46,986 research outputs found
Yeasts as biocatalysts in the stereoselective reduction of acetophnone
Fil: Decarlini, M. F. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Manzoni, C. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Medici, E. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Vazquez, A. M. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Aimar, M. L. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química. Cátedra de Química Aplicada; Argentina.The asymmetric reduction of prochiral ketones represents a pivotal transformation for the
production of chiral alcohols. Several of them are considered as key starting materials in obtaining
of pharmaceuticals. Nowadays, bio-reductions are an important component of organic synthesis for
the production of drugs. In this sense, microorganisms are considered an outstanding tool for the
obtaining of these chiral building blocksFil: Decarlini, M. F. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Manzoni, C. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Medici, E. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Vazquez, A. M. Universidad Católica de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Aimar, M. L. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química. Cátedra de Química Aplicada; Argentina.Otras Ciencias Química
A Theory of the Casimir Effect for Compact Regions
We develop a mathematically precise framework for the Casimir effect. Our
working hypothesis, verified in the case of parallel plates, is that only the
regularization-independent Ramanujan sum of a given asymptotic series
contributes to the Casimir pressure. As an illustration, we treat two cases:
parallel plates, identifying a previous cutoff free version (by G. Scharf and
W. W.) as a special case, and the sphere.We finally discuss the open problem of
the Casimir force for the cube. We propose an Ansatz for the exterior force and
argue why it may provide the exact solution, as well as an explanation of the
repulsive sign of the force.Comment: version published, 23 page
Determining the representative factors affecting warning message dissemination in VANETs
In this paper, we present a statistical analysis based on the 2k factorial methodology
to determine the representative factors affecting traffic safety applications in Vehicular
ad hoc networks (VANETs). Our purpose is to determine what are the key factors affecting
Warning Message Dissemination (WMD) in order to concentrate on such parameters,
thus reducing the amount of required simulation time when evaluating VANETs. Simulation
results show that the key factors affecting warning messages delivery are: (i) the transmission
range, (ii) the radio propagation model used, and (iii) the density of vehicles. Based on this
statistical analysis, we evaluate a compound key factor: neighbor density. This factor combines
the above-mentioned factors into a single entity, reducing the number of factors that
must be taken into account for VANET researchers to evaluate the benefits of their proposals.This work was partially supported by the Ministerio de Educacion y Ciencia, Spain, under Grant TIN2008-06441-C02-01, and by the Fundacion Antonio Gargallo, under Grant 2009/B001.Martínez Domínguez, FJ.; Toh, CK.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2012). Determining the representative factors affecting warning message dissemination in VANETs. Wireless Personal Communications. 67(2):295-314. https://doi.org/10.1007/s11277-010-9989-4S295314672Eichler, S. (2007). Performance evaluation of the IEEE 802.11p WAVE communication standard. In Proceedings of the vehicular technology conference (VTC-2007 Fall), USA.Fall, K., & Varadhan, K. (2000). ns notes and documents. The VINT Project. UC Berkeley, LBL, USC/ISI, and Xerox PARC. Available at http://www.isi.edu/nsnam/ns/ns-documentation.html .Fasolo, E., Zanella, A., & Zorzi, M. (2006). An effective broadcast scheme for alert message propagation in vehicular ad hoc networks. In Proceedings of the IEEE International Conference on Communications, Istambul, Turkey.Korkmaz, G., Ekici, E., Ozguner, F., & Ozguner, U. (2004). Urban multi-hop broadcast protocols for inter-vehicle communication systems. In Proceedings of First ACM Workshop on Vehicular Ad Hoc Networks (VANET 2004).Martinez, F. J., Toh, C.-K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2009). Realistic radio propagation models (RPMs) for VANET simulations. In IEEE wireless communications and networking conference (WCNC), Budapest, Hungary.Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2008). CityMob: A mobility model pattern generator for VANETs. In IEEE vehicular networks and applications workshop (Vehi-Mobi, held with ICC), Beijing, China.Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2009). A performance evaluation of warning message dissemination in 802.11p based VANETs. In IEEE local computer networks conference (LCN 2009), Zürich, Switzerland.Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2005). Fair sharing of bandwidth in VANETs. In Proceedings of the 2nd ACM international workshop on vehicular ad hoc networks, Germany.Tseng Y.-C., Ni S.-Y., Chen Y.-S., Sheu J.-P. (2002) The broadcast storm problem in a mobile ad hoc network. Wireless Networks 8: 153–167Wisitpongphan N., Tonguz O., Parikh J., Mudalige P., Bai F., Sadekar V. (2007) Broadcast storm mitigation techniques in vehicular ad hoc networks. Wireless Communications IEEE 14(6): 84–94. doi: 10.1109/MWC.2007.4407231Yang, X., Liu, J., Zhao, F., & Vaidya, N. H. (2004). A vehicle-to-vehicle communication protocol for cooperative collision warning. In Proceedings of the first annual international conference on mobile and ubiquitous systems: Networking and services (MobiQuitous’04).Yoon, J., Liu, M., & Noble, B. (2003). Random waypoint considered harmful. Proceedings of IEEE INFOCOMM 2003, San Francisco, California, USA.Zang, Y., Stibor, L., Cheng, X., Reumerman, H.-J., Paruzel, A., & Barroso, A. (2007). Congestion control in wireless networks for vehicular safety applications. In Proceedings of the 8th European Wireless Conference, Paris, France
Computational analysis of the LRRK2 interactome.
