnm̂. anm̂
S represents the statistica

gauge potential andAnm̂ the external electromagnetic pote
tial. bG[1/g2a is related to the statistical gauge couplin
constant in the usual way. On the other hand, we denotee
the dimensionless electromagnetic coupling constant of
external electromagnetic field. In our treatment we will u
naive fermions, so we setr 50. Initially we will consider a
homogeneous magnetic field; thus one should constru
lattice version of the homogeneous magnetic field. This
already been done before in@29# in connection with the Abe-
lian Higgs model. We more or less follow them, but follow
slightly different prescription, which we describe below@8#.

Since we would like to impose an external homogene
magnetic field in the~missing! x3 direction, we choose the
external gauge potential in such a way that the plaquette
thex1x2 plane equal B, while all other plaquettes equal ze
One way in which this can be achieved is through the cho
A3(n1 ,n2 ,n3)50, for all n1 , n2 , n3, and

A1~n1 ,n2 ,n3!52
B

2
~n221!,n1ÞN,A1~N,n2 ,n3!

52
B

2
~N11!~n221!, ~7.2!
04500
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e:

A2~n1 ,n2 ,n3!51
B

2
~n121!,n2ÞN,A2~n1 ,N,n3!

51
B

2
~N11!~n121!. ~7.3!

whereN3 is the number of points on the~cubic! lattice. It is
trivial to check out that all plaquettes starting at (n1 ,n2 ,n3),
with the exception of the one starting at (N,N,n3), equalB.
The latter plaquette equals (12N2)B5B2(N2B). One may
say that the flux is homogeneous over the entirex1x2 cross
section of the lattice and equalsB. The additional flux of
2(N2B) can be understood by the fact that the lattice is
torus, that is a closed surface, and the Maxwell equa
“•B50 implies that the magnetic flux through the lattic
should vanish. This means that, if periodic boundary con
tions are used for the gauge field, the total flux of any co
figuration should be zero, so the~positive, say! flux B, pen-
etrating the majority of the plaquettes, will be accompan
by a compensating negative flux2(N2B) in a single
plaquette. This compensating flux should be ‘‘invisible
that is it should have no observable physical effects. Thi
the case if the flux is an integer multiple of 2p:N2B
5m2p→B5m(2p/N2), where m is an integer. Thus we
may say~disregarding the ‘‘invisible’’ flux! that the mag-
netic field is homogeneous over the entire cross section
the lattice.3 The integerm may be chosen to lie in the interva
@0,N2/2#, with the understanding that the model with intege
m betweenN2/2 and N2 is equivalent to the model with
integers taking on the valuesN22m, which are among the
ones that have already been considered. It follows that
magnetic field strength B in lattice units lies between 0 a
p. The physical magnetic fieldBphys is related toB through
B5ea2Bphys, and the physical field may go to infinity let
ting the lattice spacinga go to zero, whileB is kept constant.

An important remark is that the magnetic field is not a
lowed to be too big in lattice units, since then the perturb
tive expansion of the expressionseieaAnm would yield signifi-
cant B2, B3, . . . contributions with the accompanyin
vertices, in addition to the desirable terms which are linea
B. A trivial estimate of the critical field strength is obtaine
from the demand that the cyclotron radius corresponding
given magnetic field should not be less than~say! two lattice
spacings. This trivial calculation yieldsB,p/8. Of course
the above limitations apply strictly only to the case where
statistical gauge field has been turned off; in the ‘‘intera
ing’’ case, one does not really know whether there exist
critical magnetic field, after which discretization effects a
important. With this remark in mind, we depict in the figur
of the following sections the results for the whole range
the magnetic field, from 0 top.

For the fermion fields we used antiperiodic boundary co
ditions in the time direction and ‘‘fixed’’ boundary cond

3To check this translational invariance we measured the ferm
condensate at every point in thex1x2 plane. The results were th
same at all points within the error bars, confirming homogeneit
5-11
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tions in the spatial directions; the latter boundary conditio
mean that we consider fermion fields vanishing on
boundaries.

