4 research outputs found

    Ultrarelativistic nucleus-nucleus collisions and the quark-gluon plasma

    Full text link
    We present an overview of selected aspects of ultrarelativistic nucleus-nucleus collisions, a research program devoted to the study of strongly interacting matter at high energy densities and in particular to the characterization of the quark-gluon plasma (QGP). The basic features of the phase diagram of nuclear matter, as currently understood theoretically, are discussed. The experimental program, carried out over a broad energy domain at various accelerators, is briefly reviewed, with an emphasis on the global characterization of nucleus-nucleus collisions. Two particular aspects are treated in more detail: i) the application of statistical models to a phenomenological description of particle production and the information it provides on the phase diagram; ii) the production of hadrons carrying charm quarks as messengers from the QGP phase.Comment: Based on lectures given by P.Braun-Munzinger at the VIII Hispalensis International Summer School, Oromana (Seville, Spain), June 9-21, 2003 32 pages, 20 figures. A clickable list of references available at http://www-linux.gsi.de/~andronic/qgp/qgp.htm

    Centrality and sNNDependenceofthe\sqrt{s_{NN}} Dependence of the dE_{T}/d\etaand and dN_{ch}/d\eta$ in Heavy Ion Collisions at Mid-Rapidity

    Full text link
    The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au + Au collisions at sNN\sqrt{s_{NN}} = 19.6, 130, 62.4 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sNN\sqrt{s_{NN}} dependence of dET/dηdE_{T}/d\eta and dNch/dηdN_{ch}/d\eta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dET/dηdE_{T}/d\eta and dNch/dηdN_{ch}/d\eta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sNN\sqrt{s_{NN}}. A survey of comparisons between the data and available theoretical models is also presented.Comment: Proccedings of the Workshop: Focus on Multiplcity at Bari, Italy, June 17-19,2004. To be submitted to the Jornal of Physics, "Conference series". Includes: 20 Pages, 15 figures, 3 Tables, 80 Referencie
    corecore