238 research outputs found

    Adaptive relaxation for stabilisation and acceleration of partitioned multiphysics analysis

    Get PDF
    Grundlegende Implementierungsansätze partitionierter Multiphysiksimulationen erfordern zumeist aufwändige, iterative Berechnungen, um die Aussagekraft der Analysen zu gewährleisten. In vielen Anwendungsbereichen lassen sich diese Analysen daher nicht rentabel durchführen. In der vorliegenden Arbeit wird ein Prinzip zur adaptiven Relaxation aufbauend auf der klassischen Schwingungslehre entwickelt, um den genannten Aufwand signifikant zu reduzieren. Es werden keine Informationen über die Eigenschaften der Gleichungssysteme benötigt, wodurch das Verfahren auch in der Kopplung von Black-Box-Programmen eingesetzt werden kann, die keine speziellen Schnittstellen außer der Ein- und Ausgabe von Rand- und Ergebniswerten im ASCII-Format bieten. Es ist nicht auf Benutzereinstellungen angewiesen, da es selbstständig problemadaptive Relaxationsparameter bestimmt. In den durchgeführten Untersuchungen zeigten sich analog zu der Auslegung des Relaxationsprinzips keine Einschränkungen auf spezielle Problemstellungen. Durch die geringe Anzahl an durchzuführenden Berechnungsoperationen wird die behandelbare Modellgröße nicht beschränkt. Aufbauend auf dem erarbeiteten Prinzip werden drei unterschiedliche Algorithmen entwickelt. Durch die Durchführung und Auswertung umfassender Parameterstudien an Testmodellen erfolgt deren Kalibrierung und Bewertung. Die Effizienz des Verfahrens wird anhand von praxisrelevanten, gekoppelten Problemstellungen im Bereich der Fluid-Struktur-Interaktion sowie einer Frequenzgang- und Reaktionsmomentanalyse an Modellen eines Wärmetauschers sowie des Abgastraktes eines turboaufgeladenen Verbrennungsmotors verifiziert. Der Berechnungsverlauf zwischen unstabilisierter und stabilisierter Berechnung wird vergleichend gegenüber gestellt. Die Ergebnisse, in denen die erforderlichen Kopplungsiterationen um 50 bis 60% im Vergleich zur unstabilisiert gekoppelten Berechnung gesenkt werden konnten, belegen den erreichbaren Effizienzgewinn. Im praktischen Einsatz lässt sich somit der Aufwand von Multiphysikanalysen deutlich reduzieren. Durch die signifikante Senkung des notwendigen Zeit- und Kostenaufwandes lassen sich diese deutlich wirtschaftlicher durchführen. Auch die Ausweitung der gekoppelten Simulation in Anwendungsbereiche, in denen diese aufgrund der Rentabilität bisher nicht durchgeführt wurden, wird damit möglich.Implementations of partitioned multiphysics simulations require in general expensive, iterative simulations to be able to provide dependable results. This causes this simulation method to be too expensive in many cases. The work carried out in this thesis proposes a method that is based on the classical theory of oscillations to reduce the arising effort significantly by adaptive relaxation. The method doesn't require any information about the involved equations what even allows for application in coupled simulations between black-box-programs which have no special interfaces except reading and writing boundary-conditions in any ASCII format. It does not have the need for user settings as it automatically calculates problem specific relaxation factors. The conducted simulations meet the target of the method's design as they didn't show any limitations on specific types of problems. Furthermore there is no limitation of maximum model sizes as only few calculations have to be carried out for the adaptive relaxation.\\ Three different algorithms are created based on the developed principle. Extensive parameter studies are employed for the calibration and evaluation of the three algorithms. Verification simulations of the vibration behavior of a exhaust tract with build-in turbochargers as well as a thermal fluid-structure interaction in the simulation of a counter flow heat exchanger demonstrate the efficiency of the developed method. The comparison of the simulations with and without use of the developed algorithm reveals a decrease of the numerical cost by 50 to 60%. The developed method reduces the additional effort needed for coupled simulations compared to single physics simulations significantly. Therefore partitioned multiphysics simulation can be extended to fields of application where such analyses have been too expensive before

    Numerische Lösung großer strukturierter DAE-Systeme der chemischen Prozeßsimulation

