16,107 research outputs found

    2. Fittings. 3. Specialty Items.

    Get PDF
    hangers, supports and accessories, identification of piping, freeze protectio

    Antifreeze Proteins in the Primary Urine of Larvae of the Beetle \u3cem\u3eDendroides canadensis\u3c/em\u3e

    Get PDF
    To avoid freezing while overwintering beneath the bark of fallen trees, Dendroides canadensis (Coleoptera: Pyrochroidae) larvae produce a family of antifreeze proteins (DAFPs) that are transcribed in specific tissues and have specific compartmental fates. DAFPs and associated thermal hysteresis activity (THA) have been shown previously in hemolymph and midgut fluid, but the presence of DAFPs has not been explored in primary urine, a potentially important site that can contain endogenous ice-nucleating compounds that could induce freezing. A maximum mean THA of 2.65±0.33°C was observed in primary urine of winter-collected D. canadensis larvae. THA in primary urine increased significantly through autumn, peaked in the winter and decreased through spring to levels of 0.2–0.3°C in summer, in a pattern similar to that of hemolymph and midgut fluid. THA was also found in hindgut fluid and excreted rectal fluid, suggesting that these larvae not only concentrate AFPs in the hindgut, but also excrete AFPs from the rectal cavity. Based on dafp transcripts isolated from Malpighian tubule epithelia, cDNAs were cloned and sequenced, identifying the presence of transcripts encoding 24 DAFP isoforms. Six of these Malpighian tubule DAFPs were known previously, but 18 are new. We also provide functional evidence that DAFPs can inhibit ice nucleators present in insect primary urine. This is potentially critical because D. canadensis larvae die if frozen, and therefore ice formation in any body fluid, including the urine, would be lethal

    Arginine, a Key Residue for the Enhancing Ability of an Antifreeze Protein of the Beetle Dendroides canadensis

    Get PDF
    Antifreeze proteins (AFPs) can produce a difference between the nonequilibrium freezing point and the melting point, termed thermal hysteresis (TH). The TH activity of an antifreeze protein (AFP) depends on the specific AFP and its concentration as well as the presence of cosolutes including low molecular mass solutes and/or proteins. We recently identified series of carboxylates and polyols as efficient enhancers for an AFP from the beetle Dendroides canadensis. In this study, we chemically modified DAFP-1 using the arginine-specific reagent 1,2-cyclohexanedione. We demonstrated that 1,2-cyclohexanedione specifically modifies one arginine residue and the modified DAFP-1 loses its enhancing ability completely or partially in the presence of previously identified enhancers. The stronger the enhancement ability of the enhancer on the native DAFP-1, the stronger the enhancement effect of the enhancer on the modified DAFP-1. The weaker enhancers (e.g., glycerol) completely lose their enhancement effect on the modified DAFP-1 due to their inability to compete with 1,2-cyclohexanedione for the arginine residue. Regeneration of the arginine residue using hydroxylamine fully restored the enhancing ability of DAFP-1. These studies indicated that an arginine residue is critical for the enhancing ability of DAFP-1 and the guanidinium group of the arginine residue is important for its interaction with the enhancers, where the general mechanism of arginine−ligand interaction is borne. This work may initiate a complete mechanistic study of the enhancement effect in AFPs

    Antifreeze Proteins in the Arctic Shorthorn Sculpin (Myoxocephalus scorpius)

    Get PDF
    The plasma of shorthorn sculpin caught at Grise Fiord (Southern Ellesmere Island, arctic Canada) during late August contained antifreeze proteins which were essentially identical, with respect to molecular weight, number of components and amino acid composition, to the antifreeze proteins found in Newfoundland populations of shorthorn sculpin. The concentration of antifreeze protein in the plasma of the arctic sculpins during the summer was similar to that observed in the plasma of Newfoundland sculpin during the winter. The results suggest that unlike their Newfoundland counterparts, the plasma of sculpin residing in the High Arctic contains high concentrations of antifreeze protein all year round.Key words: shorthorn sculpin, Myoxocephalus scorpius, antifreeze protein

    X-ray diffraction to probe the kinetics of ice recrystallization inhibition

    Get PDF
    Understanding the nucleation and growth of ice is crucial in fields ranging from infrastructure maintenance, to the environment, and to preserving biologics in the cold chain. Ice binding and antifreeze proteins are potent ice recrystallization inhibitors (IRI), and synthetic materials that mimic this function have emerged, which may find use in biotechnology. To evaluate IRI activity, optical microscopy tools are typically used to monitor ice grain size either by end-point measurements or as a function of time. However, these methods provide 2-dimensional information and image analysis is required to extract the data. Here we explore using wide angle X-ray scattering (WAXS/X-ray powder diffraction (XRD)) to interrogate 100's of ice crystals in 3-dimensions as a function of time. Due to the random organization of the ice crystals in the frozen sample, the number of orientations measured by XRD is proportional to the number of ice crystals, which can be measured as a function of time. This method was used to evaluate the activity for a panel of known IRI active compounds, and shows strong agreement with results obtained from cryo-microscopy, as well as being advantageous in that time-dependent ice growth is easily extracted. Diffraction analysis also confirmed, by comparing the obtained diffraction patterns of both ice binding and non-binding additives, that the observed hexagonal ice diffraction patterns obtained cannot be used to determine which crystal faces are being bound. This method may help in the discovery of new IRI active materials as well as enabling kinetic analysis of ice growth

    Dynamical mechanism of antifreeze proteins to prevent ice growth

    Full text link
    The fascinating ability of algae, insects and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water/ice interface thus preventing complete solidification. We propose a new dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau type approach to describe the phase separation in the two-component system (ice, AFP). The free energy density involves two fields: one for the ice phase with a low AFP concentration, and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments
    corecore