2,647 research outputs found

    Cosmological Constraints on Theories with Large Extra Dimensions

    Get PDF
    In theories with large extra dimensions, constraints from cosmology lead to non-trivial lower bounds on the fundamental scale M_F, corresponding to upper bounds on the radii of the compact extra dimensions. These constraints are especially relevant to the case of two extra dimensions, since only if M_F is 10 TeV or less do deviations from the standard gravitational force law become evident at distances accessible to planned sub-mm gravity experiments. By examining the graviton decay contribution to the cosmic diffuse gamma radiation, we derive, for the case of two extra dimensions, a conservative bound M_F > 110 TeV, corresponding to r_2 < 5.1 times 10^-5 mm, well beyond the reach of these experiments. We also consider the constraint coming from graviton overclosure of the universe and derive an independent bound M_F > 6.5 h^(-1/2) TeV, or r_2 < .015 h mm.Comment: 10 pages, references adde

    Study of Fe K-alpha lines in Non-magnetic Cataclysmic Variables using Chandra HEG data

    Full text link
    Results from a study of Fe K-alpha emission lines for a sample of six non-magnetic Cataclysmic Variables (CVs) using the high resolution X-ray data from the Chandra High Energy Transmission Grating (HETG) are presented. Two of the sources, SS Cyg and U Gem are observed in both quiescent and outburst states whereas V603 Aql, V426 Oph, WX Hyi and SU UMa are observed only in quiescence. The fluorescent Fe line is prominent in V603 Aql, V426 Oph and SS Cyg during quiescence indicating the presence of a conspicuous reflection component in these sources. The observed equivalent width of the fluorescent Fe line is consistent with reflection from a white dwarf surface that subtends 2pi solid angle at the X-ray source. During the outburst in SS Cyg, the fluorescent line is red-shifted by about 2300 km/s. The Fe XXV triplet at 6.7 keV is found to be dominant in all sources. The value of the G-ratio derived from the Fe XXV triplet indicates that the plasma is in collisional ionization equilibrium during the quiescent state. The Fe XXV line is significantly broadened in U Gem and SS Cyg during the outbursts compared to quiescence, indicating the presence of a high velocity material near the white dwarf during the outburst. The ratio of Fe XXVI/XXV indicates a higher ionization temperature during quiescence than in outburst in U Gem and SS Cyg.Comment: 24 pages, including 4 figures and 3 tables, To appear in The Astrophysical Journal, 10 April 2006 issue, vol. 64

    Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP

    Get PDF
    Linear ubiquitin chains are important regulators of cellular signaling pathways that control innate immunity and inflammation through NF-κB activation and protection against TNFα-induced apoptosis(1-5). They are synthesized by HOIP, which belongs to the RBR (RING-between-RING) family of E3 ligases and is the catalytic component of LUBAC (linear ubiquitin chain assembly complex), a multi-subunit E3 ligase(6). RBR family members act as RING/HECT hybrids, employing RING1 to recognize ubiquitin-loaded E2 while a conserved cysteine in RING2 subsequently forms a thioester intermediate with the transferred or “donor” ubiquitin(7). Here we report the crystal structure of the catalytic core of HOIP in its apo form and in complex with ubiquitin. The C-terminal portion of HOIP adopts a novel fold that, together with a zinc finger, forms an ubiquitin-binding platform which orients the acceptor ubiquitin and positions its α-amino group for nucleophilic attack on the E3~ubiquitin thioester. The carboxy-terminal tail of a second ubiquitin molecule is located in close proximity to the catalytic cysteine providing a unique snapshot of the ubiquitin transfer complex containing both donor and acceptor ubiquitin. These interactions are required for activation of the NF-kB pathway in vivo and explain the determinants of linear ubiquitin chain specificity by LUBAC

    Chemical evolution of some selected complex organic molecules in low-mass star-forming regions

    Full text link
    The destiny of complex organic molecules (COMs) in star-forming regions is interlinked with various evolutionary phases. Therefore, identifying these species in diversified environments of identical star-forming regions would help to comprehend their physical and chemical heritage. We identified multiple COMs utilizing the Large Program `Astrochemical Surveys At IRAM' (ASAI) data, dedicated to chemical surveys in Sun-like star-forming regions with the IRAM 30 m telescope. It was an unbiased survey in the millimetre regime, covering the prestellar core, protostar, outflow region, and protoplanetary disk phase. Here, we have reported some transitions of seven COMs, namely, methanol (CH3OH), acetaldehyde (CH3CHO), methyl formate (CH3OCHO), ethanol (C2H5OH), propynal (HCCCHO), dimethyl ether (CH3OCH3), and methyl cyanide (CH3CN) in some sources L1544, B1-b, IRAS4A, and SVS13A. We found a trend among these species from the derived abundances using the rotational diagram method and MCMC fit. We have found that the abundances of all of the COMs, except for HCCCHO, increase from the L1544 (prestellar core) and peaks at IRAS16293-2422 (class 0 phase). It is noticed that the abundance of these molecules correlate with the luminosity of the sources. The obtained trend is also visible from the previous interferometric observations and considering the beam dilution effect.Comment: 44 pages, 25 figures, and 12 tables. Accepted for the publication in the Astrophysical Journa
    • …
    corecore