683,202 research outputs found
Rugged, low-conductance, heat-flow probe
Lightweight, compact probe structure has low thermal conductance to enable accurate measurement of slight temperature gradients. Probe combines ruggedness, high precision, accuracy, and stability. Device can withstand vibration, shock, acceleration, temperature extremes, and high vacuums, and should interest industrial engineers and geologists
Study of thermal insulation for airborne liquid hydrogen fuel tanks
A concept for a fail-safe thermal protection system was developed. From screening tests, approximately 30 foams, adhesives, and reinforcing fibers using 0.3-meter square liquid nitrogen cold plate, CPR 452 and Stafoam AA1602, both reinforced with 10 percent by weight of 1/16 inch milled OCF Style 701 Fiberglas, were selected for further tests. Cyclic tests with these materials in 2-inch thicknesses bonded on a 0.6-meter square cold plate with Crest 7410 adhesive systems, were successful. Zero permeability gas barriers were identified and found to be compatible with the insulating concept
The 2D Dependency Pair Framework for Conditional Rewrite Systems¿Part II: Advanced Processors and Implementation Techniques
[EN] Proving termination of programs in `real-life¿ rewriting-based languages like CafeOBJ, Haskell, Maude, etc., is an important subject of research. To advance this goal, faithfully cap- turing the impact in the termination behavior of the main language features (e.g., conditions in program rules) is essential. In Part I of this work, we have introduced a 2D Dependency Pair Framework for automatically proving termination properties of Conditional Term Rewriting Systems. Our framework relies on the notion of processor as the main practical device to deal with proofs of termination properties of conditional rewrite systems. Processors are used to decompose and simplify the proofs in a divide and conquer approach. With the basic proof framework defined in Part I, here we introduce new processors to further improve the abil- ity of the 2D Dependency Pair Framework to deal with proofs of termination properties of conditional rewrite systems. We also discuss relevant implementation techniques to use such processors in practice.Partially supported by the EU (FEDER) and projects RTI2018-094403-B-C32, PROMETEO/2019/098, SP20180225. Jose Meseguer was supported by grants NSF CNS 13-19109 and NRL N00173-17-1-G002. Salvador Lucas' research was partly developed during a sabbatical year at the UIUC.Lucas Alba, S.; Meseguer, J.; Gutiérrez Gil, R. (2020). The 2D Dependency Pair Framework for Conditional Rewrite Systems¿Part II: Advanced Processors and Implementation Techniques. Journal of Automated Reasoning. 64(8):1611-1662. https://doi.org/10.1007/s10817-020-09542-3S16111662648Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10, LNCS, vol. 6486, pp. 201–208 (2011)Baader, F., Nipkow, T.: Term Rewriting and all That. Cambridge University Press, Cambridge (1998)Barwise, J.: An introduction to first-order logic. In: Barwise, J. (ed.) Handbook of Mathematical Logic. North-Holland, Amsterdam (1977)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS 4350, Springer, New York (2007)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. Autom. Reason. 34(4), 325–363 (2006)Dershowitz, N.: A note on simplification orderings. Inf. Process. Lett. 9(5), 212–215 (1979)Durán, F., Lucas, S., Meseguer, J.: MTT: the Maude termination tool (system description). In: Proceedings of IJCAR’08, LNAI, vol. 5195, pp. 313–319 (2008)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination proofs in the dependency pair framework. In: Proceeding of IJCAR’06, LNAI, vol. 4130, pp. 281–286 (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proceedings of LPAR’04, LNAI, vol. 3452, pp. 301–331 (2004)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87, LNCS, vol. 250, pp. 1–22 (1987)Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Proceedings of CADE 2019, LNCS, vol. 11716, pp. 287–299 (2019). Tool page: http://zenon.dsic.upv.es/ages/Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: Proceedings of RTA’04, LNCS, vol. 3091, pp. 249–268 (2004)Hodges, W.: Elementary predicate logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 1, pp. 1–131. Reidel Publishing Company, Dordrecht (1983)Lankford, D.S.: On proving term rewriting systems are noetherian. Technical Report, Louisiana Technological University, Ruston, LA (1979)Lucas, S.: Using Well-founded relations for proving operational termination. J. Autom. Reason. to appear (2020). https://doi.org/10.1007/s10817-019-09514-2Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reason. 60(4), 465–501 (2018)Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)Lucas, S., Meseguer, J.: Models for logics and conditional constraints in automated proofs of termination. In: Proceedings of AISC’14, LNAI, vol. 8884, pp. 9–20 (2014)Lucas, S., Meseguer, J.: 2D Dependency pairs for proving operational termination of CTRSs. In: Escobar, S., (ed) Proceedings of the 10th International Workshop on Rewriting Logic and its Applications, WRLA’14, LNCS, vol. 8663, pp. 195–212 (2014)Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting. J. Log. Algebr. Methods Program. 