557 research outputs found

    Electrical characterization of single-walled carbon nanotubes : leading toward electronic devices

    Get PDF
    This thesis presents research involving the electrical characterization of single-walled carbon nanotubes produced by the pulsed-laser vaporization technique. Carbon nanotubes were suspended in organic solvents and separated using ultrasonic excitation. The dispersed nanotubes were either physically deposited or spin-deposited onto electrode structures that were prefabricated using standard electron-beam lithography. Atomic force microscopy was used to locate and measure nanotubes that spanned across metal electrodes. Two-probe charge transport measurements were then made on these nanotube samples. The first sample exhibited current rectification, while many other carbon nanotubes were damaged by electrical breakdown. The effect of manipulating a nanotube at the electrode junction is also demonstrated. It was found that a potential barrier could be introduced, changing the I-V response of the nanotube device. Then, p-channel field-effect transistor behavior is shown for an individual single-walled carbon nanotube. Finally, an electrodeposition technique is presented for reducing the large contact resistance between a nanotube and the metal electrodes. This technique decreased the electrode-nanotube contact resistance by a factor of more than six, and maintained the semiconducting behavior of the nanotube. Energy band diagram models are used to try to explain some of the observed electronic properties

    Characterization of multi-wall carbon nanotubes and their applications

    Get PDF
    PhDCarbon nanotubes (CNT) and their applications is a field which has attract a lot of interest in the past two decades. Since the first invention of CNTs in 1991, and in view of utilising nanoantennas, the focus in many laboratories around the world has shifted to trying to lengthen nanotubes longer from nanometers to few centimeters. Eventually this could lead to CNTs’ use in sub-millimeter, millimiter wave and microwave antenna applications. In this thesis, fundamental properties of carbon nanotube films are investigated, and some applications such as the use of CNTs as absorbers or CNT doped liquid crystals are considered. The concept of frequency tunable patch antennas is also presented. Simulation and measurement results of the liquid crystal based antenna show that frequency tuning is possible, through the use of a liquid crystal cell as a substrate. Additionally, greater tuning can be achieved using liquid crystals with higher dielectric anisotropy at microwave frequencies. This can be achieved by using CNT doped liquid crystals. As mentioned, microwave and terahertz measurements of vertically aligned carbon nanotube arrays placed on the top surface of a rectangular silicon substrate are presented. The S-parameters are calculated allowing the extraction of the complex permittivity, permeability and conductivity of the samples. Theoretical models are being introduced delineating the behaviour of the multi-walled nanotube (MWNT) samples. The material properties of this film provide useful data for potential microwave and terahertz applications such as absorbers. Finally, finite-difference time-domain (FDTD) modelling of CNTs is introduced, verifying the measurements that have been performed, confirming that CNT arrays can be highly absorptive. A novel estimation of the permittivity and permeability of an individual carbon nanotube is presented and a periodic structure is simulated, under periodic boundary conditions, consisting of solid anisotropic cylinders. In addition, the optical properties of vertically aligned carbon nanotube (VACNT) arrays, when the periodicity is both within the sub-wavelength and wavelength iii regime are calculated. The effect of geometrical parameters of the tube such as length, diameter and inter-tube distance between two consecutive tubes are also examined

    A rigged configuration model for B(∞)B(\infty)

    Full text link
    We describe a combinatorial realization of the crystals B(∞)B(\infty) and B(λ)B(\lambda) using rigged configurations in all symmetrizable Kac-Moody types up to certain conditions. This includes all simply-laced types and all non-simply-laced finite and affine types

    Low-Dimensional Materials for Disruptive Microwave Antennas Design

    Get PDF
    This chapter is devoted to a complete analysis of remarkable electromagnetic properties of nanomaterials suitable for antenna design miniaturization. After a review of state of the art mesoscopic scale modeling tools and characterization techniques in microwave domain, new approaches based on wideband material parameters identification (complex permittivity and conductivity) will be described from impedance equivalence formulation achievement by de-embedding techniques applicable in integrated technology or in free space. A focus on performances of 1D materials such as vertically aligned multi-wall carbon nanotube (VA-MWCNT) bundles, from theory to technology, will be presented as a disruptive demonstration for defense and civil applications as in radar systems