VIII. LATTICE RESULTS

A. Zero temperature results

We are now going to present the results pertaining to
T50 case. The first set consists of measurements of the
mion condensate versus the magnetic field for a 163 lattice in
the strong coupling regime for the statistical gauge fi
(bG50.10) for three values of the bare mass~Fig. 4!. Before
going on with the specific features of these results, let
remark that to facilitate comparison with the analytic resu
we measured the magnetic field in units of its maxim
value: thus we used the parameterb, defined by: b
[B/Bmax5eBphysa

2/eBphysa
2umax. SinceBmax5p, as ex-

plained previously, we get:b5B/p andb runs from 0 to 1.
We see in Fig. 4 that for all three masses the plot consist
two parts with qualitatively different behavior. Forb smaller
than about 0.3 we find a dependence of the condensate o
external magnetic field, which is nearly linear, however,
view of the analytical results obtained in Sec. V about
quenched case, we understand that we see the quadrat
havior found there; however, there is a negative quartic te
coming into the game, as we also saw, and this ‘‘straight
out’’ the quadratic curve and makes it almost linear. For
magnetic fields we find points that could possibly be fitted
a logarithmic type of curve. The logarithmic dependence

S~0!

a
. lnFAeB

a G , a[
g2

4p
,

has been found@12# by an approximate solution of th
Schwinger-Dyson equations in the regime of strong magn
fields. We have included such a logarithmic fit form
50.050 in Fig. 4. In addition, for this mass some points
the intermediate region are included. They show a smo
interpolation between the two regions. Thus in both

FIG. 4. ^C̄C& versus the magnetic field strength at strong co
pling for three masses and extrapolation to the zero mass limit
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strong and weak magnetic field regimes we find a nice qu
tative agreement of the analytical solutions with the Mon
Carlo results. In the figure we have also included the
trapolation to the zero mass limit.

The magnetic field has been characterized as ‘‘strong’
‘‘weak’’ through its comparison with the fine structure co
stant a[g2/4p and the dynamically generated massm
.S(0). Since Fig. 4 contains the strong coupling data,
would be interesting to explore the fate of the whole pictu
shown in Fig. 4 as the gauge couplingg moves away from
the strong coupling regime. One would naively expect t
the magnetic fields will be more easily characterized
‘‘strong,’’ as compared to the smaller and smaller scale
by the gradually weaker coupling constant. Thus, the alm
linear part should be restricted to the very small magne
fields and eventually disappear. This is what one may se
Fig. 5, which is similar to Fig. 4, the only difference bein
that the gauge coupling constant is now in the intermed
coupling regime, rather than the strong coupling of Fig.
We see that the almost linear part is now restricted in
region betweenb50 andb'0.1220.15. We may also have
a semi-quantitative estimate of the new ‘‘critical’’ magnet
field bc , defined as the maximumb which fits into the al-
most linear behavior. Inspired by the inequalityeB
!(g2/4p)2, let us suppose thateBc5x(g2/4p)2, with x a
very small number; we also make the further assumption
x does not depend ong. We will check crudely whether this
assumption is reasonable given our results. Converting
erything to lattice units, we find thatbc5(x/16p3)(1/bG

2 ).
From this we infer bc2

5bc1
(bG1

/bG2
)2. Using bG1

50.10,bG2
50.15 andbc1

50.3, we find forbc2
, the value

0.13, which is surprisingly close to the value given by t
data of Fig. 5. Of course, the 1/bG

2 dependence ofbc tells us
that the weak field behavior will be even more suppresse
we move towards the weak gauge coupling; this is what
have seen in direct simulations in this regime. Thus, it
plausible that the dependence of the ‘‘critical’’ magne
field has a 1/bG

