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a b s t r a c t

In this paper, we review several results from singularly perturbed differential equations with multiple
small parameters. In addition, we develop a general conceptual framework to compare and contrast the
different results by proposing a three-step process. First, one specifies the setting and restrictions of
the differential equation problem to be studied and identifies the relevant small parameters. Second,
one defines a notion of equivalence via a property/observable for partitioning the parameter space
into suitable regions near the singular limit. Third, one studies the possible asymptotic singular
limit problems as well as perturbation results to complete the diagrammatic subdivision process. We
illustrate this approach for two simple problems from algebra and analysis. Then we proceed to the
review of several modern double-limit problems including multiple time scales, stochastic dynamics,
spatial patterns, and network coupling. For each example, we illustrate the previously mentioned
three-step process and show that already double-limit parametric diagrams provide an excellent
unifying theme. After this review, we compare and contrast the common features among the different
examples. We conclude with a brief outlook, how our methodology can help to systematize the field
better, and how it can be transferred to a wide variety of other classes of differential equations.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Effectively all problems arising from science and engineering
re studied by only considering a suitably reduced model of
eality. In particular, we would often like to reduce differential
quations by assuming that certain physical effects or external
nfluences do not play a major role for the scientific question of
nterest. Yet, this implicitly supposes we can also show that the
erms we do neglect are in some sense ‘‘small’’ so that they do not
hange the answers to the relevant scientific questions. There is
vast number of differential equations where direct approaches
o remove small parameters fail and non-trivial correction terms
ppear when perturbing away from the limit. These differential
quations are often called singularly perturbed. A single generally
ccepted definition of ‘‘singularly perturbed’’ does not exist as
ome definitions are too narrow, others are too broad. Here, we
dopt a pragmatic approach and define a singularly-perturbed
ifferential equation as one where taking the small parameter
o zero yields a differential equation within a different struc-
ural class. Doubly-singular differential equations are then those,
here two small parameters lead each in the singular limit to
different structural problem class. From a practical viewpoint,

he first step is to identify the origins of small parameters which
ontrol the strength of the terms we want to neglect. Some typical
xamples appearing in the context of differential equations are:

• Time Scale Separation: Two, or more, sets of variables evolve
at different rates.

• Noise Level: Finite-size effects or external forces are modeled
via noise.

• Spatial Scale Separation: Two, or more, sets of variables have
differing spatial scales.

• Network Coupling: Operating a system within a network
leads to new coupling dependencies.

In this paper, we are going to focus on these areas to illus-
rate the types of results one can obtain for (multiple) small
arameters. Of course, there are many other areas in differential
quations, where small parameters appear, for example:

• Discretization Size: Temporal and/or spatial discretization
leads to small parameters.

• Inverse Particle Number: One wants to convert finite systems
to a continuum model.

• Interfaces: Interfaces or boundary layers are often small.
• Nonlocal Coupling: Local derivatives are augmented by global

integral terms.
• Nonsmoothness: Functions are taken smooth outside of small

subsets of space.
• Time Delay: (Small) communication delay induces a time

history dependence.
• Near-Symmetry: A system might be very close to a symmet-

ric one.
• Near-Integrability: Perturbations of integrable and/or Hamil-

tonian systems are well-studied.

Even the combination of the two previous lists is just a re-
stricted snapshot of all potential cases where small parameters
may appear. From a historical perspective, small parameters in
differential equations are a quite classical topic that can be traced
back at least to the end of the 19th century. Among the first
2

applications were celestial mechanics [1] and fluid dynamics [2].
In celestial mechanics, since the two-body problem is solvable,
the three-body problem lends itself to consider singular per-
turbations by assuming two large mass bodies and one very
small mass. In fluid mechanics, assuming very large viscosity
is helpful as this assumption usually precludes the existence of
turbulent flow. In the limited space of this work, it is impossible
to give proper credit to the very successful, long, and sometimes
winding, history of singular perturbations in celestial mechanics
and fluid dynamics, so we refer to [3–6] containing excellent
historical accounts and references regarding the development of
these areas.

Within the 20th century, the use of small parameters and
perturbation techniques for differential equations has permeated
effectively all areas of science and engineering, while more re-
cently also quantitative modeling in the social sciences tends
to rely on differential equation modeling. For some pointers to
the vast literature, we refer to the books [7–20], where classical
cases of ordinary and partial differential equations (ODEs and
PDEs) with one small parameter are considered from a number
of different viewpoints. These books also contain several variants
and viewpoints on the definition of ‘‘singular perturbation’’ for
ODEs and provide an outlook to the PDE case.

Although the literature is quite detailed, it has become appar-
ent in recent years that several techniques have to be extended to
deal with more complex 21st century challenges, where differen-
tial equations and small parameters still take center stage. First,
one might wonder, why existing methods have to be developed
further? The first key reason is that mathematical modeling of
complex systems almost immediately dictates that the case of
just one small parameter is very rare. For example, it would
be very difficult to argue that global climate dynamics, socio-
economic networked systems, or neuro-mechanical as well as
systems biology problems, frequently contain just one small pa-
rameter. Second, in complex systems we often deal with many
instabilities. Each instability, even if it is localized in parameter
and phase space, leads to a delicate balance between nonlinear
terms. Hence, we cannot invoke simple principles that very stable
leading-order linear terms dominate so that small contributions
from external/internal model perturbations are irrelevant. This
entails the need for larger phase and parameter spaces [21]. In
summary, there is an imminent need to study the case of two
or more small parameters carefully to obtain a good practical
understanding of current important topics in differential equa-
tions. More precisely, we will restrict here the focus on analyzing
differential equations, where two small parameters (ε, δ) tend to
zero from above, and we want to classify different scaling regimes
for this double limit.