    Carbon and Boron Nitride Nanotube Fabricated Supercapacitors

    Get PDF
    The fabrication of supercapacitor devices consisting of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) has great theoretical capabilities of high specific capacitance, energy density, and power density. Various methods of dispersion and deposition are utilized to optimize such supercapacitors with BNNTs and CNTs, and also to produce devices with only CNTs to use as a benchmark. In addition to capacitance measurements, BNNTs that were exposed to nitric acid were compared to fabricated devices without acid exposure. Dispersion has been accomplished through the trial of many solvents and surfactants for both CNTs and BNNTs. Deposition techniques that are utilized rely heavily on vacuum filtration and spray deposition techniques. The resultants of fabrication have been tested with capacitance voltage measurements and transmission electron microscopic images are used to analyze solutions. The highest specific capacitance was found in a fabricated device without including BNNTs, as a device fabricated from CNTs as the electrode, a polymer electrolyte, a dielectric separator of nafion, and foil contacts, had a specific capacitance of 0.51 mF/g. This device also had 0.13 Wh/kg for energy density, and 3.02 kW/kg for power density. However, despite this measurement of highest specific capacitance achieved without using BNNTs, a device made of only CNTs, BNNTs, foil contacts, and electrolyte, had the highest energy density of 0.15 Wh/kg and power density of 4.29 kW/kg. This device also had one of the highest measured specific capacitances of 0.27 mF/g. The CNTs and BNNTs were chosen to be used together because of costs and availability and their ideal structures for use as an electrode and a separator, respectively. Both materials have lattice structures that can be rolled into tubes to create bonds and also strengthen the material between walls. The porous structures also allow an electrolyte to seep into the pores to promote charge separation. Carbon is an ideal electrode and boron nitride has high dielectric properties suited for a capacitor separator. The devices showed consistent capacitance characteristics with higher power density than energy density. The techniques used for fabrication, measurement, and further optimization are mentioned throughout this paper. Cleaning BNNTs in nitric acid proved to promote better physical and electrical properties for the resultant solutions and devices