    Get PDF
    Parallelizable numerical methods for solving large scale DAE systems are developed at the level of differential, nonlinear and linear equations. For this the subsystem-wise structure of the DAE systems based on unit-oriented modelling is explored. Partitionings are used to parallelize waveform relaxation and structured Newton methods. Initial values are computed with a modified Newton method. To solve large sparse systems of linear equations a special Gaussian elimination method is used. The algorithms were implemented on a CRAY C90 vector computer, as well as on both, moderately parallel CRAY J90 vector computers and massively parallel CRAY T3D machines. The methods were tested using several real life examples

    Optimierung der Lokalisierungsgüte bildgebender Ultraschallsysteme

    Get PDF

    Numerical methods for simulation of chemical engineering processes

    Get PDF
    In diesem Beitrag werden wesentliche Grundlagen und der derzeitige Stand der numerischen Berechnung des stationären und dynamischen Verhaltens verfahrenstechnischer Prozesse referiert. Durch Diskretisierung der örtlichen Ableitungen in den Modellgleichungen läßt sich das Gesamtmodell in ein System von Differentialgleichungen in der Zeit und von algebraischen Gleichungen, ein sog. DA-System, umformen. Die notwendigen Teilschritte zur Lösung des DA-Systems werden besprochen, auf bewährte Standardsoftware für dieseTeilschritte sowie für die Lösung des gesamten DA-Systems wird hingewiesen.Essential fundamentals and the current state of the art in simulating the dynamic and the steady state behaviour of chemical engineering processes are discussed. It is shown that discretization of the spatial derivatives in the balance equations leads to a system of so-called DAE (differential algebraic equations), consisting of ordinary differential equations in time and algebraic equations. The paper discusses necessary steps to solve the DAE and mentions approved standard software for these steps as well as for the solution of the DAE as a whole

    Ein mechanisches Finite-Elemente-Modell des menschlichen Kopfes

    Get PDF
    In dieser Arbeit wird ein dreidimensionales Modell des menschlichen Kopfes beschrieben, das es erlaubt, mit der Methode der Finiten Elemente mechanische Einfluesse auf den Kopf zu modellieren. Eine exakte Geometriebeschreibung eines individuellen Modells wird aus einem Kernspintomogramm des Kopfes gewonnen. Ausgehend von diesen medizinischen Bilddaten wird die diskrete Darstellung des Kopfes als Verbund finiter Elemente mit einem Gittergenerator gewonnen. Dieser schnelle und stabile Algorithmus ermoeglicht die Erstellung von raeumlich hochaufgeloesten Finite-Elemente-Repraesentationen des Schaedels und interner neuroanatomischer Strukturen. Es besteht die Auswahl zwischen anisotropen und isotropen Wuerfel- und Tetraedernetzen. Auf deren Basis werden die dem physikalischen Geschehen zugrundeliegenden Differentialgleichungen mittels der Finite-Elemente-Methode numerisch geloest. Die FE-Analysen umfassen statische, dynamische und modale Simulationsrechnungen. Die zur Durchfuehrung der Simulationen noetigen numerischen Verfahren wurden optimiert und auf einer parallelen Rechnerarchitektur implementiert. Jeder der oben genannten Analysearten ist eine klinisch-relevante Anwendung zugeordnet. Mit der nichtlinearen statischen Analyse werden die mechanischen Konsequenzen von Tumorwachstum untersucht, die dynamische Analyse dient dem Studium der Auswirkungen von fokalen Gewalteinwirkungen auf den Kopf und die modale Analyse gibt Aufschluss ueber das Schwingungsverhalten des Kopfes. Die Validierung des Modells wird durch den Vergleich von Simulationsergebnissen mit experimentell ermittelten Daten erzielt.A new FEM-based approach to model the mechanical response of the head is presented.To overcome restrictions of previous approaches our head model is based on individual datasets of the head obtained from magnetic resonance imaging (MRI). The use of parallel computers allows to carry out biomechanical simulations based on FE meshes with a spatial resolution about five times higher than that of previous models. A totally automatic procedure to generate FE meshes of the head starting from MR datasets is used. Models for individual clinical cases can be set up within minutes and clinically relevant simulations (impact studies, tumor growth consequences) are carried out and discussed by comparing simulation results with experimentally obtained data
    corecore