942 research outputs found

    The interparticle interaction and crossover in critical lines on field-temperature plane in Pr0.5_{0.5}Sr0.5_{0.5}MnO3_{3} nanoparticles

    Full text link
    The magnetic properties and the effects of interparticle interaction on it have been studied in nanoparticles of half doped Pr0.5_{0.5}Sr0.5_{0.5}MnO3_{3}. Three samples consisting of nanoparticles of different average particle sizes are synthesized to render the variation in interparticle interaction. Though all the samples crystallize in the same structure to that of their bulk compound, the low temperature ferromagnetic-antiferromagnetic transition, which is present in bulk compound, is not evident in the nanoparticles. Linear as well as nonlinear ac susceptibility coupled with dc magnetic measurements have shown the superparamagnetic behavior of these nanoparticles where the blocking temperature increases with the increasing particle size. Presence of interparticle interaction is confirmed from the temperature variation of coercive field and the analysis of frequency dependent ac susceptibility. We have identified the nature of this interaction to be of dipolar type, and show that its strength decreases with the increasing particle size. The effect of this dipolar interaction on magnetic properties is intriguing as the compounds exhibit crossover from de Almeida-Thouless to Gabay-Toulouse like critical lines on field-temperature plane above their respective interaction field. In agreement with theoretical prediction, we infer that this crossover is induced by the unidirectional anisotropy arising from interparticle interaction, and this is confirmed from the presence of exchange bias phenomenon.Comment: To appear in Phys. Rev.

    Manipulating superconductivity through the domain structure of a ferromagnet: experimental aspects and theoretical implications

    Full text link
    In the present work we study experimentally the influence that the domain structure of a fer- romagnet (FM) has on the properties of a superconductor (SC) in bilayers and multilayers of La0.60Ca0.40MnO3/Nb and FePt/Nb proximity hybrids. Specific experimental protocols that were employed in the performed magnetization measurements enabled us to directly uncover a generic property of FM/SC hybrids: in the absence of an external magnetic field, the multidomain struc- ture of the FM promotes the nucleation of superconductivity, while its monodomain state strongly suppresses it. Our experimental findings support recent theoretical studies proposing that when an inhomogeneous exchange field is offered by the FM to the SC the superconducting pairs are not susceptible to pair-breaking.Comment: 4 pages, 4 figure

    Nanocrystallization and Amorphization Induced by Reactive Nitrogen Sputtering in Iron and Permalloy

    Full text link
    Thin films of iron and permalloy Ni80Fe20 were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The nitrogen partial pressure, during sputtering process was varied in the range of 0 to 100%, keeping the total gas flow at constant. At lower nitrogen pressures RN2<33% both Fe and NiFe, first form a nanocrystalline structure and an increase in nitrogen partail pressure results in formation of an amorphous structure. At intermediate nitrogen partial pressures, nitrides of Fe and NiFe were obtained while at even higher nitrogen partial pressures, nitrides themselves became nanocrystalline or amorphous. The surface, structural and magnetic properties of the deposited films were studied using x-ray reflection and diffraction, transmission electron microscopy, polarized neutron reflectivity and using a DC extraction magnetometer. The growth behavior for amorphous film was found different as compared with poly or nanocrystalline films. The soft-magnetic properties of FeN were improved on nanocrystallization while those of NiFeN were degraded. A mechanism inducing nanocrystallization and amorphization in Fe and NiFe due to reactive nitrogen sputtering is discussed in the present article.Comment: 13 Pages, 15 Figure

    Quenching of lamellar ordering in an n-alkane embedded in nanopores

    Full text link
    We present an X-ray diffraction study of the normale alkane nonadecane C_{19}H_{40} embedded in nanoporous Vycor glass. The confined molecular crystal accomplishes a close-packed structure by alignment of the rod-like molecules parallel to the pore axis while sacrificing one basic principle known from the bulk state, i.e. the lamellar ordering of the molecules. Despite this disorder, the phase transitions observed in the confined solid mimic the phase behavior of the 3D unconfined crystal, though enriched by the appearance of a true rotator phase known only from longer alkane chains.Comment: 7 pages, 3 figure

    Spin Disorder and Magnetic Anisotropy in Fe3O4 Nanoparticles

    Full text link
    We have studied the magnetic behavior of dextran-coated magnetite (Fe3_3O4_4) nanoparticles with median particle size \left=8 nmnm. Magnetization curves and in-field M\"ossbauer spectroscopy measurements showed that the magnetic moment MSM_S of the particles was much smaller than the bulk material. However, we found no evidence of magnetic irreversibility or non-saturating behavior at high fields, usually associated to spin canting. The values of magnetic anisotropy KeffK_{eff} from different techniques indicate that surface or shape contributions are negligible. It is proposed that these particles have bulk-like ferrimagnetic structure with ordered A and B sublattices, but nearly compensated magnetic moments. The dependence of the blocking temperature with frequency and applied fields, TB(H,ω)T_B(H,\omega), suggests that the observed non-monotonic behavior is governed by the strength of interparticle interactions.Comment: 11 pages, 7 figures, 3 Table

