8,933 research outputs found

    Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans

    Get PDF
    Some compounds, characterized by phenylethenyl moiety, such as methyl cinnamate and caffeic acid phenethyl ester, are able to inhibit C. albicans biofilm formation. On these bases, and as a consequence of our previous work, we synthesized a series of cinnamoyl ester and amide derivatives in order to evaluate them for the activity against C. albicans biofilm and planktonically grown cells. The most active compounds 7 and 8 showed â©ľ50% biofilm inhibition concentrations (BMIC50) of 2 ÎĽg/mL and 4 ÎĽg/mL respectively, against C. albicans biofilm formation; otherwise, 7 showed an interesting activity also against mature biofilm, with BMIC50 of 8 ÎĽg/m

    Immobilization of antimicrobial core-shell nanospheres onto silicone for prevention of Escherichia coli biofilm formation

    Get PDF
    Escherichia coli (E. coli) strains are among the most frequently isolated microorganisms in urinary tract infections able to colonize the surface of urinary catheters and form biofilms. These biofilms are highly resistant to antibiotics and host immune system, resulting in increased morbidity and mortality rates. Strategies to prevent biofilm development, especially via restricting the initial stages of bacteria attachment are therefore urgently needed. Herein, a common urinary catheter material – polydimethylsiloxane (PDMS) – was covalently functionalized with antibacterial aminocellulose nanospheres (ACNSs) using the epoxy/amine grafting chemistry. The PDMS surface was pre-activated with (3-glycidyloxypropyl)-triethoxysilane to introduce epoxy functionalities prior to immobilization of the intact ACNSs via its amino groups. The AC biopolymer was first sonochemically processed into NSs improving by up to 80% its potential to prevent the E. coli biofilm formation on a polystyrene surface. The silicone surface decorated with these NSs demonstrated efficient inhibition of E. coli biofilms, reducing the total biomass when compared with pristine silicone material. Therefore, the functionalization of silicone-based materials with ACNSs shows promise as potential platform for prevention of biofilm-associated infections caused by E. coli.Peer ReviewedPostprint (author's final draft

    Antioxidant, antifungal, antibiofilm, and cytotoxic activities of Mentha spp. essential oils

    Get PDF
    Since ancient times, plants have been used to preserve food, or for their health properties. Essential oils are complex mixtures of volatile compounds that are obtained from botanical material, specifically from aromatic plants. Lamiaceae is one of the most important families in the production of essential oils, as it has both antioxidant and antimicrobial properties. The essential oils of Mentha (the Lamiaceae family) have been extensively studied for their biological actions. In this review, we report the antioxidant, antifungal, antibiofilm, and cytotoxic properties of Mentha spp. essential oils. The first objective is to provide comprehensive information about the use of essential oils in the treatment of fungal infections, or as antioxidants and integrative anticancer therapy. The second is to explore the evidence supporting its effectiveness in treating diseases without causing any serious adverse reactions

    Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Applied microbiology and biotechnology The final authenticated version is available online at: http://dx.doi.org/10.1007/s00253-018-8776-0Drug resistance occurrence is a global healthcare concern responsible for the increased morbidity and mortality in hospitals, time of hospitalisation and huge financial loss. The failure of the most antibiotics to kill Bsuperbugs^ poses the urgent need to develop innovative strategies aimed at not only controlling bacterial infection but also the spread of resistance. The prevention of pathogen host invasion by inhibiting bacterial virulence and biofilm formation, and the utilisation of bactericidal agents with different mode of action than classic antibiotics are the two most promising new alternative strategies to overcome antibiotic resistance. Based on these novel approaches, researchers are developing different advanced materials (nanoparticles, hydrogels and surface coatings) with novel antimicrobial properties. In this review, we summarise the recent advances in terms of engineered materials to prevent bacteria-resistant infections according to the antimicrobial strategies underlying their design.Peer ReviewedPostprint (author's final draft

    Volatiles from Subtropical Convolvulaceae That Interfere with Bacterial Cell-to-Cell Communication as Potential Antipathogenic Drugs

    Get PDF
    Increasing chronic bacterial infections create an urgent need for new antimicrobial agents or strategies for their control. Targetingvirulence is one of the alternative approaches to find new medicines to treat persistent infections due to bacteria with biofilmphenotypewhich are more resistant to antibiotics than their planktonic counterparts having an extreme capacity for evading the host defences. A bioguided study of sixteen extracts from flowers and leaves of four subtropical Convolvulaceae species provided evidence of the occurrence of antipathogenic natural products active against Gram positive and negative bacteria.Particularly, volatile metabolites from Merremia dissecta creeper, a food and medicinal plant, were able to interfere with the Pseudomonas aeruginosa quorum sensing system by a strong decrease of N-acyl homoserine lactone (AHL) biosynthesis (63?75%), which attenuated the virulence factor expression like biofilm (55%) and elastase activity (up to 27%), key factors thatenable the colonization and dissemination of the infection in the host. Control of the P. aeruginosa biofilm and the QS process by phytochemicals, such as (+) spathulenol, isolated from a bioactive extract of M. dissecta leaves would be a good strategy for the development of new and effective antipathogenic drugs.Fil: Luciardi, María Constanza. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Pérez Hernández, María Victoria. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Orgánica; ArgentinaFil: Muruaga, Nora. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Bardon, Alicia del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Orgánica; ArgentinaFil: Arena, Mario Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Orgánica; ArgentinaFil: Cartagena, Elena. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Orgánica; Argentin

    Candida albicans biofilm formation on peptide functionalized polydimethylsiloxane

    Get PDF
    In order to prevent biofilm formation by Candida albicans, several cationic peptides were covalently bound to polydimethylsiloxane (PDMS). The salivary peptide histatin 5 and two synthetic variants (Dhvar 4 and Dhvar 5) were used to prepare peptide functionalized PDMS using 4-azido-2,3,5,6-tetrafluoro-benzoic acid (AFB) as an interlinkage molecule. In addition, polylysine-, polyarginine-, and polyhistidine-PDMS surfaces were prepared. Dhvar 4 functionalized PDMS yielded the highest reduction of the number of C. albicans biofilm cells in the Modified Robbins Device. Amino acid analysis demonstrated that the amount of peptide immobilized on the modified disks was in the nanomole range. Poly-d-lysine PDMS, in particular the homopeptides with low molecular weight (2500 and 9600) showed the highest activity against C. albicans biofilms, with reductions of 93% and 91%, respectively. The results indicate that the reductions are peptide dependent

    The Missing Link: the key to improved wound assessment

    Get PDF
    Clinicians discuss using Debrisoft to improve wound assessement, quality of life and cost effectiveness

    Social interactions in the Burkholderia cepacia complex : biofilms and quorum sensing

    Get PDF
    Burkholderia cepacia complex bacteria are opportunistic pathogens that cause respiratory tract infections in susceptible patients, mainly people with cystic fibrosis. There is convincing evidence that B. cepacia complex bacteria can form biofilms, not only on abiotic surfaces (e.g., glass and plastics), but also on biotic surfaces such as epithelial cells, leading to the suggestion that biofilm formation plays a key role in persistent infection of cystic fibrosis lungs. This article presents an overview of the molecular mechanisms involved in B. cepacla complex biofilm formation, the increased resistance of sessile B. cepacia complex cells and the role of quorum sensing in B. cepacia complex biofilm formation
    • …
    corecore