As one might expect, this field also has an intricate history
within several sub-disciplines of differential equations being in-
volved. This makes it often difficult to gain access and/or an
overview, when studying double limits. The most classical cases,
where two small parameters have been analyzed first, were ODEs
with a focus on direct asymptotic methods such as matching
[22–25], although more recently also more geometric ODE ap-
proaches have gained popularity, see e.g. [26–31]. Although ex-
tensions of existing approaches are often key components for our
understanding of multiple small parameters, the development is
not nearly as systematic and detailed as for just one distinguished
small parameter. One can view the situation in analogy with
several other areas of differential equations, e.g., second-order
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Fig. 1. Partitioning of the positive quadrant K near the doubly-singular limit
→ 0 and δ → 0 into three different regions (I)–(III), which are non-

quivalent under a property P . The thick lines (in blue) indicate hard boundaries
etween the different regions, e.g. between (II) and (III) there is a precise curve
eparating these regions. The thin line (in red) indicates that the boundary is
nly asymptotic up to a constant between two regions. Dashed lines (in black)
ndicate an unclassified axis (such as the vertical axis in this figure). The circle at
he origin also means that at this point a classification with respect to P is not
nown and/or may not even be possible. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this
rticle.)

calar oscillators already show a lot of interesting behavior, but
ventually one has to go beyond a widely accepted standard class.
herefore, we believe it is now time to re-think and systematize
ouble limits in differential equations. In fact, virtually within
ll areas of differential equations, multiple small parameters do
ppear. In this review, we try to reflect this broader perspective
ia several illustrating examples motivated by very different ap-
lications. We are going to describe many key challenges, where
naive direct approach of taking double limits fails.
More precisely, a common, yet highly non-trivial, situation we

ant to understand are doubly-singularly perturbed differential
quations, or more generally multiscale dynamics with multiple
mall parameters. As argued above, a unified framework to un-
erstand doubly-singular perturbations is still lacking, so this will
e our starting point. Here we make a conceptual step towards
mproving this situation.

Consider a doubly-singularly perturbed differential equation
ith two small non-negative parameters ε and δ. Often we are

nterested in the local behavior of the differential equation in the
one

:= {(ε, δ) ∈ R2
: ε ≥ 0, δ ≥ 0}

ntersected with a sufficiently small ball around the origin, i.e.,
uppose we have tried already to neglect the small parameters
ut setting ε = 0 = δ does not provide a suitable description of

the dynamics. Hence, the natural step is to try to partition K into
ifferent regions as shown in Fig. 1. To make such a partitioning
recise, we propose several steps:

(S1) Specify the setting and restrictions of the problem X to be
studied.

(S2) Define a notion of equivalence via a property/observable P
for the partitioning.

(S3) Study the possible asymptotic limit problems A to com-
plete the diagram.

In the available literature, these steps can be found in various
ncarnations and various levels of mathematical rigor. What tends
o be missing in many problems is to recognize (S1)–(S3) in a clear
ay to allow for a more comparative and systematic classification
f possible behaviors. Already very simple classical examples, as
iscussed in Section 2, show that missing small details or slight
 P

3

changes in the setting X or definition P in the steps (S1)–(S2)
can lead to completely different answers. We are going to show
in this work that if the steps (S1)–(S3) are carried out carefully
and within a uniform framework, a surprisingly coherent picture
emerges, how doubly-singularly perturbed differential equations
can be studied. The cross-connections between different classes
of effects and methods thus become more visible. Universal clas-
sification diagrams emerge that concisely make the differences
and similarities between different sub-fields of differential equa-
tions much more prominent. Of course, we are still relying on
well-established methods to carry out certain proofs or numerical
explorations, particularly in step (S3), where the common view-
point of singular perturbation theory to utilize the singular limit
ε = 0 = δ takes center stage to understand scaling relations
or 0 < ε, δ ≪ 1. From the viewpoint of singularity/bifurcation
heory for ODEs, this often means one is trying to unfold the
ynamics in a suitable neighborhood of a singular point. Yet,
he key point is to always take into account, how X , P , A are
efined, which may depend crucially on the question and/or
pplication. Indeed, this leads us beyond the notion of standard
DE classification via topological equivalence, which is not suf-
icient to fully understand double limits for different classes of
ifferential equations. In summary, we contribute to provide a
etter starting point for a systematic study of doubly-singular
imits as another unifying scientific principle in the analysis of
ifferential equations.
The remaining part of this paper is structured as follows: In

ection 2, we explain our approach via simple examples from
nalysis and algebra without a direct reference to differential
quations. The core part of this work is contained in Section 3,
here numerous classes of known results for differential equa-
ion problems are re-cast precisely in the three steps (S1)–(S3) to
rovide a general framework, which highlights the unity of area.
his includes problems from fast-slow ODE dynamics, small noise
tochastic differential equations (SDEs) and piecewise determin-
stic Markov processes (PDMPs), spatial problems arising from the
ifurcation analysis of partial differential equations (PDEs), and
problem in network dynamics. In Section 4, we then contrast
nd compare the results. Section 5 provides an outlook towards
more systematic study of multi-parameter singular limits for
ifferential equations.

. Classical examples

Before starting with the development of a singular limit analy-
is of various classes of differential equations, we illustrate some
asic principles that occur in the steps (S1)–(S3) in simpler set-
ings.