    Magnetic phases evolution in the LaMn1-xFexO3+y system

    Full text link
    We have investigated the crystal structure and magnetic properties for polycrystalline samples of LaMn1-xFexO3+y, in the whole range x=0.0 to x=1.0, prepared by solid state reaction in air. All samples show the ORT-2 orthorhombic structure that suppresses the Jahn-Teller distortion, thus favoring a ferromagnetic (FM) superexchange (SE) interaction between Mn^{3+}-O-Mn^{3+}. For x=0.0 the oxygen excess (y ~ 0.09) produces vacancies in the La and Mn sites and generates a fraction around 18% of Mn^{4+} ions and 82% of the usual Mn^{3+} ions, with possible double exchange interaction between them. The Fe doping in this system is known to produce only stable Fe^{3+} ions. We find an evolution from a fairly strong FM phase with a Curie temperature T_{C} ~ 160 K, for x=0.0, to an antiferromagnetic (AFM) phase with T_{N} = 790 K, for x=1.0, accompanied by clear signatures of a cluster-glass behavior. For intermediate Fe contents a mixed-phase state occurs, with a gradual decrease (increase) of the FM (AFM) phase, accompanied by a systematic transition broadening for 0.2 < x < 0.7. A model based on the expected exchange interaction among the various magnetic-ion types, accounts very well for the saturation-magnetization dependence on Fe doping.Comment: 27 pages, 9 figure

    Magnetic properties of HO2 thin films

    Full text link
    We report on the magnetic and transport studies of hafnium oxide thin films grown by pulsed-laser deposition on sapphire substrates under different oxygen pressures, ranging from 10-7 to 10-1 mbar. Some physical properties of these thin films appear to depend on the oxygen pressure during growth: the film grown at low oxygen pressure (P ~= 10-7 mbar) has a metallic aspect and is conducting, with a positive Hall signal, while those grown under higher oxygen pressures (7 x 10-5 <= P <= 0.4 mbar) are insulating. However, no intrinsic ferromagnetic signal could be attributed to the HfO2 films, irrespective of the oxygen pressure during the deposition.Comment: 1

    Validity of the N\'{e}el-Arrhenius model for highly anisotropic Co_xFe_{3-x}O_4 nanoparticles

    Get PDF
    We report a systematic study on the structural and magnetic properties of Co_{x}Fe_{3-x}O_{4} magnetic nanoparticles with sizes between 55 to 2525 nm, prepared by thermal decomposition of Fe(acac)_{3} and Co(acac)_{2}. The large magneto-crystalline anisotropy of the synthesized particles resulted in high blocking temperatures (4242 K \leqq TBT_B ≦345\leqq 345 K for 5≦5 \leqq d ≦13\leqq 13 nm ) and large coercive fields (HC≊1600H_C \approxeq 1600 kA/m for T=5T = 5 K). The smallest particles (=5=5 nm) revealed the existence of a magnetically hard, spin-disordered surface. The thermal dependence of static and dynamic magnetic properties of the whole series of samples could be explained within the N\'{e}el-Arrhenius relaxation framework without the need of ad-hoc corrections, by including the thermal dependence of the magnetocrystalline anisotropy constant K1(T)K_1(T) through the empirical Br\"{u}khatov-Kirensky relation. This approach provided K1(0)K_1(0) values very similar to the bulk material from either static or dynamic magnetic measurements, as well as realistic values for the response times (τ0≃10−10\tau_0 \simeq 10^{-10} s). Deviations from the bulk anisotropy values found for the smallest particles could be qualitatively explained based on Zener\'{}s relation between K1(T)K_1(T) and M(T)

    Low frequency noise characteristics of sub-micron magnetic tunnel junctions

    Full text link
    We report that low frequency (up to 200 kHz) noise spectra of magnetic tunnel junctions with areas ~10^{-10}cm^2$ at 10 Kelvin deviate significantly from the typical 1/f behavior found in large area junctions at room temperature. In most cases, a Lorentzian-like shape with characteristic time between 0.1 and 10 ms is observed, which indicates only a small number of fluctuators contribute to the measured noise. By investigating the dependence of noise on both the magnitude and orientation of an applied magnetic field, we find that magnetization fluctuations in both free and reference layers are the main sources of noise in these devices. At small fields, where the noise from the free layer is dominant, a linear relation between the measured noise and angular magnetoresistance susceptibility can be established.Comment: 3 pages, 2 figure

    Electric-field-induced phase transition of <001> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

    Full text link
    oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were poled under different electric fields, i.e. Epoling=4 kV/cm and Epoling=13 kV/cm. In addition to the temperature-dependent dielectric constant measurement, X-ray diffraction was also used to identify the poling-induced phase transitions. Results showed that the phase transition significantly depends on the poling intensity. A weaker field (Epoling=4 kV/cm) can overcome the effect of random internal field to perform the phase transition from rhombohedral ferroelectric state with short range ordering (microdomain) FESRO to rhombohedral ferroelectric state with long range ordering (macrodomain) FElRO. But the rhombohedral ferroelectric to tetragonal ferroelectric phase transition originating from to polarization rotation can only be induced by a stronger field (Epoling=13 kV/cm). The sample poled at Epoling=4 kV/cm showed higher piezoelectric constant, d33>1500 pC/N, than the sample poled at Epoling=13 kV/cm.Comment: 7 pages, 2 figure
    • …
    corecore