    Evolution of metal catalyst during CVD synthesis of carbon nanotubes

    Get PDF
    La dĂ©couverte rĂ©volutionnaire des nanotubes de carbone (CNT) en 1991 a provoquĂ© une intensification des travaux de recherche dans le domaine de la science du carbone. Les propriĂ©tĂ©s fascinantes de ce matĂ©riau offrent une multitude d’applications potentielles, par exemple comme Ă©metteur de champs, conducteur uni-dimensionnel, condensateur haute capacitĂ© (“supercap”), fibres de renforcement ou encore comme rĂ©servoir d’hydrogĂšne. MalgrĂ© d’immenses progrĂšs techniques, l’amĂ©lioration des mĂ©thodes de synthĂšse en vue d’une application commerciale est encore au centre des recherches. La technique de dĂ©pĂŽt en phase vapeur (CVD) est un candidat prometteur. Dans cette technique, la nuclĂ©ation et la croissance des CNTs sont induites par la dĂ©composition de gaz carburĂ©s (CO, CO2, C2H2, etc.) sur un catalyseur mĂ©tallique Ă  des tempĂ©ratures comprises entre 600°C et 1200°C. La CVD est largement utilisĂ©e pour la fabrication Ă  grande Ă©chelle de CNTs et beaucoup de progrĂšs ont Ă©tĂ© faits en ce qui concerne la quantitĂ©, les frais de synthĂšse et la puretĂ© des produits. Toutefois, le mĂ©canisme de croissance des nanotubes par CVD reste peu connu. La diffusion du carbone Ă  travers le catalyseur mĂ©tallique est souvent considĂ©rĂ©e comme l’étape dĂ©terminante lors de la croissance des CNTs. Les mĂ©taux les plus rĂ©actifs sont le fer, le cobalt et le nickel, mais leur effet catalytique est dĂ©pendant de plusieurs facteurs tels que la nature du prĂ©curseur, le substrat utilisĂ© et les gaz de rĂ©action. La nature chimique actuelle du catalyseur actif est trĂšs controversĂ©e; on ne sait pas par exemple s’il est prĂ©sent sous forme de mĂ©tal, de carbure ou en phase mĂ©langĂ©e. Jusqu’à prĂ©sent, trĂšs peu d’analyses insitu de l’évolution chimique et morphologique du catalyseur durant le processus CVD ont Ă©tĂ© faites. Le comportement de catalyseurs Ă  base de nickel, cobalt, chrome ou molybdĂšne a Ă©tĂ© analysĂ© sous une atmosphĂšre azote/acĂ©tylĂšne ou azote/acĂ©tylĂšne/ hydrogĂšne Ă  des tempĂ©ratures de 600°C et de 750°C. Pour mieux comprendre les propriĂ©tĂ©s des phases mĂ©talliques pendant le processus de synthĂšse, un diffractomĂštre Ă  rayons X Ă©quipĂ© avec une table chauffante et un systĂšme de contrĂŽle atmosphĂ©rique a Ă©tĂ© utilisĂ© pour Ă©tudier in-situ l’évolution des revĂȘtements de nitrate mĂ©tallique. Les Ă©chantillons ont Ă©tĂ© ensuite trempĂ©s Ă  diffĂ©rents stades de pyrolyse pour ĂȘtre finalement observĂ©s au MEB et MET. Les images au microscope ont montrĂ© que le nickel ainsi que le cobalt et le molybdĂšne peuvent agir comme catalyseurs pour la nuclĂ©ation et la croissance des CNTs, cepandant pas le chrome. La rĂ©duction de la taille des grains rĂ©sultant d’une perte suffisante de volume solide pendant les rĂ©actions rĂ©dox dans le prĂ©curseur catalytique, ainsi que la transformation de ces prĂ©curseurs en une phase mĂ©tallique sont les principales conditions nĂ©cessaires Ă  la croissance de CNTs. Les stades de rĂ©action observĂ©s pendant la rĂ©duction du prĂ©curseur ont Ă©tĂ© mis en relation avec la nuclĂ©ation et la croissance des nanotubes. La diffusion de carbone Ă  travers les particules mĂ©talliques, marquĂ©e par un agrandissement des paramĂštres cellulaires du mĂ©tal et identifiĂ©e sur les diffractogrammes par un dĂ©placement des pics, est observĂ©e Ă  chaque fois que des nanotubes de carbone sont gĂ©nĂ©rĂ©s. Avec le nickel et le cobalt, aucune phase de carbure ne s’est formĂ©e. Avec le fer, la dĂ©composition des phases mĂ©tastables de carbure agit comme une seconde activation de la croissance des nanotubes alors que le molybdĂšne va favoriser la formation de carbures qui vont stopper la croissance des CNTs aprĂšs 20 minutes. Dans tous les cas, il a Ă©tĂ© dĂ©montrĂ© qu’un traitement prĂ©liminaire Ă  l’hydrogĂšne favorise la croissance des nanotubes.Die revolutionĂ€re Entdeckung von Kohlenstoff- Nanoröhrchen (CNT) im Jahre 1991 liess die Forschungsarbeiten im Bereich der Kohlenstoffwissenschaft intensivieren. Die faszinierenden Eigenschaften dieses einzigartigen Materials ermöglichten eine Vielzahl von potenziellen Anwendungen wie zum Beispiel als Elektronen Feldemissionsquelle, eindimensionale Konduktoren, SuperkapazitĂ€ten, VerstĂ€rkungsfaden oder Wasserstoffspeicher. Trotz der atemberaubenden technischen Fortschritte bemĂŒht man sich immer noch um die Entwicklung einer Synthesemethode fĂŒr die kommerzielle Anwendung. Ein vielversprechender Kandidat ist die Technik der chemischen Gasphasenabscheidung (CVD). Die Keimbildung und das Wachstum von CNTs werden induziert durch die Zersetzung von kohlenstoffhaltigen Gasen (CO, CO2, C2H2, usw.) ĂŒber einem metallischen Katalysator bei Temperaturen zwischen 600°C und 1200°C. CVD ist eine weit verbreitete Technik fĂŒr die Fabrikation von CNT in grossen QuantitĂ€ten und Fortschritte betreffend der Menge, der Synthesekosten und der Reinheit der Produkte, wurden erzielt. Doch das grosse RĂ€tsel der CVD Methode bleibt der Wachstumsmechanismus. Der Hauptreaktionsschritt fĂŒr das Wachstum von Nanoröhrchen scheint die Diffusion von Kohlenstoff durch den Metallkatalysator zu sein. Die reaktivsten Metalle sind Eisen, Kobalt und Nickel, doch deren katalytische Wirkung ist abhĂ€ngig von der Art