.1. Elementary algebra

Consider the root-finding problem of a very simple quadratic
olynomial

(x; ε, δ) := εx2 − δ
!
= 0. (Xrts)

For the problem (Xrts), we assume that we do not allow any co-
ordinate changes and/or preliminary algebraic scaling operations
for the problem, i.e., we want to find the roots as is. For any ε, δ >

, we have the roots x± = ±
√

δ/ε. Now it crucially depends
n the choice of the property P what a classification diagram in
form similar to Fig. 1 would look like. Suppose we take as a
efinition that two problems of the form (Xrts) are equivalent if
hey have the same property

:= cardinality{x ∈ [−1, 1] : f (x; ε, δ) = 0},
[−1,1]
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Fig. 2. Classification diagram with respect to the property P[−1,1] . In region II
we have no zeros while in region I we have two zeros (counting multiplicity).
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

where we count roots according to multiplicity. Then one just
calculates |x±|

2
= δ/ε ≤ 1 which yields δ ≤ ε. Hence, there are

just two regions in the (ε, δ)-diagram separated by the diagonal
{δ = ε}∩K. Above the diagonal, we have δ > ε so P[−1,1]|δ>ε = 0,
while on or below the diagonal we have P[−1,1]|δ≤ε = 2. Of
ourse, the point at the origin is special leading to a solution
et which is uncountable so we decide to leave it out in our
lassification; see Fig. 2.
The splitting into two main regions is also visible via consid-

ring the two singular limit problems of (Xrts), namely

lim
→0

f (x; ε, δ) = −δ
!
= 0, (Aε=0

rts )

nd

lim
→0

f (x; ε, δ) = εx2 !
= 0, (Aδ=0

rts )

here we get no roots and a double-root respectively. In sum-
ary, there is also an inherent non-commutativity in the limits.
et, the precise setting of (Xrts) and the specification P[−1,1] are
rucial. For example, if we use PR instead, looking for all the real
oots, then there is only one singular line remaining in parameter
pace given by {ε = 0, δ > 0} with no roots and the usual singular
ituation at the point (ε, δ) = (0, 0). Also, given the function

(x; ε, δ) := εx2 − δ (1)

e could have used a completely different property P to check for
quivalence. For example, we could ask for a binary classification
nd set

cvx =

{
1 if f is convex in x,
0 if f is not convex in x. (2)

Then we always have Pcvx|(ε,δ)∈K = 1 so the singular limit
lassification is somewhat trivial as shown in Fig. 3. This demon-
trates that, although many a-priori natural-looking mathemati-
al properties could be used for double limits, it is vital to have
good motivation from applications and modeling to select the
ost important ones.

.2. Elementary analysis

The issues illustrated in the last section are evidently not
imited to just purely algebraic problems. For example, let us
onsider the classical function

˜(x, y) :=

{
xy(x2−y2)
x2+y2

if (x, y) ̸= (0, 0), (Xpartials)

0 if (x, y) = (0, 0), a

4

Fig. 3. Classification diagram with respect to the property Pcvx . We just have a
single region as f (x; ε, δ) = εx2 − δ is always convex on K. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4. Classification diagram with respect to the property P∂∂ . The two regions
correspond to the two possible partial derivative values at the origin of the
function (Xpartials) given for our elementary analysis problem. The thin line (red)
could have been chosen at any fixed slope as it is an asymptotic subdividing line
of the form {δ = κε, ε > 0} for some fixed constant κ > 0. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

which is known to be a simple counter-example in the context of
Schwarz’s Theorem since the partial derivatives do not commute
at zero

− 1 = ∂xy f̃ (0, 0) ̸= ∂yx f̃ (0, 0) = 1. (3)

Evidently, we can also just understand this via double limits in
defining

f (x, y; ε, δ) :=
f̃ (x+ε,y+δ)−f̃ (x,y+δ)

εδ

+
f̃ (x,y)−f̃ (x+ε,y)

εδ
,

and then (3) just means that

lim
δ→0

lim
ε→0

f (x, y; ε, δ) ̸= lim
ε→0

lim
δ→0

f (x, y; ε, δ)

f we evaluate the two limits at (x, y) = (0, 0). Evidently the
ubdivision of the cone K again depends crucially on the choice of
he property P . However, here we shall fix the relevant property
ia second partial derivatives below.
Since we are in an analytic setting, and not in an algebraic one,

t often makes sense not to aim for a point-wise subdivision of the
one K. Instead, we are going to use an asymptotic subdivision
y assuming that δ = δ(ε) with δ ∈ C0(R+

0 ,R+

0 ) and δ(0) = 0,
hich just means that δ is a continuous function of ε vanishing
imultaneously. If we define

∂∂ := lim
ε→0

f (x, y; ε, δ(ε))|(x,y)=(0,0)

hen there are two main regions in K. Either we have δ(ε) = o(ε)
s ε → 0 (alternatively written δ ≪ ε), which yields P = −1.
∂∂
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r we have δ ≫ ε leading to P∂∂ = +1. Hence, it is natural
o divide K into two regions via a line δ = κε for a fixed
onstant κ > 0. The constant κ is somewhat arbitrary as long it is
ndependent of ε and δ so we just write for the codimension-one
ubdivision line K ∩ {ε ≃ δ}; see Fig. 4.

. Doubly-singular systems

As a next step, it is important to demonstrate that different
lasses of doubly-singularly perturbed differential equations fit
ithin and benefit from the more unified view described so far.
e shall illustrate this aspect with several very recent examples,
here one cannot only re-cast the problem within our framework
ut where the main strategy and effects become very transparent
s a result.

