23 research outputs found

    DISC1 genetics, biology and psychiatric illness

    Get PDF
    Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain

    The 1972 Memorandum to the United Nations and its repercussions: Émigré politics and Soviet Estonian dissent during the ‘era of stagnation’

    No full text

    A review of decision support, risk communication and patient information tools for thrombolytic treatment in acute stroke:Lessons for tool developers

    Get PDF
    Background: Tools to support clinical or patient decision-making in the treatment/management of a health condition are used in a range of clinical settings for numerous preference-sensitive healthcare decisions. Their impact in clinical practice is largely dependent on their quality across a range of domains. We critically analysed currently available tools to support decision making or patient understanding in the treatment of acute ischaemic stroke with intravenous thrombolysis, as an exemplar to provide clinicians/researchers with practical guidance on development, evaluation and implementation of such tools for other preference-sensitive treatment options/decisions in different clinical contexts. Methods. Tools were identified from bibliographic databases, Internet searches and a survey of UK and North American stroke networks. Two reviewers critically analysed tools to establish: information on benefits/risks of thrombolysis included in tools, and the methods used to convey probabilistic information (verbal descriptors, numerical and graphical); adherence to guidance on presenting outcome probabilities (IPDASi probabilities items) and information content (Picker Institute Checklist); readability (Fog Index); and the extent that tools had comprehensive development processes. Results: Nine tools of 26 identified included information on a full range of benefits/risks of thrombolysis. Verbal descriptors, frequencies and percentages were used to convey probabilistic information in 20, 19 and 18 tools respectively, whilst nine used graphical methods. Shortcomings in presentation of outcome probabilities (e.g. omitting outcomes without treatment) were identified. Patient information tools had an aggregate median Fog index score of 10. None of the tools had comprehensive development processes. Conclusions: Tools to support decision making or patient understanding in the treatment of acute stroke with thrombolysis have been sub-optimally developed. Development of tools should utilise mixed methods and strategies to meaningfully involve clinicians, patients and their relatives in an iterative design process; include evidence-based methods to augment interpretability of textual and probabilistic information (e.g. graphical displays showing natural frequencies) on the full range of outcome states associated with available options; and address patients with different levels of health literacy. Implementation of tools will be enhanced when mechanisms are in place to periodically assess the relevance of tools and where necessary, update the mode of delivery, form and information content

    Neutralizing monoclonal antibodies for treatment of COVID-19

    No full text
    Several neutralizing monoclonal antibodies (mAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and are now under evaluation in clinical trials. With the US Food and Drug Administration recently granting emergency use authorizations for neutralizing mAbs in non-hospitalized patients with mild-to-moderate COVID-19, there is an urgent need to discuss the broader potential of these novel therapies and to develop strategies to deploy them effectively in clinical practice, given limited initial availability. Here, we review the precedent for passive immunization and lessons learned from using antibody therapies for viral infections such as respiratory syncytial virus, Ebola virus and SARS-CoV infections. We then focus on the deployment of convalescent plasma and neutralizing mAbs for treatment of SARS-CoV-2. We review specific clinical questions, including the rationale for stratification of patients, potential biomarkers, known risk factors and temporal considerations for optimal clinical use. To answer these questions, there is a need to understand factors such as the kinetics of viral load and its correlation with clinical outcomes, endogenous antibody responses, pharmacokinetic properties of neutralizing mAbs and the potential benefit of combining antibodies to defend against emerging viral variants

    Demystifying Oxidative Stress

    No full text
    : The hypothesis that reactive oxygen species (ROS) can be not just associated with but causally implicated in disease was first made in 1956, but so far, the oxidative stress theory of disease has not led to major therapeutic breakthrough, and the use of antioxidant is now confined to the field of complementary medicine. This chapter reviews the lack of high-level clinical evidence for the effectiveness of antioxidants in preventing disease and the epistemological problems of the oxidative stress theory of disease. We conclude on possible ways forward to test this hypothesis with approaches that take into account personalized medicine. The previous oxidative stress model has helped neither to diagnose nor to treat possibly ROS-related or ROS-dependent diseases. The redox balance concept that low ROS levels are beneficial or tolerable and high levels are disease triggers and best reduced is apparently wrong. Physiological ROS signalling may become dysfunctional or a disease trigger by at least five mechanisms: a physiological source may appear at an unphysiological site, a physiological source may be underactivated (less common) or overactivated (more common), a new source may appear, a physiological source may be overactivated or underactivated, and a toxifying enzyme may convert an ROS signal molecule into a more reactive molecule. The latter three mechanisms may reach a physiological or nonphysiological target. All of these dysregulations may be the direct and essential cause of a disease (rarely the case) or just a secondary epiphenomenon, which will disappear once the non-ROS-related cause of the disease is cured (much more common). Importantly, these mechanisms are the same for almost every signalling system. Causal target validation (sources, toxifiers and targets) is essential in order to identify effective drugs and therapies for ROSopathies
    corecore