307 research outputs found

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    대규모 다중 안테나 환경에서 낮은 복잡도의 다중 사용자 신호전송에 관한 연구

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2020. 8. 이용환.Advanced wireless communication systems may employ massive multi-input multi-output (m-MIMO) techniques for performance improvement. A base station equipped with an m-MIMO configuration can serve a large number of users by means of beamforming. The m-MIMO channel becomes asymptotically orthogonal to each other as the number of antennas increases to infinity. In this case, we may optimally transmit signal by means of maximum ratio transmission (MRT) with affordable implementation complexity. However, the MRT may suffer from inter-user interference in practical m-MIMO environments mainly due to the presence of insufficient channel orthogonality. The use of zero-forcing beamforming can be a practical choice in m-MIMO environments since it can easily null out inter-user interference. However, it may require huge computational complexity for the generation of beam weight. Moreover, it may suffer from performance loss associated with the interference nulling, referred to transmission performance loss (TPL). The TPL may become serious when the number of users increases or the channel correlation increases in spatial domain. In this dissertation, we consider complexity-reduced multi-user signal transmission in m-MIMO environments. We determine the beam weight to maximize the signal-to-leakage plus noise ratio (SLNR) instead of signal-to-interference plus noise ratio (SINR). We determine the beam direction assuming combined use of MRT and partial ZF that partially nulls out interference. For further reduction of computational complexity, we determine the beam weight based on the approximated SLNR. We consider complexity-reduced ZF beamforming that generates the beam weight in a group-wise manner. We partition users into a number of groups so that users in each group experience low TPL. We approximately estimate the TPL for further reduction of computational complexity. Finally, we determine the beam weight for each user group based on the approximated TPL.차세대 무선 통신 시스템에서 성능 향상을 위해 대규모 다중 안테나 (massive MIMO) 기술들을 사용할 수 있다. 대규모 안테나를 가진 기지국은 많은 수의 사용자들을 빔포밍 (beamforming)으로 서비스해줄 수 있다. 안테나 수가 무한히 증가함에 따라서 채널은 점근적으로 서로 직교 (orthogonal)하게 된다. 이러한 경우, 낮은 실장 복잡도를 가지는 최대 비 전송 (maximum ratio transmission)을 사용함으로써 신호전송을 최적화할 수 있다. 하지만, 현실적인 대규모 다중 안테나 환경에서는 채널 직교성이 충분하지 못하기 때문에 최대 비 전송은 간섭에 의한 성능 저하를 겪을 수 있다. 제로-포싱 (zero-forcing) 빔포밍은 간섭을 쉽게 제거할 수 있기 때문에 대규모 다중 안테나 환경에서 현실적인 선택이 될 수 있다. 하지만, 제로-포싱은 빔 가중치 (beam weight) 생성으로 인해 높은 계산 복잡도를 요구할 수 있다. 뿐만 아니라, 제로-포싱은 간섭 제거에 대한 대가로 심각한 성능 저하 (즉, transmission performance loss; TPL)를 겪을 수 있다. TPL은 사용자 수가 많거나 채널의 공간 상관도가 클 때 더 심각해질 수 있다. 본 논문에서 대규모 다중 안테나 환경에서 낮은 복잡도의 다중 사용자 신호전송을 고려한다. 제안 기법은 신호-대-간섭 및 잡음 비 (signal-to-interference plus noise ratio) 대신 신호-대-유출 및 잡음 비 (signal-to-leakage plus noise ratio)를 최대화하는 빔 가중치를 결정한다. 제안 기법은 최대 비 전송과 간섭을 선택적으로 제거하는 부분 제로-포싱 (partial zero-forcing)의 사용을 기반으로 빔 방향을 결정한다. 계산 복잡도를 더 감소시키기 위해서, 제안 기법은 근사화된 신호-대-유출 및 잡음비를 사용하여 빔 가중치를 결정한다. 본 논문에서 그룹 기반으로 빔 가중치를 생성하는 낮은 복잡도의 제로-포싱 빔포밍 전송을 고려한다. 제안 기법은 사용자들이 낮은 TPL을 갖도록 사용자들을 다수의 그룹으로 분리시킨다. 계산 복잡도를 더 감소시키기 위해서, 제안 기법은 TPL을 근사적으로 추정한다. 마지막으로, 제안 기법은 근사화된 TPL을 기반으로 형성된 각 사용자 그룹에 대하여 빔 가중치를 결정한다.Chapter 1. Introduction 1 Chapter 2. System model 10 Chapter 3. Complexity-reduced multi-user signal transmission 15 3.1. Previous works 15 3.2. Proposed scheme 24 3.3. Performance evaluation 47 Chapter 4. User grouping-based ZF transmission 57 4.1. Spatially correlated channel 57 4.2. Previous works 59 4.3. Proposed scheme 66 4.4. Performance evaluation 87 Chapter 5. Conclusions and further research issues 94 Appendix 97 A. Proof of Lemma 3-4 97 B. Proof of Lemma 3-5 100 C. Proof of strict quasi-concavity of SLNR_(k) 101 References 103 Korean Abstract 115Docto