.1. Multiple time scale systems

We start with arguably one of the most classical [7,9,15] cases
f singular perturbation problems [5,18], namely ordinary differ-
ntial equations (ODEs) with two time scales, so-called fast-slow
ystems [11,13,32,33]. A good illustration within this context is
o consider the transcritical fast-slow bifurcation normal form
dx
dt = x′

= (x − y)(x + y) +
ε2

δ
,

dy
dt = y′

= ε,
(Xtc)

hich is a well-studied system [34]. As before, we shall assume
hat ε ≥ 0 is a small parameter and then consider the case when
≥ 0 is a second small parameter. Taking the fast subsystem

imit (Xtc) given by ε → 0 yields

x′
= x2 − y2,

y′
= 0, (Aε=0

tc,f )

hich is just a standard transcritical bifurcation with the slow
ariable y acting as a bifurcation parameter. If we re-scale time
s s := εt and take the singular limit ε → 0 again, then one
btains the slow subsystem

0 = (x − y)(x + y),
dy
ds = 1. (Aε=0

tc,s )

he fast and slow subsystems (Aε=0
tc,f )–(A

ε=0
tc,s ) already show a

ingular structure as the systems are differential equations of
ifferent types, i.e., we go from a differential equation to a param-
terized differential equation and differential algebraic equation
espectively. The algebraic constraint within the slow subsystem
s given by the critical manifold

0 := {(0, 0)} ∪ Ca−
0 ∪ Ca+

0 ∪ Cr−
0 ∪ Cr+

0

here Ca−
0 := {|x| = |y|, x < 0, y < 0}, Ca+

0 := {|x| =

|y|, x < 0, y > 0}, Cr−
0 := {|x| = |y|, x > 0, y < 0}, and

Cr+
0 := {|x| = |y|, x > 0, y > 0} are normally hyperbolic

since the linearization with respect to the fast variables yields
Dx(x2 − y2) = 2x, which is nonzero on C0 \ {(0, 0)}. The critical
manifold C0 consists of equilibrium points for the fast subsystem;
see also Fig. 5. Fenichel Theory [11,13,35] implies that there exist
associated slow manifolds Ca±

ε and Cr±
ε .

A generally very important question in many applications is
ow trajectories of fast-slow systems pass through the region
f a transcritical bifurcation of the fast subsystem; for example,
here are applications in ecology [36,37], chemistry [38], numer-
cal analysis [39], epidemiology [40] and network science [41].
uppose we start with a trajectory γ = γ (t) at a typical point
n the attracting critical manifold Ca−

0 , say γ (0) = (x(0), y(0)) =

−3, −3) for concreteness as the following arguments do not
hange up to scaling by fixed constants. By Fenichel Theory, we
5

Fig. 5. Sketch of the possible dynamics of (Xtc) in (x, y)-coordinates. The critical
manifold C0 is shown in gray (repelling parts with dashed lines and attracting
parts with solid lines). Three trajectories (green, cyan, magenta) for 0 < ε ≪ 1
re indicated for three different choices of δ (corresponding to the exchange-of-
tability, canard, and critical transition cases respectively). Double arrows show
he direction of the fast subsystem flow for orientation; the slow subsystem
ynamics on C0 is always directed upwards at unit speed. (For interpretation
f the references to colour in this figure legend, the reader is referred to the
eb version of this article.)

ave that γ (0) is O(ε)-close to the slow manifold Ca−
ε . We are

oing to define two one-dimensional sections:

− := {x = −2, y ∈ [1, 3]}, Σ+ := {x = 2, y ∈ [−1, 1]}.

ne may easily prove that the trajectory γ will first get attracted
o Ca−

ε exponentially fast and then track this manifold up to-
ards the origin due to the slow dynamics. Then there are three
ases [34]:

(I) If δ(ε) = ε(1 + O(|ε|p)), for some p > 0, then the trajectory
will intersect Σ−.

(II) If δ(ε) = ε(1 − O(|ε|p)), for some p > 0, then the trajectory
will intersect Σ+.

(III) If δ(ε) = ε(1±O(exp(−K/ε))), then the trajectory will never
intersect Σ±.

This classification is important as in case (I) we have an
xchange-of-stability as γ starts to track the attracting slow man-
fold Ca+

ε , while in case (II), there is a critical transition leading
o a jump near the fast subsystem bifurcation point. In case (III),
e have that γ starts to track the repelling branch Cr+

ε for a
low time of order O(1), which means that we have a canard
rbit [13,33,42]. Hence, since these three cases differ crucially
or application purposes, it makes sense to define a property Ptcd
y a variable having just three possible values corresponding to
he cases (I)–(III) respectively. This provides us with the double
ingular limit in the cone K shown in Fig. 6.
In particular, the line δ(ε) = ε becomes a dividing line around

which we find an asymptotically exponentially small wedge. Out-
side this wedge, we have two completely different dynamical
behaviors (I) and (II) as described above. Note that it also makes
sense to formally continue the classification of (I) and (II) onto
the two lines {ε = 0, δ > 0} and {ε > 0, δ = 0} by using
so-called candidate trajectories obtained by concatenating orbits
of the suitable fast and slow subsystem singular limit problems.
Yet, we evidently cannot make a meaningful classification at the
origin (ε, δ) = (0, 0) itself regarding our property due to the
undefined expression ε2/δ in the last term of the fast variable
dynamics in this case.

Obviously, the fast-slow normal form transcritical bifurca-
tion case we have discussed here is just one of many cases in

multiple time scale dynamics where several small parameters
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Fig. 6. Classification diagram with respect to the property Ptcd for the prob-
lem (Xtc). The three regions correspond to the cases (I)–(III) above yielding
exchange-of-stability, critical transition, and canard cases respectively. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

appear [13]. Another important system directly motivated by a
particular application to the peroxidase-oxidase reaction is the
Olsen model [43,44]. It is given by

da
ds = δ2(p1 − αa) − aby,

db
ds = ε(δε − δbx) − δaby,

ε dx
ds = −x2 + ε(b − p2)x + 3aby + ε2p4,

dy
ds = p3(x2 − y − aby),

(XOl)

here (a, b, x, y) ∈ (R+)4, we fix the parameters p1 = 0.97,
2 = 0.98, p3 = 3.93, p4 = 1.2 · 10−5 to the classical values
onsidered by Olsen [43,44] and take ε, δ as the small parameters.
hen one can prove [30] that for
2