2 dependence.
We now make contact with the results of@8#, where we

-
FIG. 5. ^C̄C& versus magnetic field strength at intermedia

coupling for three masses.
5-12
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MAGNETIC CATALYSIS IN EVEN-FLAVOR THREE- . . . PHYSICAL REVIEW D 61 045005
studied the model with the statistical gauge field turned
We had found there that for big enoughb the condensate
stopped showing a monotonous increase withb, at b50.5 it
had a local minimum and then had a succession of max
and minima, up tob51. Moreover, there was a spectacu
volume dependence. One expects, of course that this ‘‘fr
case will be reached for big enoughbG . In Fig. 6 we show
the results forbG50.5 andbG51.0 for various volumes
For bG50.5 the curve shows the first sign of non mono
nous behavior atb50.5, while atbG51.0 the succession o
maxima and minima is clear. However, there is no detecta
volume dependence, so we can be sure that, even at this
bG , the limit of switching the gauge field off has not y
been reached; it will presumably be reached for even big
values ofbG . One should add that in the ‘‘free’’ case th
role of the bare mass is very important, since it is eventu
the only source of mass generation. This is at the root of
large volume dependence showing up in the ‘‘free’’ case
fixed volume the condensate goes over to zero for vanish
bare mass. In the full model, though, the interaction with
gauge field generates a dynamical mass, independently
the value of the bare mass. This is why in the ‘‘interactin
case the volume dependence is small, permitting a sm
transition to the thermodynamic, as well as to the massl
limit.

The simulations are done at finite values for the~bare!
mass; the massless limit is taken by extrapolating the res
for several bare masses to the limitm→0. Figure 7 shows
the process of this extrapolation for three values of the ga
coupling constant. The external magnetic field has been
equal to a typical value (b50.188); the picture is similar for
all values of the magnetic field strength. ForbG50.10,
which lies in the strong coupling region, the extrapolation
linear with negative slope. This line is pointing to a relative
big value for the condensate in the chiral limit. For som
what weaker coupling (bG50.20), the curve is still a
straight line, but the slope is positive and it points to
smaller value atm→0. In both of these cases the mass d
pendence is not very pronounced, because it is the st

FIG. 6. ^C̄C& versus the magnetic field for two small values
the gauge coupling constant and three volumes.
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gauge coupling which dominates in the formation of the co
densate. In the third case (bG50.35), which lies in the weak
coupling, one can no longer fit to a straight line; a quadra
fit has proved necessary for allbG values smaller than 0.2.

Figure 8 contains the zero mass limit of the condens
~obtained through the procedure illustrated in Fig. 7! versus
bG , for four values of the external field. We observe that
the strong coupling region the b-dependence of the cond
sate is rather weak; on the contrary, at weak coupling,
external field is the main generator of the condensate, and
find an increasingly big b-dependence, as we move to la
bG . Note that the biggest value ofb we have used in sys
tematic measurements, such as the ones in Fig. 8, is 0.3.
takes into account that for larger values ofb the function of
the condensate stops being monotonous for largebG , as may
be seen on Fig. 6. Thus we have restricted our study tob
region which is safe for all values of the coupling. From th
preliminary quenched study we conclude that a no

vanishing value for̂ C̄C& develops for this small volume
even at weak coupling in the presence of an external m

FIG. 7. ^C̄C& versus m for a typical value of the magnetic fie
strength and various values ofbG .

FIG. 8. ^C̄C& versusbG n the zero mass limit for four values o
the magnetic field strength.
5-13
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netic field. We have not tried to study systematically t
approach to the continuum limit.

B. Finite temperature results

We expect that the fermion condensate, generated by
mechanism~explicit mass term, gauge interactions, exter
fields! should vanish at high temperatures. This is the stu
we now turn to: we employ asymmetric lattices and consi
the behavior of the condensate versusbG . Before describing
the behavior of the condensate, let us first see thebG depen-
dence of the Wilson line.

Figure 9 depicts the Wilson line versusbG for lattices of
temporal sizeNt54 and various spatial volumes. We o
serve in the figure not only the decrease of the Wilson l
with increasing spatial volume, but also the fact that initia
this quantity is almost independent ofbG , but atbG.0.25
its dependence onbG starts showing up. It is important tha
this value ofbG is independent from the spatial volume.

In Fig. 10 we show the relationship between Wilson lin
on lattices withNt52 versusNt54 andNt56. The result
for the 16236 lattice lies ‘‘below’’ the result for the 162

FIG. 9. Wilson line versusbG for Nt54 and three spatial sizes

FIG. 10. Wilson line versusbG for Nt52, Nt54 andNt56.
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34. This is due to the fact that the former lattice is closer
the zero temperature~symmetric! lattices, as compared to th
latter. The value ofbG , above which there isbG dependence
is substantially bigger forNt56 than forNt54 or Nt52.
The Wilson line for the Nt52 case approaches a
asymptotic value for largebG . This is not very obvious in
the other two cases, because they lie farther from the infi
temperature limit. Also in this case the statistical fluctuatio
are very large, resulting in big errors. With this in mind w
have put in the figure only the errors for the caseNt52.

