1,872 research outputs found

    Implementing ZigBee assisted power management for delay bounded communication on mobile devices

    Get PDF
    Over the years WiFi has gained immense popularity in networking devices to transfer data over short distances. WiFi communication can consume a lot of energy on battery powered devices like mobile phones. The Standard Power Saving Management(SPSM) which is part of the standard specification for wireless LAN technology has been applied widely. However, it may not deliver satisfactory energy effiiciency in many cases as the wakeup strategy adopted by it cannot adapt dynamically to traffic pattern changes. Motivated by the fact that it has been more and more popular for a mobile device to have both WiFi and other low-power wireless interfaces such as Bluetooth and ZigBee, we propose an implementation of a ZigBee-assisted Power Saving Management (ZPSM) scheme, leveraging the ZigBee interface to wake up WiFi interface based on the delay bound to improve energy efficiency. The results obtained by applying this scheme on a Linux environment shows that ZPSM can save energy significantly without violating delay requirements in various scenarios

    Implementing ZigBee-assisted power saving management for short-delay traffics

    Get PDF
    Wi-Fi transmission can consume much energy even when it has no data packet to receive or transmit. Standard power saving mode (PSM) has been used to save energy but under PSM a station cannot achieve satisfactory performance when traffic pattern changes frequently. Now that more and more mobile devices have been equipped with multiple wireless interfaces, such as Wi-Fi, Bluetooth and ZigBee, we proposed and implemented a ZigBee-assisted power saving management (ZPSM) scheme, which wakes up Wi-Fi interface on-demand to increase energy efficiency and reduce delay time. Experiments have shown that ZPSM can achieve both energy efficiency and low packet delivery delay for stations, and the scheme is feasible to implement in resource constrained mobile devices

    Interoperability and standardisation in community telecare: a review

    Get PDF

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Utilizing ZigBee Technology for More Resource-efficient Wireless Networking

    Get PDF
    Wireless networks have been an essential part of communication in our daily life. Targeted at different applications, a variety of wireless networks have emerged. Due to constrained resources for wireless communications, challenges arise but are not fully addressed. Featured by low cost and low power, ZigBee technology has been developed for years. As the ZigBee technology becomes more and more mature, low-cost embedded ZigBee interfaces have been available off the shelf and their sizes are becoming smaller and smaller. It will not be surprising to see the ZigBee interface commonly embedded in mobile devices in the near future. Motivated by this trend, we propose to leverage the ZigBee technology to improve existing wireless networks. In this dissertation, we classify wireless networks into three categories (i.e., infrastructure-based, infrastructure-less and hybrid networks), and investigate each with a representative network. Practical schemes are designed with the major objective of improving resource efficiency for wireless networking through utilizing ZigBee technology. Extensive simulation and experiment results have demonstrated that network performance can be improved significantly in terms of energy efficiency, throughput, packet delivery delay, etc., by adopting our proposed schemes

    Wireless Technologies for IoT in Smart Cities

    Full text link
    [EN] As cities continue to grow, numerous initiatives for Smart Cities are being conducted. The concept of Smart City encompasses several concepts being governance, economy, management, infrastructure, technology and people. This means that a Smart City can have different communication needs. Wireless technologies such as WiFi, ZigBee, Bluetooth, WiMax, 4G or LTE (Long Term Evolution) have presented themselves as solutions to the communication needs of Smart City initiatives. However, as most of them employ unlicensed bands, interference and coexistence problems are increasing. In this paper, the wireless technologies available nowadays for IoT (Internet of Things) in Smart Cities are presented. Our contribution is a review of wireless technologies, their comparison and the problems that difficult coexistence among them. In order to do so, the characteristics and adequacy of wireless technologies to each domain are considered. The problems derived of over-crowded unlicensed spectrum and coexistence difficulties among each technology are discussed as well. Finally, power consumption concerns are addressed.GarcĂ­a-GarcĂ­a, L.; Jimenez, JM.; Abdullah, MTA.; Lloret, J. (2018). Wireless Technologies for IoT in Smart Cities. Network Protocols and Algorithms. 10(1):23-64. doi:10.5296/npa.v10i1.12798S236410

    Analysis of key aspects to manage Wireless Sensor Networks in Ambient Assisted Living environments

    Get PDF
    Wireless Sensor Networks (WSN) based on ZigBee/IEEE 802.15.4 will be key enablers of non-invasive, highly sensitive infrastructures to support the provision of future ambient assisted living services. This paper addresses the main design concerns and requirements when conceiving ambient care systems (ACS), frameworks to provide remote monitoring, emergency detection, activity logging and personal notifications dispatching services. In particular, the paper describes the design of an ACS built on top of a WSN composed of Crossbow's MICAz devices, external sensors and PDAs enabled with ZigBee technology. The middleware is integrated in an OSGi framework that processes the acquired information to provide ambient services and also enables smart network control. From our experience, we consider that in a future, the combination of ZigBee technology together with a service oriented architecture may be a versatile approach to AAL services offering, both from the technical and business points of view
    • …
    corecore