≪ δ,

he system (XOl) exhibits non-standard, but regularly periodic,
elaxation oscillations [45]. A singular limit geometric phase
pace description [30], as well as numerical simulations [43,44]
nd numerical continuation calculations [46,47], strongly suggest
hat there are at least two further important asymptotic regimes
amely
2

≫ δ and κε2
= δ = δ(ε), κ = O(1),

s ε → 0. In these cases one observes mixed-mode oscillations
MMOs) [48] and chaotic oscillations respectively, i.e., we have
or the Olsen model

(I) ε2
≪ δ: non-standard relaxation oscillations,

(II) O(ε2) = δ: chaotic oscillations,
(III) ε2

≫ δ: mixed-mode oscillations,

hich is illustrated in Fig. 7.
If we want to distinguish the three different classes of oscil-

ation patterns (relaxation, MMO, chaos), then it does not suffice
o rely on distinguishing properties individually such as number
f maxima for one variable within a time interval Pmax, the sign
f the top/leading Lyapunov exponent PLya, or topological equiv-
lence of the phase portraits Ptop. For example, one expects that
table relaxation oscillations and MMOs may have topologically
quivalent phase portraits and negative Lyapunov exponents for
ertain parameters. Furthermore, the number of maxima is also
ot a good indicator alone as for a given initial condition and
fixed time interval it is easily conceivable that an MMO and
chaotic oscillation have the same P . Yet, suppose we fix a
max

6

Fig. 7. Classification diagram with respect to the property Posc for the prob-
em (XOl). Note that the two parabolic thin curves (red) have the same
unction form δ(ε) = κε2 just with two different constants κ > 0. The three
egions correspond to the cases (I)–(III) above yielding non-standard relaxation
scillations, MMOs, and chaotic oscillations respectively. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

eneric initial condition in the positive quadrant and a positive
ufficiently large fixed time T = Kε with a constant K > 0 such
hat for Pmax we have a fixed number Pmax = K0 > 0 for the case
of non-standard relaxation oscillations. Let us define

Posc := PmaxPLya;

then we expect that all three cases are different. Indeed, we
conjecture that

• Posc = −K0: stable non-standard relaxation oscillations;
• Posc < −K0: stable mixed-mode oscillations;
• Posc > 0: chaotic oscillations.

vidently, this is not a full classification, nor yet rigorously proven
eyond the non-standard relaxation case. However, it is very
elpful to conceptually understand the Olsen model and its anal-
sis; see Fig. 7. The difficulties of the problem are now made
recise and much more apparent. Already defining the property
can be crucial to make the mathematical analysis tractable as

roving a precise shape of a trajectory as well as an estimate of
he Lyapunov exponent are highly non-trivial for global orbits of
on-linear systems. Although methods from geometric singular
erturbation theory exist to try to deal with this situation [49], we
xpect that for the Olsen model these may have to be augmented
y computer-assisted proof techniques [50] to actually deal with
racking the dynamics in certain two- and three-dimensional re-
uced systems. As another question, Fig. 7 points us immediately
o the transition regimes, i.e., one should ask how trajectories
re deformed near the separating asymptotic boundary curves
nd what happens near/on the non-negative cone ∂K in (ε, δ)-
arameter space. Such a discussion is beyond the scope of this
ork.
For our examples so far, the second small parameter arose due

o the need to study a bifurcation problem, and the bifurcation
arameter produced a double singular limit. Yet, in many applica-
ions, there are additional ‘‘physical’’ modeling constraints, which
ead to two small parameters. A typical case is the effect of small
oise, which is going to be discussed in the next subsection.

.2. Stochastic fast-slow systems

Among the most popular models for random noise acting on
dynamical system are stochastic differential equations (SDEs)
riven by a Wiener process. There is a broad literature on such
quations, based on different approaches such as analyzing the
okker–Planck equation [51], the theory of large deviations [52],
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nd random dynamical systems [53]. Stochastic systems with
ultiple timescales have been more particularly analyzed in

16,54,55]. The stochastic dynamics near bifurcation points has
een studied, for instance, in [56–60]. A particularly important
ield of application is neuroscience. In this respect, we refer
o [61] for an overview, and to [62–70] for examples of specific
roblems involving bifurcations.
Consider a stochastic differential equation of the form

xt = f (xt , εt)dt + σdWt , (4)

where f : R2
→ R is sufficiently smooth, and Wt is a Wiener

process describing white noise. The small parameters are ε, which
measures the slow drift of the ‘‘parameter’’ y = εt , and σ , which
measures the noise intensity.

In order to understand the influence of the noise on time
scales, let us start by considering the case where f = f (x) does
not depend on the second variable, and let V be a potential such
that f (x) = −V ′(x). Assume that V has a minimum at x = 0. Then
the theory of large deviations [52] implies that the probability of
a solution of the SDE starting from x0 = 0 to reach a point x in a
time of order 1 is of order e−V (x)/(2σ2), assuming V is monotonous
between 0 and x. This implies the so-called Arrhenius law [71],
which states that the expected time for the solution to reach
x has order eV (x)/(2σ2). Solutions of the SDE thus tend to spend
exponentially long time spans near stable stationary points of f .

When considering the slowly time-dependent system (4), it is
convenient to scale time by a factor ε, so that f changes by order
1 in times of order 1. The rescaled system reads

dxt =
1
ε
f (xt , t)dt +

σ
√

ε
dWt , (Xsfs)

where the factor
√

ε is due to the scaling property of the Wiener
rocess. We remark that from (Xsfs) it is clear that the problem
s singularly perturbed as it is fast-slow in ε and degenerates
rom an SDE to an ODE for σ = 0. This is also apparent in
he infinitesimal generator of the SDE (Xsfs), which is given by
σ2

2ε ∆+
1
ε
f ·∇ . The evolution of the probability density of the SDE,

as well as its exit distribution from a domain, are thus described
by parabolic or elliptic PDEs having a small parameter multiplying
the highest derivative.