des Ausgangsmaterials, des benutzten Substrates und der Reaktionsgase. Sehr umstritten ist die aktuelle chemische Beschaffenheit des aktiven Katalysators, zum Beispiel ob er als Metall, Karbid oder als gemischte Phase vorliegt. Bis jetzt wurden nur sehr wenige in-situ Analysen der chemischen und morphologischen Evolution des Katalysators wĂ€hrend des CVD Prozesses durchgefĂŒhrt. Diese Doktorarbeit befasst sich mit der Evolution von nickel-, kobalt-, chrom- und molybdĂ€nbasierenden Katalysatoren unter Stickstoff/Acetylen und Stickstoff/Acetylen/Wasserstoff AtmosphĂ€re bei 600°C und 750°C. Um die Eigenschaften von metallischen Phasen wĂ€hrend des Syntheseablaufs aufzuklĂ€ren, wurde ein Röntgendiffraktometer mit einem Heiztisch und einem AtmosphĂ€renkontrollsystem ausgestattet, welches das in-situ Studium der Evolution von Metallnitrat-Filmen ermöglicht. Die Proben wurden dafĂŒr bei verschiedenen Pyrolysezeiten abgeschreckt und im REM und TEM untersucht. Die Mikroskopiebilder zeigen, dass Nickel sowie Kobalt und MolybdĂ€n unter typischen Nanoröhrchen Synthesebedingungen als Katalysatoren fĂŒr CNTs Keimbildung und Wachstum agieren können, jedoch nicht Chrom. Korngrössenreduktion, resultierend aus dem ausreichenden Festkörpervolumenverlust wĂ€hrend der Redox Reaktion im katalytischen Ausgangsmaterial, und die Transformation des Ausgangsmaterials zu einer metallischen Phase sind die Hauptvoraussetzungen fĂŒr das CNT Wachstum. Die beobachteten Reaktionsabschnitte wĂ€hrend der Reduktion des Ausgangsmaterials werden in Verbindung gebracht mit der Keimbildung und dem Wachstum von Nanoröhrchen. Kohlenstoffdiffusion durch die metallischen Partikel, angezeigt durch eine Vergrösserung der Zellparameter des Metalls und identifiziert in Diffraktogramme als Peak- Verschiebung, wurde beobachtet wann immer CNTs gebildet wurden. Im Nickel- und Kobaltsystem wurden keine Karbidphasen entdeckt. Doch im Vergleich zum Eisensystem, wo die Zerlegung von metastabilem Karbid als zweiter Schub von Nanoröhrchen Bildung dient, wird das CNT Wachstum im MolybdĂ€nsystem nach der Bildung von Karbiden nach 20 Minuten gestoppt. In jedem Fall begĂŒnstigt eine Vorbehandlung mit Wasserstoff die Nanoröhrchen Bildung.The revolutionary discovery of carbon nanotubes (CNT) in 1991 led to intense research activities in the domain of carbon science. The fascinating properties of these unique material has opened a great number of potential applications e.g. as electron field emitters, one-dimensional conductors, supercapacitors, reinforcing fibres or hydrogen storage. Despite these stunning technical progresses there is still much struggle in the development of a synthesis method suitable for commercial applications. A leading candidate is the chemical vapour deposition (CVD) technique. Nucleation and growth of CNTs are induced by the decomposition of carbon-containing gases (CO, CO2, C2H2, etc) over a metallic catalyst at temperatures between 600°C and 1200°. CVD is a widely used technique to generate CNTs in large quantities and much progress has been made from the point of view of the yield, the synthesis costs or the purity of the products. But the great conundrum of CVD process remains the growth mechanism. A key reaction step for nanotube growth seems to be diffusion of carbon through the metal catalyst and the most active metals are iron, cobalt and nickel but their catalytic action depends on the type of precursor, the type of substrate and of the reactive gases used. Highly controversial is the actual chemical nature of the active catalyst e.g. if it is present as metal, carbide or as mixed phase. So far few investigations of the chemical and morphological evolution of the catalyst during CVD process have been performed. This thesis focuses on the evolution of nickel-, cobalt-, chromium- and molybdenum-based catalysts under a nitrogen/acetylene and a nitrogen/acetylene/ hydrogen atmosphere at 600°C and 750°C. In order to elucidate the nature of the catalyst during synthesis runs an X-ray diffractometer equipped with a heating stage and an atmosphere controlling system was used to study in-situ the evolution of metal nitrate films. Samples quenched after different pyrolysis time were investigated by SEM and TEM. The microscopic images showed that nickel, cobalt and molybdenum can act under typical nanotube synthesis conditions as catalyst for CNT nucleation and growth, but not chromium. Grain size reduction resulting from a sufficient solid volume loss during redox reactions in the catalyst precursor and the transformation of these precursors to a metallic phase are the main requirements for nanotube growth. The reaction sequences observed during the reduction of the precursor are put in relation with the nucleation and growth of nanotubes. Diffusion of carbon through the metal particle, indicated by an increase of metal cell parameters identified in diffractograms as peak shifts, was observed whenever carbon nanotubes were generated. In the nickel and cobalt system no carbide phases were detected. In contrast to the iron system, where the break-down of metastable carbides act as a second boost of nanotube formation, the appearance of carbides in the molybdenum system after 20 minutes stops further carbon nanotube growth. In any case hydrogen pre-treatment promotes nanotube growth

