37 research outputs found

    Bogdanov–Takens and triple zero bifurcations in general differential systems with m delays

    Get PDF
    This paper mainly concerns the derivation of the normal forms of the Bogdanov–Takens (BT) and triple zero bifurcations for differential systems with m discrete delays. The feasible algorithms to determine the existence of the corresponding bifurcations of the system at the origin are given. By using center manifold reduction and normal form theory, the coefficient formulas of normal forms are derived and some examples are presented to illustrate our main results

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    Non-reciprocal phase transitions

    Full text link
    Out of equilibrium, the lack of reciprocity is the rule rather than the exception. Non-reciprocal interactions occur, for instance, in networks of neurons, directional growth of interfaces, and synthetic active materials. While wave propagation in non-reciprocal media has recently been under intense study, less is known about the consequences of non-reciprocity on the collective behavior of many-body systems. Here, we show that non-reciprocity leads to time-dependent phases where spontaneously broken symmetries are dynamically restored. The resulting phase transitions are controlled by spectral singularities called exceptional points. We describe the emergence of these phases using insights from bifurcation theory and non-Hermitian quantum mechanics. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these non-reciprocal systems range from active time-(quasi)crystals to exceptional-point enforced pattern-formation and hysteresis. Our work paves the way towards a general theory of critical phenomena in non-reciprocal matter.Comment: Supplementary movies at https://home.uchicago.edu/~vitelli/videos.htm
    corecore