Figure 11 contains the zero~bare! mass extrapolations fo
the condensate as a function ofbG . The external magnetic
field is set tob50.1. The uppermost curve contains the r
sults for a symmetric lattice (163.) It is easily seen that it is
a quite smooth curve and presents no apparent discont
ties of any sort. The data for the asymmetric lattice 16234
follow the ones of the symmetric lattice at strong couplin
in the weak coupling region the condensate for the asymm
ric lattice appears substantially smaller than its 163 counter-
part. This is what one should explain on account of the sy
metry restoration scenaria at finite temperatures. The2

34 data can be described by two branches, one contai
the strong and the other the weak coupling results; the
branches join at aboutbG50.4, but their slopes do not co
incide. There is a discontinuity at this value ofbG , which
we interpret as the symmetry restoring transition at fin
temperature. On the same figure we have put the results
lattice of bigger spatial volume (24234), away from the
‘‘critical’’ bG50.4 value. These data do not differ substa
tially from the ones for 16234.

Figure 12 contains results similar to the ones of Fig.
but the value of the external magnetic field differs:b
50.305. The same basic picture appears here, as well
may again spot the discontinuity atbG50.4 for Nt54. In
addition to the data of Fig. 11 we have put the data fo
24236 lattice, which is expected to lie closer to zero tem
perature. The data are smoother than the ones for 16234 and
they lie much closer to the 163 results; this makes it more
difficult than before to spot a sudden change in slope; ho
ever, this change is present even in this case. The new

FIG. 11. Condensate versusbG for b50.1. Comparison of zero
temperature with finite temperature.
5-14
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MAGNETIC CATALYSIS IN EVEN-FLAVOR THREE- . . . PHYSICAL REVIEW D 61 045005
ment here is the data forNt52. The change in slope here
very pronounced and substantiates our claim that we ha
phase transition aroundbG50.4.

Since we now have data for several asymmetric lattic
we are in a position to show the temperature dependenc
the condensate. This is done in Fig. 13, in the weak coup
regime, for two values of the magnetic field. The zero m
extrapolation of the results has been used and the temp
ture in lattice units is 1/Nt , as usual. We observe the fall o
the condensate at high temperatures, which is more dram
for the smallest value ofb. This figure is of the same quali
tative form with Figure 2 of@8#, which was derived analyti-
cally for the case where we had no statistical gauge fiel
all.

In Fig. 14 we show the time evolution of the condens
for two values of the magnetic field at weak coupling for
symmetric lattice. The important feature here is the v
small magnitude of the statistical fluctuations, resulting
relatively small errors.

FIG. 12. Condensate versusbG for b50.3. Comparison of zero
temperature with finite temperature. The error bars~not shown! are
almost of the size of the symbols.

FIG. 13. ^C̄C& versus the temperature for two values of t
magnetic field.
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The situation in Fig. 14 changes in the asymmetric lattic
and the results of Fig. 14 should be contrasted against
ones in Figs. 15 and 16. In Fig. 15 we have exactly the sa
parameters as in Fig. 14, however now we have a 16234
lattice. It is evident that the fluctuations have grown abo
one order of magnitude larger.

The statistical fluctuations grow even larger for the 12

32 lattice, whose results are shown in Fig. 16. Moreov
this figure gives a feeling of the way the average of t
condensate is approaching zero at high enough temperat
The outcome spends most of its time at small values and
some exceptional big spikes from time to time; these la
become more and more rare as the spatial volume increa

C. Non-uniform magnetic field

In the previous sections we have considered the case
uniform external magnetic field. There is however poten
physical interest in the effects of non-uniform fields, whi
become important in case the above model has relevanc
the physics of high-temperature superconductors. Indee
will be of interest to examine the effect of electromagne

FIG. 15. Time evolution of̂ C̄C& for a 16234 lattice.