85(1), 67–97 (2016)Lucas, S., Meseguer, J., Gutiérrez, R.: Extending the 2D DP framework for conditional term rewriting systems. In: Selected Papers from LOPSTR’14, LNCS, vol. 8981, pp. 113–130 (2015)Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018)McCune, W.: Prover9 & Mace4. http://www.cs.unm.edu/~mccune/prover9/ (2005–2010)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)Schernhammer, F., Gramlich, B.: Characterizing and proving operational termination of deterministic conditional term rewriting systems. J. Log. Algebr. Program. 79, 659–688 (2010)Sternagel, T., Middeldorp, A.: Conditional confluence (system description). In: Proceedings of RTA-TLCA’14, LNCS, vol. f8560, pp. 456–465 (2014)Sternagel, T., Middeldorp, A.: Infeasible conditional critical pairs. In: Proceedings of IWC’15, pp. 13–18 (2014)Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting. PhD Thesis, RWTH Aachen, Technical Report AIB-2007-17 (2007)Thiemann, R., Giesl, J., Schneider-Kamp, P.: Improved modular termination proofs using dependency pairs. In: Proceedings of IJCAR’04, LNAI, vol. 3097, pp. 75–90 (2004)Wang, H.: Logic of many-sorted theories. J. Symb. Log. 17(2), 105–116 (1952
Apparatus for time‐resolved measurements of acoustic birefringence in particle dispersions
An apparatus for time‐resolved measurements of the birefringence induced in a particle suspension by an acoustic wave pulse is described. Efficient acoustic coupling is obtained by operating near the transducer resonant frequency and by matching the acoustic impedances of the cell constituents. An almost‐overdamped acoustic configuration can alternatively be employed whenever a faster response is needed. Careful design of the optical setup and of the detection unit minimize diffraction and stress‐birefringence parasitic effects and yields a good responsivity at fairly low acoustic intensities. A test of the apparatus on a colloidal suspension of PTFE rodlike particles is presented and discussed
Models for logics and conditional constraints in automated proofs of termination
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-13770-4_3Reasoning about termination of declarative programs, which are described by means of a computational logic, requires the definition of appropriate abstractions as semantic models of the logic, and also handling the conditional constraints which are often obtained. The formal treatment of such constraints in automated proofs, often using numeric interpretations and (arithmetic) constraint solving can greatly benefit from appropriate techniques to deal with the conditional (in)equations at stake. Existing results from linear algebra or real algebraic geometry are useful to deal with them but have received only scant attention to date. We investigate the definition and use of numeric models for logics and the resolution of linear and algebraic conditional constraints as unifying techniques for proving termination of declarative programs.Developed during a sabbatical year at UIUC. Supported by projects NSF CNS13-19109, MINECO TIN2010-21062-C02-02 and TIN2013-45732-C4-1-P, and GV BEST/2014/026 and PROMETEO/2011/052.Lucas Alba, S.; Meseguer, J. (2014). Models for logics and conditional constraints in automated proofs of termination. En Artificial Intelligence and Symbolic Computation. Springer Verlag (Germany). 9-20. https://doi.org/10.1007/978-3-319-13770-4_3S920Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving Termination Properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011)Alarcón, B., Lucas, S., Navarro-Marset, R.: Using Matrix Interpretations over the Reals in Proofs of Termination. In: Proc. of PROLE 2009, pp. 255–264 (2009)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. of Aut. Reas. 34(4), 325–363 (2006)Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Termination of Term Rewriting. J. of Aut. Reas. 40(2-3), 195–220 (2008)Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal Termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 110–125. Springer, Heidelberg (2008)Futatsugi, K., Diaconescu, R.: CafeOBJ Report. AMAST Series. World Scientific (1998)Hudak, P., Peyton-Jones, S.J., Wadler, P.: Report on the Functional Programming Language Haskell: a non–strict, purely functional language. Sigplan Notices 27(5), 1–164 (1992)Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Information Processing Letters 95, 446–453 (2005)Lucas, S., Meseguer, J.: Proving Operational Termination of Declarative Programs in General Logics. In: Proc. of PPDP 2014, pp. 111–122. ACM Digital Library (2014)Lucas, S., Meseguer, J.: 2D Dependency Pairs for Proving Operational Termination of CTRSs. In: Proc. of WRLA 2014. LNCS, vol. 8663 (to appear, 2014)Lucas, S., Meseguer, J., Gutiérrez, R.: Extending the 2D DP Framework for CTRSs. In: Selected papers of LOPSTR 2014. LNCS (to appear, 2015)Meseguer, J.: General Logics. In: Ebbinghaus, H.-D., et al. (eds.) Logic Colloquium 1987, pp. 275–329. North-Holland (1989)Nguyen, M.T., de Schreye, D., Giesl, J., Schneider-Kamp, P.: Polytool: Polynomial interpretations as a basis for termination of logic programs. Theory and Practice of Logic Programming 11(1), 33–63 (2011)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (April 2002)Prestel, A., Delzell, C.N.: Positive Polynomials. In: From Hilbert’s 17th Problem to Real Algebra. Springer, Berlin (2001)Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1986)Zantema, H.: Termination of Context-Sensitive Rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997
