2,062 research outputs found

    Pipelined Asynchronous Circuits

    Get PDF
    This thesis presents a design style for implementing communicating sequential processes (CSP) as quasi delay insensitive asynchronous circuits, based on the compilation method of [1]. Although hand compilation can always yield optimal circuits to a good designer, a restricted approach is suggested which can easily implement circuits with some slack between inputs and outputs. These circuits are fast and versatile building blocks for highly pipelined designs. The first chapter presents the implementation approach for individual cells. The second chapter investigates the time behavior of complex pipelined circuits, with the goal of adding slack where necessary and adjusting transistor sizes to optimize the overall throughput

    DPA on quasi delay insensitive asynchronous circuits: formalization and improvement

    Full text link
    The purpose of this paper is to formally specify a flow devoted to the design of Differential Power Analysis (DPA) resistant QDI asynchronous circuits. The paper first proposes a formal modeling of the electrical signature of QDI asynchronous circuits. The DPA is then applied to the formal model in order to identify the source of leakage of this type of circuits. Finally, a complete design flow is specified to minimize the information leakage. The relevancy and efficiency of the approach is demonstrated using the design of an AES crypto-processor.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Physical design algorithms for asynchronous circuits

    Get PDF
    Asynchronous designs have been demonstrated to be able to achieve both higher performance and lower power compared with their synchronous counterparts. It provides a very promising solution to the emerging challenges in advanced technology. However, due to the lack of proper EDA tool support, the design cycle for asynchronous circuits is much longer compared with the one for synchronous circuits. Thus, even with many advantages, asynchronous circuits are still not the mainstream in the industry. In this thesis, we provides several algorithms to resolve the emerging issues for the physical design of asynchronous circuits. Our proposed algorithms optimize asynchronous circuits using placement, gate sizing, repeater insertion and pipeline buffer insertion techniques. An incremental maximum cycle ratio algorithm is also proposed to speed up the timing analysis of asynchronous circuits

    Logic design of asynchronous circuits

    Get PDF
    Summary form only given. This tutorial aims at motivating the audience to consider asynchronous circuits as a competitive alternative to solve some of the design problems inherent to submicron technologies. One of the main reasons why designers are reluctant to incorporate asynchrony in their systems is the difficulty to design asynchronous circuits. Asynchronous circuits are promising to tackle problems such as electro-magnetic interference, power consumption, performance, and modularity of digital circuits. The tutorial will introduce state-of-the-art tools and methodologies for their design. It will cover aspects such as specification, architectural design and controller synthesis tools, of asynchronous circuits. The tutorial will concentrate on a particular design methodology for control circuits based on specifications with signal transition graphs. It will also cover design strategies for the microarchitecture, data-path and control circuits that have been successfully applied in the design of the asynchronous version of the ARM microprocessor.Peer ReviewedPostprint (published version

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    On digit-recurrence division algorithms for self-timed circuits

    Get PDF
    The optimization of algorithms for self-timed or asynchronous circuits requires specific solutions. Due to the variable-time capabilities of asynchronous circuits, the average computation time should be optimized and not only the worst case of the signal propagation. If efficient algorithms and implementations are known for asynchronous addition and multiplication, only straightforward algorithms have been studied for division. This paper compares several digit-recurrence division algorithms (speed, area and circuit activity for estimating the power consumption). The comparison is based on simulations of the different operators described at the gate level. This work shows that the best solutions for asynchronous circuits are quite different from those used in synchronous circuits
    • …
    corecore