FIG. 14. Time evolution of̂ C̄C& for a symmetric (163) lattice
and two values of the magnetic field.
5-15
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FARAKOS, KOUTSOUMBAS, MAVROMATOS, AND MOMEN PHYSICAL REVIEW D61 045005
vortex lines on the induced fermion~holon! condensate at the
nodes ofd-wave superconducting gaps@7#. A simple-minded
model for such vortex lines could be that of flux tubes
magnetic field. The full problem would be to take into a
count interactions among the flux tubes, which could sh
light also in the confining aspects of the gauge groups
three dimensions. It is only by lattice methods that one m
treat the problem, in view of the very big computation
difficulties in the analytical approach. In this first treatme
of the problem we switch off the fluctuating statistical gau
field and consider the response of the fermions to the ba
ground field only. A full treatment of the problem, includin
the statistical gauge interactions is left for the future.

Let us describe the technical procedure to construct a n
uniform magnetic field on the lattice. We will considerM
3M plaquettes parallel to thex1x2 plane, around the cente
of the lattice, which will be penetrated by magnetic flu
equal toB each. The remaining plaquettes will not carry a
flux. Then we are going to measure the condensate at
center (N/2,N/2,N/2) and along a line passing through it an
consisting of the sites (N/2,N/211,N/2), (N/2,N/2
12,N/2), . . . , (N/2,N,N/2).

The fact remains that the total flux through the latti
should be zero, because of divB50. Thus, for each flux B
penetrating a given plaquette, there should be an oppo
flux somewhere else in the lattice. To construct the magn
field that we mentioned above, we followed the strategy
build it up plaquette by plaquette taking care that we put
compensating opposite flux through the plaquette startin
the point (N,N,n3). If we already have a configuration o
gauge potentials on a lattice, the procedure to add a plaqu
of flux B at the plaquette at (N1 ,N2 ,n3) „with the corre-
sponding compensating flux2B at (N,N,n3)…, consists of
adding to the preexisting links the quantities denoted byDAk
below. DA3(n1 ,n2 ,n3) is set to zero for all values of th
integersn1 ,n2 ,n3 . DA1 andDA2 are also set to zero, excep
for the links where an explicit different statement is mad
For the plaquette starting at the site (N1 ,N2 ,n3),N1ÞN,N2
ÞN, we choose

DA1~N1 ,n2 ,n3!52B, n25N211,N212, . . . ,N,

FIG. 16. Time evolution of̂ C̄C& for a 16232 lattice.
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n351, . . . ,N

DA2~n1 ,N2 ,n3!51B, n15N111,N112, . . . ,N,

n351, . . . ,N.

For N15N we impose

DA1~N,n2 ,n3!52B, n25N211,N212, . . . ,N,

n351, . . . ,N

DA2~n1 ,n2 ,n3!50 everywhere,

while for N25N

DA1~n1 ,N,n3!50 everywhere,

DA2~n1 ,N,n3!5B, n15N111,N112, . . . ,N,

n351, . . . ,N.

In the following we consider the model with the statistic
gauge field turned off. We start with vanishing gauge pot
tials everywhere on the lattice, go through the plaquette
the central region and add the aboveDAk quantities to the
corresponding links. In this way we end up with the fluxB in
the central plaquettes and the compensating flux for all
plaquettes at (N,N,n3). The flux through these latte
plaquettes should be ‘‘invisible,’’ as explained in Sec. V
so B must take the values (2p/M2)n, n50,1, . . . ,M2/2.

In Fig. 17 we show the results for a central region
non-vanishing flux of extent 636. More specifically, for the
163 lattice we have been using, the region with constant n
zero flux contains the plaquettes starting at (n1 ,n2 ,n3), with
6<n1<11 and 6<n2<11, while n3 takes all values. Note
that nothing depends on the value ofn3. The uppermost
curve in the figure depicts the result for the condensate at
site (9,9,9). The remaining curves represent the correspo

FIG. 17. ^C̄C& versus magnetic field strength where the flux
non zero only in a central region extending over 636 plaquettes.
The condensate at sites labeled 9, 12, 16~see text! is shown. The
corresponding distances from the center of the flux tube are 0,
5-16
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MAGNETIC CATALYSIS IN EVEN-FLAVOR THREE- . . . PHYSICAL REVIEW D 61 045005
ing results for the sites (9,12,9), and (9,16,9). The cur
with n2510, n2511 are quite similar to then259 curve.
The first substantial change takes place at the site (9,12
which lies exactly on the boundary of the above region. T
remaining curves dive together to a value which is accoun
for by the explicit mass term and has very little to do w
the external magnetic field. Thus, we find a drop in the c
densate value taking place exactly on the boundary of
central region.