Assume f has a smooth stable equilibrium branch x∗(t) acting
as a critical manifold for (Xsfs). This means that f (x∗(t), t) = 0 for
all t in some interval I , and that a∗(t) = ∂xf (x∗(t), t) is negative,
bounded away from 0 in I . In the deterministic case σ = 0, it is
ell known [35,72] that for small ε, (Xsfs) admits a so-called slow
olution x̄(t) staying at a distance of order ε from x∗(t).
Let us now fix, say, I = [0, 1], and consider the solution

f (Xsfs) starting at time 0 in x̄(0). Denote by P(σ , ε) the proba-
ility that the solution leaves a neighborhood of x̄(t) at or before

time 1. Then

(I) on one hand, the large-deviation results just mentioned
imply that when σ decreases to 0 for fixed ε > 0, P(σ , ε)
converges to 0;

(II) on the other hand, irreducibility of the Markov process
(xt )t≥0 implies that when ε decreases to 0 for fixed σ > 0,
P(σ , ε) converges to 1.

ence, the regimes (I)–(II) induce a property Psfs, which divides
he (ε, σ )-space via the escape probability. The transition be-
ween P(σ , ε) close to 0 and close to 1 occurs when ε is of order
−H/(2σ2) for an H > 0 depending on the considered neighborhood
Fig. 8).

A more precise formulation of the regime σ ↘ 0 has been
iven in [54,73]. Let B(h) be a family of strips centered in x∗(t),
f width h/

√
2|a(t)|, where a(t) = ∂ f (x̄(t), t) is the linearization
x

7

Fig. 8. Probability P(σ , ε) that a solution of the SDE (Xsfs) leaves the neighbor-
ood of a stable critical manifold in slow time of order 1, in the parameter
pace (ε, σ ). The probability is close to 0 or 1, except near the curve ε =

xp[−H/(2σ 2)]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Slow passage through a transcritical bifurcation. The blue curve is a
deterministic solution of (Xtcs) with σ = 0, which stays at distance at most
of order

√
ε from the stable critical curve x∗

+
(t) = |t|. Red paths sketch the

behavior of typical stochastic solutions xt , in parameter regimes (I) (upper path)
and (II) (lower path). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

of f at the slow solution. These strips act as a kind of ‘‘confidence
intervals’’, in the sense that the probability Pt (h, σ , ε) of leaving
(h) before time t satisfies

t (h, σ , ε) ≃

[
1
ε

∫ t

0
|a(s)|ds

]
h
σ
e−h2/(2σ2) (5)

as long as t ≪ εech
2/σ2

for some constant c > 0 (see
[54, Theorem 3.1.10] for a precise formulation). Choosing h of
rder σ

√
2 log(t/(εp)), we obtain Pt (h, σ , ε) ≃ p, so that B(h) is

indeed a confidence strip at level p.
This first example of a two-scale behavior for an SDE is some-

what atypical compared to other examples given in this review,
in the sense that the transition between qualitatively different
regimes occurs when ε is exponentially small in σ . Of course, one
can ‘‘regularize’’ things by writing ε = e−λ/σ2

and describing the
behavior in terms of λ and σ . This is the approach adopted in [74]
for instance.

More standard examples of double limits can however be
found in the vicinity of bifurcation points. Consider for instance
the fast-slow SDE (Xsfs)

dxt =
1
ε
(t2 − x2t )dt +

σ
√

ε
dWt , (Xtcs)

which is a stochastic version of (Xtc). The critical manifold of the
deterministic equation εẋ = t2−x2 is composed of a stable branch
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Fig. 10. The probability Ptrans that the solutions xt of Eq. (Xtcs) starting on
he stable slow solution x̄(t) becomes negative behaves differently in the two
hown parameter regions. In Region (I), Ptrans has order exp[−ε3/2/σ 2

], while in
egion (II), 1 − Ptrans has order exp[−σ 4/3/(ε log(σ−1))]. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

x = x∗
+
(t) = |t| : t ̸= 0} and an unstable branch {x = x∗

−
(t) =

|t| : t ̸= 0}. It is well-known (see for instance [75]) that when
= 0, Eq. (Xtcs) admits a slow solution x̄(t) of order max{|t|,

√
ε}.

his solution tracks the stable branch x∗
+
(t) at a distance of order

/max{|t|,
√

ε} (Fig. 9).
In the case σ > 0, we can define as above a strip B(h) centered

in the slow solution x̄(t), and of width h/
√
2|a(t)|. Note that this

ime, the linearization |a(t)| has order max{|t|,
√

ε}. The width of
(h) is maximal near t = 0, where it has order h/ε1/4. It turns
ut that one then has two qualitatively different situations [76]:

(I) If σ ≪ ε3/4, we can take h of order ε3/4 and still have a strip
B(h) staying away from the origin. One can then show that
the probability of a solution of (Xtcs) leaving B(h) before, say,
time 1, has order exp[−h2/(2σ 2)] = exp[−ε3/2/σ 2

], which
is exponentially small in this regime.

(II) If σ ≫ ε3/4, on the other hand, any strip B(h) with h ≥ σ

intersects the t-axis already at or before a time of order
−σ 2/3. One can then show that it is very likely that the
solution xt becomes negative, of order 1, shortly after time
−σ 2/3. The probability that xt remains positive up to time 1
has order e−σ4/3/(ε log(σ−1)).

