2,301,246 research outputs found

    On the Scale-Invariant Distribution of the Diffusion Coefficient for Classical Particles Diffusing in Disordered Media.-

    Full text link
    The scaling form of the whole distribution P(D) of the random diffusion coefficient D(x) in a model of classically diffusing particles is investigated. The renormalization group approach above the lower critical dimension d=0 is applied to the distribution P(D) using the n-replica approach. In the annealed approximation (n=1), the inverse gaussian distribution is found to be the stable one under rescaling. This identification is made based on symmetry arguments and subtle relations between this model and that of fluc- tuating interfaces studied by Wallace and Zia. The renormalization-group flow for the ratios between consecutive cumulants shows a regime of pure diffusion for small disorder, in which P(D) goes to delta(D-), and a regime of strong disorder where the cumulants grow infinitely large and the diffusion process is ill defined. The boundary between these two regimes is associated with an unstable fixed-point and a subdiffusive behavior: =Ct**(1-d/2). For the quenched case (n goes to 0) we find that unphysical operators are generated raisng doubts on the renormalizability of this model. Implications to other random systems near their lower critical dimension are discussed.Comment: 21 pages, 1 fig. (not included) Use LaTex twic

    Local ill-posedness of the 1D Zakharov system

    Full text link
    Ginibre-Tsutsumi-Velo (1997) proved local well-posedness for the Zakharov system for any dimension dd, in the inhomogeneous Sobolev spaces (u,n)Hk(Rd)×Hs(Rd)(u,n)\in H^k(\mathbb{R}^d)\times H^s(\mathbb{R}^d) for a range of exponents kk, ss depending on dd. Here we restrict to dimension d=1d=1 and present a few results establishing local ill-posedness for exponent pairs (k,s)(k,s) outside of the well-posedness regime. The techniques employed are rooted in the work of Bourgain (1993), Birnir-Kenig-Ponce-Svanstedt-Vega (1996), and Christ-Colliander-Tao (2003) applied to the nonlinear Schroedinger equation

    Linear hyperbolic PDEs with non-commutative time

    Full text link
    Motivated by wave or Dirac equations on noncommutative deformations of Minkowski space, linear integro-differential equations of the form (D+λW)f=0(D+\lambda W)f=0 are studied, where DD is a normal or prenormal hyperbolic differential operator on Rn{\mathbb R}^n, λC\lambda\in\mathbb C is a coupling constant, and WW is a regular integral operator with compactly supported kernel. In particular, WW can be non-local in time, so that a Hamiltonian formulation is not possible. It is shown that for sufficiently small λ|\lambda|, the hyperbolic character of DD is essentially preserved. Unique advanced/retarded fundamental solutions are constructed by means of a convergent expansion in λ\lambda, and the solution spaces are analyzed. It is shown that the acausal behavior of the solutions is well-controlled, but the Cauchy problem is ill-posed in general. Nonetheless, a scattering operator can be calculated which describes the effect of WW on the space of solutions of DD. It is also described how these structures occur in the context of noncommutative Minkowski space, and how the results obtained here can be used for the analysis of classical and quantum field theories on such spaces.Comment: 33 pages, 5 figures. V2: Slight reformulation

    Superconformal Multi-Black Hole Quantum Mechanics

    Full text link
    The quantum mechanics of N slowly-moving charged BPS black holes in five-dimensional N=1{\cal N}=1 supergravity is considered. The moduli space metric of the N black holes is derived and shown to admit 4 supersymmetries. A near-horizon limit is found in which the dynamics of widely separated black holes decouples from that of strongly-interacting, near-coincident black holes. This decoupling suggests that the quantum states supported in the near-horizon moduli space can be interpreted as internal states of a single composite black hole carrying all of the charge. The near-horizon theory is shown to have an enhanced D(2,1;0) superconformal symmetry. Eigenstates of the Hamiltonian H of the near-horizon theory are ill-defined due to noncompact regions of the moduli space corresponding to highly redshifted near-coincident black holes. It is argued that one should consider, instead of H eigenstates, eigenstates of 2L0=H+K2 L_0 = H+K, where K is the generator of special conformal transformations. The result is a well-defined Hilbert space with a discrete spectrum describing the N-black hole dynamics.Comment: 17 pages AMSLaTeX with JHEP.cls, using epsf.tex for 3 eps figures. Typos corrected. References adde

    A transform of complementary aspects with applications to entropic uncertainty relations

    Get PDF
    Even though mutually unbiased bases and entropic uncertainty relations play an important role in quantum cryptographic protocols they remain ill understood. Here, we construct special sets of up to 2n+1 mutually unbiased bases (MUBs) in dimension d=2^n which have particularly beautiful symmetry properties derived from the Clifford algebra. More precisely, we show that there exists a unitary transformation that cyclically permutes such bases. This unitary can be understood as a generalization of the Fourier transform, which exchanges two MUBs, to multiple complementary aspects. We proceed to prove a lower bound for min-entropic entropic uncertainty relations for any set of MUBs, and show that symmetry plays a central role in obtaining tight bounds. For example, we obtain for the first time a tight bound for four MUBs in dimension d=4, which is attained by an eigenstate of our complementarity transform. Finally, we discuss the relation to other symmetries obtained by transformations in discrete phase space, and note that the extrema of discrete Wigner functions are directly related to min-entropic uncertainty relations for MUBs.Comment: 16 pages, 2 figures, v2: published version, clarified ref [30

    V-cycle optimal convergence for certain (multilevel) structured linear systems

    Get PDF
    In this paper we are interested in the solution by multigrid strategies of multilevel linear systems whose coefficient matrices belong to the circulant, Hartley, or \u3c4 algebras or to the Toeplitz class and are generated by (the Fourier expansion of) a nonnegative multivariate polynomial f. It is well known that these matrices are banded and have eigenvalues equally distributed as f, so they are ill-conditioned whenever f takes the zero value; they can even be singular and need a low-rank correction. We prove the V-cycle multigrid iteration to have a convergence rate independent of the dimension even in presence of ill-conditioning. If the (multilevel) coefficient matrix has partial dimension nr at level r, r = 1, . . . ,d, then the size of the algebraic system is N(n) = \u3a0r=1 d nr, O(N(n)) operations are required by our technique, and therefore the corresponding method is optimal. Some numerical experiments concerning linear systems arising in applications, such as elliptic PDEs with mixed boundary conditions and image restoration problems, are considered and discussed.cussed
    corecore