To visualize the fall of the condensate on the bounda
we fixed theb parameter to 0.111~a typical value! and plot-
ted the value of the condensate along a straight line pas
from the center of the lattice. We find the symmetric be
shaped plot shown in Fig. 18.

IX. CONCLUSIONS

In this work we have studied in detail, by means of an
lytic and lattice methods, the phenomenon of magnetic
talysis in even-flavor QED3, namely the magnetic inductio
of a chiral-symmetry breaking fermion condensate as a re
of the influence of an external magnetic field. We ha
shown that the scaling behavior of the induced conden
with the external field varies according to the strength of
latter. In the weak-field regime, there is a quadratic incre
of the condensate with increasing external field, to be c
trasted with the logarithmic scaling behavior in the regime
strong external magnetic fields. However, it seems that
transition from weak to strong fields is smooth, at least as
as the induced condensate is concerned, and we would c
acterize it as across-overrather than a phase transition
some critical value of the external field. This constitutes
prediction of the gauge theory, and it may be tested in
periments of relevance to high-temperature superconduc
materials. It would be interesting to repeat the~lattice! com-
putations for the case of four-fermion contact interactions
check on this behavior. This would differentiate between
two models as possible candidates for thenodal spin-charge
excitations in d-wave high-temperature superconducto
@7,15#.

FIG. 18. ^C̄C& along a straight line passing from the center
the lattice if the magnetic field parameterb is set to 0.111. The
central region of non-zero flux is 636.
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It should be stressed that the analytic methods that lea
this scaling are approximate, and should be considered
as giving a qualitative treatment of the phenomenon. T
important effect of the external field is the breaking of tran
lational invariance on the spatial plane, and this leads
technical complications in solving the pertinent Schwing
Dyson equations in the case of weak magnetic fields, mix
configuration and momentum space integrals. To bypass
problem, we adopted an ansatz for the fermion propagato
the presence of a weak external field, which although ma
tains formally a translational invariant look~in the sense of
its being expressed in terms of a Fourier transform depe
ing on a single momentum variable!, however it incorporates
the effects of the magnetic field in the pertinent coefficien
Comparison with the quenched lattice results showed that
predicted scaling of the induced condensate with the m
netic field is~qualitatively! captured by this ansatz.

In addition to the uniform external field case, we ha
also presented preliminary quenched lattice results in
case of flux tubes of magnetic field. This situation might a
be of relevance to realistic situations in high-temperature
perconductors, as being related to the effects of electrom
netic vortex lines on the opening of a fermion gap at t
nodes of the superconductor, within the context of the ga
theory approach@7#. Our results in the non-uniform magnet
field case have indicated that the fermion chiral condensa
non zero and scales with the magnetic field of the flux tube
the core of the latter, but decays very fast outside the tu
Our considerations did not properly take into account int
actions among flux tubes. The latter is an important iss
which might also bear some relation with the issue of co
finement of the three-dimensional theory. We expect tha
proper treatment of this problem will become available on
upon the use of dynamical fermions on the lattice.

Another important issue we would like to address for f
ture work is the computation of thermal conductivities in t
context of the model of Sec. II, used in our simulation of t
physics of planar high-temperature superconductors. As
cussed in@14# there are scaling differences of the therm
conductivity between the gauge (QED3) and four-fermion
models, which would be important to analyze in detail in t
context discussed in this work for comparison with expe
ments of high-temperature superconductors@13#. At present,
the analysis of the thermal conductivity has been perform
in the real time formalism@15,14#, and the extension to a
lattice analysis is not trivial. We hope to return to this im
portant issue in a future publication.
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APPENDIX A: CALCULATION OF THE ONE-LOOP
VACUUM POLARIZATION IN THE PRESENCE OF THE