One can summarize the difference between the two regimes
y considering the transition probability

trans(σ , ε) = P(x̄(t0),t0)
{
∃t ≤ 1 : xt = −1

}
, (6)

here the superscript (x̄(t0), t0) indicates the initial condition. For
egative t0 of order 1, we have

trans(σ , ε)

{
≤ e−κε3/2/σ2

in Regime (I) ,

≥ 1 − e−κσ4/3/(ε log(σ−1)) in Regime (II) ,
(7)

or a constant κ > 0 (Fig. 10). Hence, we can again use a suitable
ransition probability to define a property Ptcs, which provides at
east two clearly distinct asymptotic regimes (I)–(II) in the double
imit. See [54, Theorems 3.5.1 and 3.5.2] for precise formulations
f these results.
An interesting generalization of Example (Xtcs) is the SDE

xt =
1
ε
(t2 − x2t + δ)dt +

σ
√

ε
dWt , (Xtcd)

where the parameter δ > 0 plays the same role as ε/δ in (Xtc).
Note that we are now dealing with three small parameters ε, σ ,
nd δ. The critical manifolds are given here by x∗

±
(t) = ±

√
t2 + δ,

so that they do not quite touch: their minimal distance is 2
√

δ.
8

Fig. 11. (ε, σ )-parameter plane for the SDE (Xtcd) describing an avoided tran-
scritical bifurcation, for a fixed δ > 0. In Region (I), the transition probability
Ptrans has order exp[−max{ε, δ}3/2/σ 2

], while in Region (II), 1− Ptrans has order
exp[−σ 4/3/(ε log(σ−1))]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

A similar analysis as for the transcritical bifurcation (Xtcs) can
be made, and results in the following case distinction (Fig. 11,
see [76, Theorems 2.6 and 2.7] for precise formulations):

(I) If σ ≪ max{ε, δ}3/4, solutions tend to stay near the slow
solution x̄(t) tracking x∗

+
(t), and the transition probability

Ptrans is exponentially small.
(II) If σ ≫ max{ε, δ}3/4, solutions are likely to escape to nega-

tive values of x as soon as t is slightly larger than −σ 2/3.

This results in a transition probability behaving as

trans(σ , ε)

{
≤ e−κ max{ε,δ}3/2/σ2

in Regime (I) ,

≥ 1 − e−κσ4/3/(ε log(σ−1)) in Regime (II) .
(8)

he parameter δ thus causes a saturation effect at small values
f ε.
The examples considered so far were all particular cases of

he slowly time-dependent SDE (Xsfs). Other types of bifurcations,
uch as the saddle–node bifurcation, which results in similar
egimes with different exponents, are described in [54, Chap-
er 3]. One can however also consider fully coupled fast-slow
ystems of the form

dxt =
1
ε
f (xt , yt )dt +

σ
√

ε
F (xt , yt )dWt ,

dyt = g(xt , yt )dt + σ ′G(xt , yt )dWt , (9)

where x ∈ Rm, y ∈ Rn, and Wt is a k-dimensional Wiener process.
In a similar way as for (4), one can obtain concentration results
for solutions near stable normally hyperbolic critical manifolds,
see [77].

A particularly interesting case is the stochastic FitzHugh–
Nagumo system modeling action potential dynamics of individual
neurons, investigated in [65,78]. We consider here the particular
case

dxt =
1
ε

[
xt − x3t + yt

]
dt +

σ
√

ε
dW (1)

t ,

dyt =
[
a − xt

]
dt + σdW (2)

t , (XFHs)

here W (1)
t and W (2)

t are independent Wiener processes. In the
eterministic case σ = 0, the system (XFHs) has a unique equilib-

rium point P∗
= (a, a3 − a). The eigenvalues of the linearization

at P∗ are given by

λ± =
−δ ±

√
δ2 − ε

, δ =
3a2 − 1

. (10)

ε 2
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Fig. 12. Phase space of the stochastic FitzHugh–Nagumo system (XFHs). The
separatrix is defined as the deterministic negative orbit of the local maximum
of the x-nullcline {y = x3 − x} (in blue). When P∗ is a focus, stochastic
solutions (in red) tend to perform small oscillations around P∗ before crossing
the separatrix, and making a large excursion (or spike) before returning near P∗ .
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 13. (δ, σ )-parameter plane for the stochastic FitzHugh–Nagumo SDE (XFHs),
for a fixed ε > 0. The three regions correspond to (I) rare isolated spikes, (II)
clusters of spikes, and (III) repeated spikes. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Hence P∗ is a stable node for δ >
√

ε, a stable focus for 0 < δ <

ε, an unstable focus for −
√

ε < δ < 0, and an unstable node
or δ < −

√
ε.

We are interested here in the excitable regime 0 < δ ≪ 1,
> 0. In that situation, though P∗ is stable in the deterministic

ase, it lies close to a (pseudo-)separatrix (Fig. 12). Whenever
he noise kicks it over the separatrix, the system makes a large
xcursion before returning to its rest state, producing a so-called
pike of the neuron’s membrane potential.

In [65], the authors investigated the stochastic system (XFHs)
via formal computations, and found a large number of differ-
ent parameter regimes. Some of these formal results have been
proved rigorously in [78]. One can identify three main parameter
regimes, as shown in Fig. 13:

(I) If 0 < δ <
√

ε and σ ≪ δε1/4 or if
√

ε ≤ δ ≪ 1
and σ ≪ δ3/2, the system displays rare isolated spikes
(Fig. 14-(I)). In particular, [78, Theorem 3.2] shows that if
δ/

√
ε is sufficiently small, then the expected number of

small oscillations around P∗ between two consecutive spikes
has order exp{δ2

√
ε/σ 2

}.
(II) If 0 < δ <

√
ε and δε1/4

≤ σ ≤ ε3/4, one can observe
clusters of spikes (Fig. 14-(II)). In fact, what happens is that
as σ increases, the probability that a spike is immediately
9

Fig. 14. Time series −xt of solutions to the stochastic FitzHugh–Nagumo
equation (XFHs) in three different parameter regimes. Parameter values are
ε = 0.01, δ = 0.03, and (I) σ = 0.001, (II) σ = 0.0025 and (III) σ = 0.01.

followed by another spike gradually increases like

Φ

(
−

ε1/4(δ − σ 2/ε)
σ

)
, (11)

where Φ denotes the distribution function of a standard
normal random variable. The dashed curve σ =

√
δε in

Fig. 13 corresponds to this probability being close to 1/2
(see [78, Section 5]).