    INVESTIGATION OF ADSORPTION, REACTION AND CONFINEMENT OF MOLECULES IN SINGLE WALL CARBON NANOTUBES

    Get PDF
    Adsorption of simple molecules (CF4, Xe, CO2, NO and H2O) inside single wall carbon nanotubes has been investigated by means of infrared spectroscopy. It was demonstrated that confinement has a profound effect of the IR spectra of the internally adsorbed species. The spectral changes relate to the enhanced binding of the adsorbates to the nanotube interior walls and to the spatial limitations that prohibit formation of bulk-like structures.It was found that CF4 exhibits a 15 cm-1 redshift in its Ă­3 symmetric stretching mode when adsorbed on the exterior surface of closed SWNTs. Adsorption on the nanotube is accompanied by adsorption in the interior in the case of opened SWNTs and the Ă­3 mode is redshifted 35 cm-1. In addition it was shown that confined CF4 does not exhibit LO-TO splitting observed in the bulk phase. Physisorption of NO inside of carbon nanotubes results in cis-(NO)2 dimer formation for almost all adsorbed NO, indicating that confinement shifts the equilibrium according to Le Chatelier's Principle. In all cases Xe was used as a displacing agent to verify the internal adsorption. It was shown that Xe preferentially adsorbs inside nanotube displacing high coverage CF4 molecules. The externally bound adsorbates do not form a full monolayer and therefore Xe adsorbs non-competitively on empty external sites. Confinement of H2O in the nanotube interior leads to appearance of a sharp mode at 3507 cm-1 that is indicative of a weaker hydrogen bond relative to hydrogen bonding in bulk ice. Molecular simulations show that the confined water forms stacked ring structures with bulk-like intra-ring and weaker inter-ring hydrogen bonds. The spectroscopy studies of adsorption in nanotubes were accompanied by nitrogen volumetric adsorption studies of bulk nanotubes. It was demonstrated that n-nonane can be utilized as a nanotube interior blocking agent. The oxidation of SWNTs by ozone, followed by heating to remove oxidized carbon atoms as carbon oxides occurs preferentially on the outer surface of bulk samples of nanotubes. The high surface reactivity of O3 at the outer surface of a bulk nanotube sample causes this effect.It was found that CF4 exhibits a 15 cm-1 redshift in its Ă­3 symmetric stretching modewhen adsorbed on the exterior surface of closed SWNTs. Adsorption on the nanotube isaccompanied by adsorption in the interior in the case of opened SWNTs and the Ă­3 mode isredshifted 35 cm-1. In addition it was shown that confined CF4 does not exhibit LO-TO splittingobserved in the bulk phase.Physisorption of NO inside of carbon nanotubes results in cis-(NO)2 dimer formation foralmost all adsorbed NO, indicating that confinement shifts the equilibrium according to LeChatelier's Principle.In all cases Xe was used as a displacing agent to verify the internal adsorption. It wasshown that Xe preferentially adsorbs inside nanotube displacing high coverage CF4 molecules.The externally bound adsorbates do not form a full monolayer and therefore Xe adsorbs noncompetitivelyon empty external sites
    • 

    corecore