    An Overview of Massive MIMO Technology Components in METIS

    Get PDF
    As the standardization of full-dimension MIMO systems in the Third Generation Partnership Project progresses, the research community has started to explore the potential of very large arrays as an enabler technology for meeting the requirements of fifth generation systems. Indeed, in its final deliverable, the European 5G project METIS identifies massive MIMO as a key 5G enabler and proposes specific technology components that will allow the cost-efficient deployment of cellular systems taking advantage of hundreds of antennas at cellular base stations. These technology components include handling the inherent pilot-data resource allocation trade-off in a near optimal fashion, a novel random access scheme supporting a large number of users, coded channel state information for sparse channels in frequency-division duplexing systems, managing user grouping and multi-user beamforming, and a decentralized coordinated transceiver design. The aggregate effect of these components enables massive MIMO to contribute to the METIS objectives of delivering very high data rates and managing dense populations

    Spatial modulation schemes and modem architectures for millimeter wave radio systems

    Get PDF
    The rapid growth of wireless industry opens the door to several use cases such as internet of things and device-to-device communications, which require boosting the reliability and the spectral efficiency of the wireless access network, while reducing the energy consumption at the terminals. The vast spectrum available in millimeter-wave (mmWave) frequency band is one of the most promising candidates to achieve high-speed communications. However, the propagation of the radio signals at high carrier frequencies suffers from severe path-loss which reduces the coverage area. Fortunately, the small wavelengths of the mmWave signals allow packing a large number of antennas not only at the base station (BS) but also at the user terminal (UT). These massive antenna arrays can be exploited to attain high beamforming and combining gains and overcome the path-loss associated with the mmWave propagation. In conventional (fully digital) multiple-input-multiple-output (MIMO) transceivers, each antenna is connected to a specific radio-frequency (RF) chain and high resolution analog-to-digital-converter. Unfortunately, these devices are expensive and power hungry especially at mmWave frequency band and when operating in large bandwidths. Having this in mind, several MIMO transceiver architectures have been proposed with the purpose of reducing the hardware cost and the energy consumption. Fully connected hybrid analog and digital precoding schemes were proposed in with the aim of replacing some of the conventional RF chains by energy efficient analog devices. These fully connected mapping requires many analog devices that leads to non-negligible energy consumption. Partially connected hybrid architectures have been proposed to improve the energy efficiency of the fully connected transceivers by reducing the number of analog devices. Simplifying the transceiver’s architecture to reduce the power consumption results in a degradation of the attained spectral efficiency. In this PhD dissertation, we propose novel modulation schemes and massive MIMO transceiver design to combat the challenges at the mmWave cellular systems. The structure of the doctoral manuscript can be expressed as In Chapter 1, we introduce the transceiver design challenges at mmWave cellular communications. Then, we illustrate several state of the art architectures and highlight their limitations. After that, we propose scheme that attains high-energy efficiency and spectrum efficiency. In chapter 2, first, we mathematically describe the state of the art of the SM and highlight the main challenges with these schemes when applied at mmWave frequency band. In order to combat these challenges (for example, high cost and high power consumption), we propose novel SM schemes specifically designed for mmWave massive MIMO systems. After that, we explain how these schemes can be exploited in attaining energy efficient UT architecture. Finally, we present the channel model, systems assumptions and the transceiver devices power consumption models. In chapter 3, we consider single user SM system. First, we propose downlink (DL) receive SM (RSM) scheme where the UT can be implemented with single or multiple radio-frequency chains and the BS can be fully digital or hybrid architecture. Moreover, we consider different precoders at the BS and propose low complexity and efficient antenna selection schemes for narrowband and wideband transmissions. After that, we propose joint uplink-downlink SM scheme where we consider RSM in the DL and transmit SM (TSM) in the UL based on energy efficient hybrid UT architecture. In chapter 4, we extend the SM system to the multi-user case. Specifically, we develop joint multi-user power allocation, user selection and antenna selection algorithms for the broadcast and the multiple access channels. Chapter 5 is presented for concluding the thesis and proposing future research directions.Considerando los altos requerimientos de los servicios de nueva generación, las infraestructuras de red actual se han visto obligadas a evolucionar en la forma de manejar los diferentes recursos de red y computación. Con este fin, nuevas tecnologías han surgido para soportar las funcionalidades necesarias para esta evolución, significando también un gran cambio de paradigma en el diseño de arquitecturas para la futura implementación de redes.En este sentido, este documento de tesis doctoral presenta un análisis sobre estas tecnologías, enfocado en el caso de redes inter/intra Data Centre. Por consiguiente, la introducción de tecnologías basadas en redes ópticas ha sido estudiada, con el fin de identificar problemas actuales que puedan llegar a ser solucionados mediante el diseño y aplicación de nuevas técnicas, asimismo como a través del desarrollo o la extensión de los componentes de arquitectura de red.Con este propósito, se han definido una serie de propuestas relacionadas con aspectos cruciales, así como el control de dispositivos ópticos por SDN para habilitar el manejo de redes híbridas, la necesidad de definir un mecanismo de descubrimiento de topologías ópticas capaz de exponer información precisa, y el analizar las brechas existentes para la definición de una arquitectura común en fin de soportar las comunicaciones 5G.Para validar estas propuestas, se han presentado una serie de validaciones experimentales por medio de escenarios de prueba específicos, demostrando los avances en control, orquestación, virtualización y manejo de recursos con el fin de optimizar su utilización. Los resultados expuestos, además de corroborar la correcta operación de los métodos y componentes propuestos, abre el camino hacia nuevas formas de adaptar los actuales despliegues de red respecto a los desafíos definidos en el inicio de una nueva era de las telecomunicaciones.Postprint (published version
    corecore