184,765 research outputs found

    Dual equilibrium in a finite aspect ratio tokamak

    Full text link
    A new approach to high pressure magnetically-confined plasmas is necessary to design efficient fusion devices. This paper presents an equilibrium combining two solutions of the Grad-Shafranov equation, which describes the magnetohydrodynamic equilibrium in toroidal geometry. The outer equilibrium is paramagnetic and confines the inner equilibrium, whose strong diamagnetism permits to balance large pressure gradients. The existence of both equilibria in the same volume yields a dual equilibrium structure. Their combination also improves free-boundary mode stability

    Rayleigh-Benard Convection in Large-Aspect-Ratio Domains

    Full text link
    The coarsening and wavenumber selection of striped states growing from random initial conditions are studied in a non-relaxational, spatially extended, and far-from-equilibrium system by performing large-scale numerical simulations of Rayleigh-B\'{e}nard convection in a large-aspect-ratio cylindrical domain with experimentally realistic boundaries. We find evidence that various measures of the coarsening dynamics scale in time with different power-law exponents, indicating that multiple length scales are required in describing the time dependent pattern evolution. The translational correlation length scales with time as t0.12t^{0.12}, the orientational correlation length scales as t0.54t^{0.54}, and the density of defects scale as t0.45t^{-0.45}. The final pattern evolves toward the wavenumber where isolated dislocations become motionless, suggesting a possible wavenumber selection mechanism for large-aspect-ratio convection.Comment: 5 pages, 6 figure

    Aspect-ratio-dependent charging in high-density plasmas

    Get PDF
    The effect of aspect ratio (depth/width) on charge buildup in trenches during plasma etching of polysilicon-on-insulator structures is studied by Monte Carlo simulations. Increased electron shadowing at larger aspect ratios reduces the electron current to the trench bottom. To reach a new charging steady state, the bottom potential must increase, significantly perturbing the local ion dynamics in the trench: the deflected ions bombard the sidewall with larger energies resulting in severe notching. The results capture reported experimental trends and reveal why the increase in aspect ratio that follows the reduction in critical device dimensions will cause more problems unless the geometry is scaled to maintain a constant aspect ratio

    Flutter analysis of low aspect ratio wings

    Get PDF
    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program

    Thermosolutal convection in high-aspect-ratio enclosures

    Get PDF
    Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions

    Planar Detonation Wave Initiation in Large-Aspect-Ratio Channels

    Get PDF
    In this study, two initiator designs are presented that are able to form planar detonations with low input energy in large-aspect-ratio channels over distances corresponding to only a few channel heights. The initiators use a single spark and an array of small channels to shape the detonation wave. The first design, referred to as the static initiator, is simple to construct as it consists of straight channels which connect at right angles. However, it is only able to create planar waves using mixtures that can reliably detonate in its small-width channels. An improved design, referred to as the dynamic initiator, is capable of detonating insensitive mixtures using an oxyacetylene gas slug injected into the initiator shortly before ignition, but is more complex to construct. The two versions are presented next, including an overview of their design and operation. Design drawings of each initiator are available elsewhere [7]. Finally, photographs and pressure traces of the resulting planar waves generated by each device are shown
    corecore