281,913 research outputs found

    Zinc 2-((2-(benzoimidazol-2-yl)quinolin-8-ylimino)methyl)phenolates : synthesis, characterization and photoluminescence behavior

    Get PDF
    A series of 2-(2-(1H-benzoimidazol-2-yl)quinolin-8-yliminomethyl)phenol derivatives and their zinc complexes (C1 – C5) were synthesized and fully characterized. The molecular structure of the representative complex C2 was determined by single crystal X-ray diffraction, which revealed that the zinc was five-coordinated with the tetra-dentate ligand and a methanol bound to the metal afford a distorted square-pyramidal geometry. The UV-Vis absorption and fluorescence spectra of the organic compounds and their zinc complexes were measured and investigated in various solvents such as methanol, THF, dichloromethane, and toluene; significant influences by solvents were observed on their luminescent properties; red-shifts for the zinc complexes were clearly observed in comparisons to the free organic compounds

    Towards understanding the design of dual-modal MR/fluorescent probes to sense zinc ions

    Get PDF
    A series of gadolinium complexes were synthesised in order to test the design of dual-modal probes that display a change in fluorescence or relaxivity response upon binding of zinc. A dansyl-DO3ATA gadolinium complex [GdL1] displayed an increase and a slight blue-shift in fluorescence in the presence of zinc; however, a decrease in relaxation rate was observed. Consequently, the ability of the well-known zinc chelator, BPEN, was assessed for relaxivity response when conjugated to the gadolinium chelate. The success of this probe [GdL2], lead to the inclusion of the same zinc-probing moiety alongside a longer wavelength emitting fluorophore, rhodamine [GdL3], to arrive at the final iteration of these first generation dual-modal zinc-sensing probes. The compounds give insight into the design protocols required for the successful imaging of zinc ions

    Morphology and Properties of Zn-Al-TiO2 Composite on Mild Steel

    Get PDF
    The influence of TiO2 composite and dispersed pure Al particle on zinc alloy electrodeposited on mild steel was studied from chloride bath solution.Microstructural and mechanical properties of the alloy were investigated. The structure, surface morphology, and surface topography of the deposited alloys were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM).In addition, hardness of the coated alloys was measured. It was found that the obtained Zn-Al-TiO2 alloyexhibited more preferred surface morphology and mechanical strength compared tothe substrate. The result shows the existence of interaction between TiO2 compounds and zinc alloy particulate. It also exhibited well bright dominate zinc coating on steel surface

    Deposition of ZnO Thin Films by Spray Coating Technique for Photocatalytic and Photochemical Degradation of Methylene Blue (MB)

    Get PDF
    Deposition of a thin layer of Zinc Oxide (ZnO) on glass substrates by spray coating techniques has been done. ZnO is a semiconductor with band gap energy of ~ 3.2 eV and has the properties as oxidation photo catalysts that will transform harmful compounds and toxic substances in water into harmless compounds. ZnO thin film deposition is conducted by making gel ZnO with dissolving zinc acetate dehydrate (Zn(COOCH3)2.2H2O into a solution of isopropanol ((CH3)2CHOH) and monoethanolamine (MEA: HOCH2CH2NH2) at room temperature with a concentration of 0.3 M zinc acetate and the molar ratio is 1:1. ZnO gel is placed on the spray hole and sprayed on a glass substrate which has been heated at a temperature of 250°C at a pressure of 70 psi to form a thin layer. A thin layer is sintered at a temperature of 450°C for 2 hours. A ZnO thin layer then used as a photocatalytic and photochemical degradatioan of methylene blue (MB) with and without stirring. The microstructure analysis by using XRD show that the thin layers having polycrystalline wurtzite structure with orientations (100), (002), (101) and (110). EDS characterization showed that thin layers of ZnO consists of 50.27% and 49.73% zinc and oxygen atomic, respectively. ZnO photocatalyst reaction by using ultra violet light (UV) for 3 hours has been reduces the concentration of MB until 97.05%. A high percentage of color degradation MB performed by treatment with stirring

    Luminescent thin films by the chemical aerosol deposition technology (CADT)

