7,625 research outputs found

    Microsecond long atomistic simulation of supercooled water

    Full text link
    Supercooled water is a metastable phase of liquid water below the melting temperature. An interesting discussion recently developed on the relationship between crystallization rate and the time scales of equilibration within the liquid phase. Calculations using a coarse grained monatomic model of water, the mW model, suggested that equilibration of the liquid below the temperature of homogeneous nucleation TH≈225T_H\approx225 K is slower than ice nucleation. Here, a 3 μ\mus long molecular dynamics simulation of the TIP4P-Ew water model is presented to investigate the relaxation properties of an atomistic model in the supercooled region below THT_H. Evidence is provided that the liquid phase of the TIP4P-Ew model is at equilibrium in the supercooled regime before ice nucleation.Comment: 2 pages, 2 figure

    Modeling friction: From nanoscale to mesoscale

    Get PDF
    The physics of sliding friction is gaining impulse from nanoscale and mesoscale experiments, simulations, and theoretical modeling. This Colloquium reviews some recent developments in modeling and in atomistic simulation of friction, covering open-ended directions, unconventional nanofrictional systems, and unsolved problems.Comment: 26 pages, 14 figures, Rev. Mod. Phys. Colloquiu

    Coupling of Length Scales and Atomistic Simulation of MEMS Resonators

    Full text link
    We present simulations of the dynamic and temperature dependent behavior of Micro-Electro-Mechanical Systems (MEMS) by utilizing recently developed parallel codes which enable a coupling of length scales. The novel techniques used in this simulation accurately model the behavior of the mechanical components of MEMS down to the atomic scale. We study the vibrational behavior of one class of MEMS devices: micron-scale resonators made of silicon and quartz. The algorithmic and computational avenue applied here represents a significant departure from the usual finite element approach based on continuum elastic theory. The approach is to use an atomistic simulation in regions of significantly anharmonic forces and large surface area to volume ratios or where internal friction due to defects is anticipated. Peripheral regions of MEMS which are well-described by continuum elastic theory are simulated using finite elements for efficiency. Thus, in central regions of the device, the motion of millions of individual atoms is simulated, while the relatively large peripheral regions are modeled with finite elements. The two techniques run concurrently and mesh seamlessly, passing information back and forth. This coupling of length scales gives a natural domain decomposition, so that the code runs on multiprocessor workstations and supercomputers. We present novel simulations of the vibrational behavior of micron-scale silicon and quartz oscillators. Our results are contrasted with the predictions of continuum elastic theory as a function of size, and the failure of the continuum techniques is clear in the limit of small sizes. We also extract the Q value for the resonators and study the corresponding dissipative processes.Comment: 10 pages, 10 figures, to be published in the proceedings of DTM '99; LaTeX with spie.sty, bibtex with spiebib.bst and psfi

    Nanoscale domains in ionic liquids: A statistical mechanics definition for molecular dynamics studies

    Full text link
    One of the many open questions concerning Ionic Liquids (ILs) is the existence of nanoscale supramolecular domains which characterize the bulk. The hypothesis of their existence does not meet a general consensus since their definition seems to be based on ad hoc arbitrary criteria rather than on general and solid first principles of physics. In this work, we propose a suitable definition of supramolecular domains based on first principles of statistical mechanics. Such principles can be realized through the application of a recently developed computational tool which employs adaptive molecular resolution. The method can identify the smallest region of a liquid for which the atomistic details are strictly required, while the exterior plays the role of a generic structureless thermodynamic reservoir. We consider four different imidazolium-based ILs and show that indeed one can quantitatively represent the liquid as a collection of atomistically self-contained nanodroplets embedded in a generic thermodynamic bath. Such nanodroplets express a characteristic length scale for heterogeneity in ILs.Comment: 9 page

    Efficient 3D `atomistic' simulation technique for studying of random dopant induced threshold voltage lowering and fluctuations in decanano MOSFETs

    Get PDF
    A 3D `atomistic' simulation technique to study random dopant induced threshold voltage lowering and fluctuations in sub 0.1 μm MOSFETs is presented. It allows statistical analysis of random impurity effects down to the individual impurity level. Efficient algorithms based on a single solution of Poisson's equation, followed by the solution of a simplified current continuity equation are used in the simulations

    Three-body Hydrogen Bond Defects Contribute Significantly to the Dielectric Properties of the Liquid Water-Vapor Interface

    Full text link
    In this Letter, we present a simple model of aqueous interfacial molecular structure and we use this model to isolate the effects of hydrogen bonding on the dielectric properties of the liquid water-vapor interface. By comparing this model to the results of atomistic simulation we show that the anisotropic distribution of molecular orientations at the interface can be understood by considering the behavior of a single water molecule interacting with the average interfacial density field via an empirical hydrogen bonding potential. We illustrate that the depth dependence of this orientational anisotropy is determined by the geometric constraints of hydrogen bonding and we show that the primary features of simulated orientational distributions can be reproduced by assuming an idealized, perfectly tetrahedral hydrogen bonding geometry. We also demonstrate that non-ideal hydrogen bond geometries are required to produce interfacial variations in the average orientational polarization and polarizability. We find that these interfacial properties contain significant contributions from a specific type of geometrically distorted three-body hydrogen bond defect that is preferentially stabilized at the interface. Our findings thus reveal that the dielectric properties of the liquid water-vapor interface are determined by collective molecular interactions that are unique to the interfacial environment.Comment: 5 pages, 4 figure, S
    • …
    corecore