research

Local ill-posedness of the 1D Zakharov system

Abstract

Ginibre-Tsutsumi-Velo (1997) proved local well-posedness for the Zakharov system for any dimension dd, in the inhomogeneous Sobolev spaces (u,n)∈Hk(Rd)Γ—Hs(Rd)(u,n)\in H^k(\mathbb{R}^d)\times H^s(\mathbb{R}^d) for a range of exponents kk, ss depending on dd. Here we restrict to dimension d=1d=1 and present a few results establishing local ill-posedness for exponent pairs (k,s)(k,s) outside of the well-posedness regime. The techniques employed are rooted in the work of Bourgain (1993), Birnir-Kenig-Ponce-Svanstedt-Vega (1996), and Christ-Colliander-Tao (2003) applied to the nonlinear Schroedinger equation

    Similar works

    Full text

    thumbnail-image