EXTERNAL MAGNETIC FIELD

The photon polarization tensor for QED in the presence
the electromagnetic field was first performed by Tsai@30,31#.
Here, for the sake of completeness, we outline his calc
tions but we will work in three-dimensions instead of fou
dimensions.
04500
f

a-

Let us begin with the one-loop vacuum polarization gra
~2!. The polarization tensor to this approximation is given

Pmn~p!52g2E d3k

~2p!3
tr@gmS̃~k!gnS̃~p2k!# ~A1!

where the Fermion propagator is the one in the presenc
the constant external magnetic field@10#
S̃F~k!5 i E
0

`

dse2s„k0
2
1m21k2(tanhz/z)…@~m2g•k!2 i ~g1k22g2k1!tanhz#~12 ig1g2tanhz!

5 i E
0

`

dse2s„m21k0
2
1k2(tanhz/z)…S ~m2g0k0!~12 ig1g2tanhz!2~g•k!

1

cosh2z
D ~A2!

wherez[eBs. Accordingly, Eq.~A2! leads us to

Pmn~p!52g2E d3k

~2p!3E0

`

ds1E
0

`

ds2e2„x0(s1 ,k)1x0(s2 ,p2k)…

3trFgmS ~m2g0k0!~12 ig1g2tanhz1!2~g•k!
1

cosh2z1
D

3gnS @m2g0~p2k!0#~12 ig1g2tanhz2!2@g•~p2k!#
1

cosh2z2
D G ~A3!
via
be-
wherezi5eBsi , i 51,2 and

x0~s,k![sS m21k0
21k2

tanhz

z D . ~A4!

Let us now make the change of variables

s1[
12v

2
s, s25

11v
2

s, ~A5!

with sP@0,̀ ) andvP@21,1#. Accordingly, we get

x0~s1 ,k!1x0~s2 ,p2k!5s@f0~p!1f1~p,k!# ~A6!

with

f0~p![m21
12v2

4
p0

21
coshzv2coshz

2z sinhz
p2

f1~p,k![S k02
11v

2
p0D 2

1
tanhz11tanhz2

z

3S k2
tanhz2

tanhz11tanhz2
pD 2

. ~A7!
The loop integrals can then be performed very easily
standard Gaussian integrations some of which are listed
low:

I 0[E d3k

~2p!3
e2sf1(p,k)5

1

~4ps!3/2

z

sinhz
coshz1coshz2

~A8!

E d3k

~2p!3
e2sf1(p,k)k05

11v
2

p0I 0 ~A9!

E d3k

~2p!3
e2sf1(p,k)k5

tanhz2

tanhz11tanhz2
pI 0 ~A10!

E d3k

~2p!3
e2sf1(p,k)k0k5

11v
2

tanhz2

tanhz11tanhz2
I 0p0p

~A11!

E d3k

~2p!3
e2sf1(p,k)kikj5F S tanhz1

tanhz11tanhz2
D 2

pipj

2
z

s~ tanhz11tanhz2!
d i j G .

~A12!
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We will also need the following identity for the gamm
matrices:

tr@~12 ig1g2tanhz!gmgn#

524„dmn2tanhz~d1
md2

n2d1
nd2

m!…

524Xdmn2tanhz
Fmn

B
C ~A13!

where Fm,n is the covariant representation of the extern
magnetic field strength. The other traces can also be ev
ated by the use of the Dirac algebra~2.6!.

Putting everything together@30,31# one gets~after an in-
tegration by parts!

Pmn~p!5
g2

A2p
E ds

As

dv
2

z

sinhz
e2sf0I mn ~A14!
v.

y

D

.

. J

a,

04500
l
lu-

where

I mn5@~dmnp22pmpn!R0~p!1~dmn
' p'

2 2p'mp'n!R1~p!#
~A15!

with

R0~p!5~coshzv2v cothz sinhzv ! ~A16!

R1~p!5
2

sinh2z
@coshz2coshzv#2R0~p!.

~A17!

Note that, unlike its four-dimensional counterpart, t
vacuum polarization tensor in three dimensions is not div
gent and there is no need to add any counterterms. One
see this by checking the absence of poles ats→0, which is
the place where poles usually show up in proper time me
ods.
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