Using Well-Founded Relations for Proving Operational Termination
[EN] In this paper, we study operational termination, a proof theoretical notion for capturing the termination behavior of computational systems. We prove that operational termination can be characterized at different levels by means of well- founded relations on specific formulas which can be obtained from the considered system. We show how to obtain such well-founded relations from logical models which can be automatically generated using existing tools.Partially supported by the EU (FEDER), Projects TIN2015-69175-C4-1-R, and GV PROMETEOII/2015/013.Lucas Alba, S. (2020). Using Well-Founded Relations for Proving Operational Termination. Journal of Automated Reasoning. 64(2):167-195. https://doi.org/10.1007/s10817-019-09514-2S167195642Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10, LNCS, vol. 6486, pp. 201–208, Springer (2011)Aguirre, L., Martí-Oliet, N., Palomino, M., Pita, I.: Sentence-normalized conditional narrowing modulo in rewriting logic and Maude. J. Automat. Reason. 60(4), 421–463 (2018)Arts, T., Giesl, J.: Proving innermost normalisation automatically. In: Proceedings of RTA’97, LNCS, vol. 1232, pp. 157–171, Springer, Berlin (1997)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS, vol. 4350, Springer (2007)Durán, F., Lucas, S., Meseguer, J.: Methods for proving termination of rewriting-based programming languages by transformation. Electron. Notes Theor. Comput. Sci. 248, 93–113 (2009)Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational termination of membership equational programs. High. Order Symb. Comput. 21(1–2), 59–88 (2008)Falke, S., Kapur, D.: Operational termination of conditional rewriting with built-in numbers and semantic data structures. Electron. Notes Theor. Comput. Sci. 237, 75–90 (2009)Floyd, R.W.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–32 (1967)Giesl, J., Arts, T.: Verification of Erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12, 39–72 (2001)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proceedings of LPAR’04, LNAI, vol. 3452, pp. 301–331 (2004)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Proceedings of IJCAR’06, LNAI, vol. 4130, pp. 281–286 (2006)Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87, LNCS, vol. 250, pp. 1–22 (1987)Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105, 217–273 (1992)Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical models of order-sorted first-order theories. In: Proceedings of PROLE’16, pp. 215–230 (2016)Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Proceedings of RTA 2009, LNCS, vol. 5595, pp. 295–304 (2009)Lalement, R.: Computation as Logic. Masson-Prentice Hall International, Paris (1993)Lucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002)Lucas, S.: Use of logical models for proving operational termination in general logics. In: Selected Papers from WRLA’16, LNCS, vol. 9942, pp. 1–21 (2016)Lucas, S.: Directions of operational termination. In: Proceedings of PROLE’18. http://hdl.handle.net/11705/PROLE/2018/009 (2018). Accessed 9 Feb 2019Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reason. 60(4), 465–501 (2018)Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Proceedings of PPDP’14, pp. 111–122. ACM Digital Library (2014)McCune, W.: Prover9 & Mace4. http://www.cs.unm.edu/~mccune/prover9/ (2005–2010). Accessed 9 Feb 2019Mendelson, E.: Introduction to Mathematical Logic, 4th edn. Chapman & Hall, London (1997)Meseguer, J.: General logics. In: Logic Colloquium’87, pp. 275–329 (1989)O’Donnell, M.J.: Equational Logic as a Programming Language. The MIT Press, Cambridge (1985)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Berlin (2002)Prawitz, D.: Natural Deduction. A Proof Theoretical Study. Almqvist & Wiksell, 1965. Reprinted by Dover Publications (2006)Rosu, G., Stefanescu, A., Ciobaca, S., Moore, B.M.: One-path reachability logic. In: Proceedings of LICS 2013, pp. 358–367. IEEE Press (2013)Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order Logic. Clarendon Press, Oxford (1991)Schernhammer, F., Gramlich, B.: Characterizing and proving operational termination of deterministic conditional term rewriting systems. J. Log. Algebr. Program. 79, 659–688 (2010)Serbanuta, T., Rosu, G.: Computationally equivalent elimination of conditions. In: Proceedings of RTA’06, LNCS, vol. 4098, pp. 19–34. Springer, Berlin (2006)Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, Univ. Math. Lab., Cambridge, pp. 67–69 (1949
- …