LRRK2 was identified in 2004 as the causative protein product of the Parkinson's disease locus designated PARK8. In the decade since then, genetic studies have revealed at least 6 dominant mutations in LRRK2 linked to Parkinson's disease, alongside one associated with cancer. It is now well established that coding changes in LRRK2 are one of the most common causes of Parkinson's. Genome-wide association studies (GWAs) have, more recently, reported single nucleotide polymorphisms (SNPs) around the LRRK2 locus to be associated with risk of developing sporadic Parkinson's disease and inflammatory bowel disorder. The functional research that has followed these genetic breakthroughs has generated an extensive literature regarding LRRK2 pathophysiology; however, there is still no consensus as to the biological function of LRRK2. To provide insight into the aspects of cell biology that are consistently related to LRRK2 activity, we analysed the plethora of candidate LRRK2 interactors available through the BioGRID and IntAct data repositories. We then performed GO terms enrichment for the LRRK2 interactome. We found that, in two different enrichment portals, the LRRK2 interactome was associated with terms referring to transport, cellular organization, vesicles and the cytoskeleton. We also verified that 21 of the LRRK2 interactors are genetically linked to risk for Parkinson's disease or inflammatory bowel disorder. The implications of these findings are discussed, with particular regard to potential novel areas of investigation
Simulating counting oracles with cooperation
We prove that monodirectional shallow chargeless P systems with active
membranes and minimal cooperation working in polynomial time precisely characterise
P#P
k , the complexity class of problems solved in polynomial time by deterministic
Turing machines with a polynomial number of parallel queries to an oracle for a counting
problem
Von Neumann Regular Cellular Automata
For any group and any set , a cellular automaton (CA) is a
transformation of the configuration space defined via a finite memory set
and a local function. Let be the monoid of all CA over .
In this paper, we investigate a generalisation of the inverse of a CA from the
semigroup-theoretic perspective. An element is von
Neumann regular (or simply regular) if there exists
such that and , where is the composition of functions. Such an
element is called a generalised inverse of . The monoid
itself is regular if all its elements are regular. We
establish that is regular if and only if
or , and we characterise all regular elements in
when and are both finite. Furthermore, we study
regular linear CA when is a vector space over a field ; in
particular, we show that every regular linear CA is invertible when is
torsion-free elementary amenable (e.g. when ) and , and that every linear CA is regular when
is finite-dimensional and is locally finite with for all .Comment: 10 pages. Theorem 5 corrected from previous versions, in A.
Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca (Eds.): Cellular Automata
and Discrete Complex Systems, AUTOMATA 2017, LNCS 10248, pp. 44-55, Springer,
201
Forest Soil Carbon and Nitrogen Cycles under Biomass Harvest: Stability, Transient Response, and Feedback
Biomass harvest generates an imbalance in forest carbon (C) and nitrogen (N) cycles and the nonlinear biogeochemical responses may have long-term consequences for soil fertility and sustainable management. We analyze these dynamics and characterize the impact of biomass harvest and N fertilization on soil biogeochemistry and ecosystem yield with an ecosystem model of intermediate complexity that couples plant and soil C and N cycles. Two harvest schemes are modeled: continuous harvest at low intensity and periodic clear-cut harvest. Continuously-harvested systems sustain N harvest at steady-state under net mineralization conditions, which depends on the C:N ratio and respiration rate of decomposers. Further, linear stability analysis reveals steady-state harvest regimes are associated with stable foci, indicating oscillations in C and N pools that decay with time after harvest. Modeled ecosystems under periodic clear-cut harvest operate in a limit-cycle with net mineralization on average. However, when N limitation is strong, soil C–N cycling switches between net immobilization and net mineralization through time. The model predicts an optimal rotation length associated with a maximum sustainable yield (MSY) and minimum external N losses. Through non-linear plant–soil feedbacks triggered by harvest, strong N limitation promotes short periods of immobilization and mineral N retention, which alter the relation between MSY and N losses. Rotational systems use N more efficiently than continuous systems with equivalent biomass yield as immobilization protects mineral N from leaching losses. These results highlight dynamic soil C–N cycle responses to harvest strategy that influence a range of functional characteristics, including N retention, leaching, and biomass yield
Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter
Microbial carbon use efficiency (CUE) is a critical regulator of soil organic matter dynamics and terrestrial carbon fluxes, with strong implications for soil biogeochemistry models. While ecologists increasingly appreciate the importance of CUE, its core concepts remain ambiguous: terminology is inconsistent and confusing, methods capture variable temporal and spatial scales, and the significance of many fundamental drivers remains inconclusive. Here we outline the processes underlying microbial efficiency and propose a conceptual framework that structures the definition of CUE according to increasingly broad temporal and spatial drivers where (1) CUEP reflects population-scale carbon use efficiency of microbes governed by species-specific metabolic and thermodynamic constraints, (2) CUEC defines community-scale microbial efficiency as gross biomass production per unit substrate taken up over short time scales, largely excluding recycling of microbial necromass and exudates, and (3) CUEE reflects the ecosystem-scale efficiency of net microbial biomass production (growth) per unit substrate taken up as iterative breakdown and recycling of microbial products occurs. CUEE integrates all internal and extracellular constraints on CUE and hence embodies an ecosystem perspective that fully captures all drivers of microbial biomass synthesis and decay. These three definitions are distinct yet complementary, capturing the capacity for carbon storage in microbial biomass across different ecological scales. By unifying the existing concepts and terminology underlying microbial efficiency, our framework enhances data interpretation and theoretical advances
Boom and Bust Carbon-Nitrogen Dynamics during Reforestation
Legacies of historical land use strongly shape contemporary ecosystem dynamics. In old-field secondary forests, tree growth embodies a legacy of soil changes affected by previous cultivation. Three patterns of biomass accumulation during reforestation have been hypothesized previously, including monotonic to steady state, non-monotonic with a single peak then decay to steady state, and multiple oscillations around the steady state. In this paper, the conditions leading to the emergence of these patterns is analyzed. Using observations and models, we demonstrate that divergent reforestation patterns can be explained by contrasting time-scales in ecosystem carbon-nitrogen cycles that are influenced by land use legacies. Model analyses characterize non-monotonic plant-soil trajectories as either single peaks or multiple oscillations during an initial transient phase controlled by soil carbon-nitrogen conditions at the time of planting. Oscillations in plant and soil pools appear in modeled systems with rapid tree growth and low initial soil nitrogen, which stimulate nitrogen competition between trees and decomposers and lead the forest into a state of acute nitrogen deficiency. High initial soil nitrogen dampens oscillations, but enhances the magnitude of the tree biomass peak. These model results are supported by data derived from the long-running Calhoun Long-Term Soil-Ecosystem Experiment from 1957 to 2007. Observed carbon and nitrogen pools reveal distinct tree growth and decay phases, coincident with soil nitrogen depletion and partial re-accumulation. Further, contemporary tree biomass loss decreases with the legacy soil C:N ratio. These results support the idea that non-monotonic reforestation trajectories may result from initial transients in the plant-soil system affected by initial conditions derived from soil changes associated with land-use history
- …