    Get PDF
    Zinc sulphide thin films have been deposited with CART using zinc chlorideand zinc acetylacetonate as Zn compounds and thiourea and 1,1,3,3-tetramethylthiourea as S compounds soluted in methanol, ethanol, isopropanol and cellosolve. After optimalization of the deposition process homogeneous layers with a c-axis oriented hexagonal columnar structure with a high density (up to 96%) were obtained. Luminescence was observed with films grown above 500°C. The influence of the hot plate temperature, flow of carrier gas, nozzle geometry, distance nozzle substrate, and volatility of the solvent and reactants on the growth rate, homogenity and density of the film has been shown. Some rules for the selection of the starting compound are given. TG analyses of the reactant compounds was used to compare their volatility and stability

    Covalent bonding and the nature of band gaps in some half-Heusler compounds

    Full text link
    Half-Heusler compounds \textit{XYZ}, also called semi-Heusler compounds, crystallize in the MgAgAs structure, in the space group F4ˉ3mF\bar43m. We report a systematic examination of band gaps and the nature (covalent or ionic) of bonding in semiconducting 8- and 18- electron half-Heusler compounds through first-principles density functional calculations. We find the most appropriate description of these compounds from the viewpoint of electronic structures is one of a \textit{YZ} zinc blende lattice stuffed by the \textit{X} ion. Simple valence rules are obeyed for bonding in the 8-electron compound. For example, LiMgN can be written Li+^+ + (MgN)^-, and (MgN)^-, which is isoelectronic with (SiSi), forms a zinc blende lattice. The 18-electron compounds can similarly be considered as obeying valence rules. A semiconductor such as TiCoSb can be written Ti4+^{4+} + (CoSb)4^{4-}; the latter unit is isoelectronic and isostructural with zinc-blende GaSb. For both the 8- and 18-electron compounds, when \textit{X} is fixed as some electropositive cation, the computed band gap varies approximately as the difference in Pauling electronegativities of \textit{Y} and \textit{Z}. What is particularly exciting is that this simple idea of a covalently bonded \textit{YZ} lattice can also be extended to the very important \textit{magnetic} half-Heusler phases; we describe these as valence compounds \textit{ie.} possessing a band gap at the Fermi energy albeit only in one spin direction. The \textit{local} moment in these magnetic compounds resides on the \textit{X} site.Comment: 18 pages and 14 figures (many in color

    Towards New Half-Metallic Systems: Zinc-Blende Compounds of Transition Elements with N, P, As, Sb, S, Se, and Te

    Get PDF
    We report systematic first-principles calculations for ordered zinc-blende compounds of the transition metal elements V, Cr, Mn with the sp elements N, P, As, Sb, S, Se, Te, motivated by recent fabrication of zinc-blende CrAs, CrSb, and MnAs. They show ferromagnetic half-metallic behavior for a wide range of lattice constants. We discuss the origin and trends of half-metallicity, present the calculated equilibrium lattice constants, and examine the half-metallic behavior of their transition element terminated (001) surfaces.Comment: 2nd Version: lattice constants calculations added, text revise

    Band Structure Engineering of Multinary Chalcogenide Topological Insulators

    Full text link
    Topological insulators (TIs) have been found in strained binary HgTe and ternary I-III-VI2 chalcopyrite compounds such as CuTlSe2 which have inverted band structures. However, the non-trivial band gaps of these existing binary and ternary TIs are limited to small values, usually around 10 meV or less. In this work, we reveal that a large non-trivial band gap requires the material having a large negative crystal field splitting ΔCF\Delta_{CF} at top of the valence band and a moderately large negative sps-p band gap EgspE_g^{s-p}. These parameters can be better tuned through chemical ordering in multinary compounds. Based on this understanding, we show that a series of quaternary I2-II-IV-VI4 compounds, including Cu2HgPbSe4, Cu2CdPbSe4, Ag2HgPbSe4 and Ag2CdPbTe4 are TIs, in which Ag2HgPbSe4 has the largest TI band gap of 47 meV because it combines the optimal values of ΔCF\Delta_{CF} and EgspE_g^{s-p}.Comment: 5 pages, 3 figure
    corecore