(III) If 0 < δ <
√

ε and σ ≫ ε3/4 or if
√

ε ≤ δ ≪ 1 and
σ ≫ δ3/2, the system displays repeated spikes (Fig. 14-(III)),
meaning that after having spiked, it is very likely to spike
again immediately.

Note that these three regimes actually use a probabilistic
asymptotic spiking pattern to define a property PFHs to dissect
the (triple) singular limit parameter space. So the example nicely
illustrates that also on a stochastic level, one can use macroscopic
patterns, and that quite frequently even more than two small
parameters are relevant.

The behavior in regimes just described in (I)–(III) can be
considered as a stochastic instance of mixed-mode oscillations
(MMOs) [48], in which small-amplitude and large-amplitude os-
cillations alternate; cf. problem (XOl). While deterministic MMOs
often show a regular pattern, and sometimes a chaotic pattern,
in the stochastic case considered here the number of small and
large-amplitude oscillations are random variables. More intri-
cate patterns can arise near folded-node bifurcations in three-
dimensional SDEs, as for instance in the Koper model [79,80].

The examples in this subsection have shown that the interplay
between a deterministic multiple time scale system with small
noise provides a very natural class of systems, and small noise
induces a doubly singularly perturbed problem. Yet, stochastic
differential equations provide many other avenues to double
limits, even without explicit time scale separation for the drift.
This is illustrated by the next subsection.

3.3. Shear-induced chaos

In this section, we consider the interaction of shear forces and
stochastic noise that can generate a switching from synchroniza-
tion to chaotic behavior in stochastic oscillators. The onset of
chaos by an interplay of shear and, typically small, noise has been
broadly discussed within the context of stochastic Hopf bifur-
cation [81–87], with important connections to coupled (neural)
oscillators [88–91] and questions around the role of noise and
chaos in (turbulent) fluid flows [92–95]. Note that the idea of
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dding small noise to prove chaotic properties in the determin-
stic zero-noise limit has become an important tool in dynamical
ystems theory in recent years [96–99].
As a basic toy model (cf. [100]), we consider the SDE, written

n Stratonovich form,

dy = −αy dt + σ
∑m

i=1 fi(ϑ) ◦ dW i
t ,

dϑ = (1 + by) dt ,
(Xsic)

where (y, ϑ) ∈ R × S1 are cylindrical amplitude-phase coordi-
nates, m ≥ 1 is a natural number, and W i

t for i ∈ {1, . . . ,m}

denote independent one-dimensional Brownian motions. We will
assume that α, σ , b ≥ 0, i.e. all parameters are non-negative.

When there is no noise (σ = 0), the SDE (Xsic) yields in
its singular limit an ODE, which has a globally attracting limit
cycle at y = 0 with contraction rate α > 0; for α = 0, every
trajectory is a periodic orbit at some y ∈ R. In the presence
of noise (σ > 0), the amplitude direction is driven by phase-
dependent random perturbations. The real parameter b induces
an effect which is often called shear: if b > 0, the phase velocity
depends on the amplitude y. Note that for α = 0, the drift
term of the y-component vanishes, while the second component
has no noise component. This yields a very non-generic/singular
coupling between a pure drift SDE and an ODE.

In the tradition of random dynamical systems theory [53], and
in contrast to the sample paths approach in the last subsection,
we now compare trajectories with different initial conditions
but driven by the same noise. As trajectories depend on the
noise realization, one cannot expect any convergent behavior of
individual trajectories to a fixed attractor. An alternative point
of view avoiding this problem is to consider, for a fixed noise
realization in the past, the flow of a set of initial conditions from
time t = −T to a fixed endpoint in time, say t = 0, and then take
the (pullback) limit T → ∞. If trajectories of initial conditions
converge under this procedure to some set, then this set is called
a random pullback attractor, or simply random attractor.

Typically, one can observe two different scenarios generated
by the impact of noise on a stable limit cycle, as in model (Xsic)
with α > 0: either synchronization of trajectories towards a
random equilibrium (see Fig. 15(a)–(c)), or separation of trajec-
tories within an attracting object, a random strange attractor
with fractal properties (see Fig. 15(d)–(f)). The crucial quantity
for determining the character of the dynamics is the sign of the
first Lyapunov exponent λ1 = λ1(α, b, σ ) with respect to the
ergodic invariant measure of the random system. The quantity
λ1 can be summarized as the dominant infinitesimal asymptotic
growth rate of almost all trajectories.

The mechanism, whereby a combination of shear and noise
leads to a positive Lyapunov exponent, was described as shear-
induced chaos [86]. The noise perturbations drive some points of
the deterministic limit cycle up and some down on the cylinder.
Due to the phase–amplitude coupling b, the points with larger
y-coordinates move faster in the ϑ-direction. At the same time,
the dissipation force with strength α attracts the curve back to
the limit cycles. This provides a mechanism for stretching and
folding characteristic of chaos. The transition to chaos in the
continuous time stochastic forcing is much faster than in the
case of, e.g., periodic kicks [86]. This is due to the fact that
points end up in areas with arbitrarily large values of y with
positive probability such that already small shear can generate
the described stretching and folding.

The validity of this mechanism has first been demonstrated
analytically [101–103] in the case of periodically kicked limit cy-
cles, including probabilistic characterizations of the dynamics. An
analytical proof of shear-induced chaos in the stochastic setting
10
Fig. 15. Pullback attraction to random equilibrium (a)–(c) for model (Xsic) with
σ = 0.5, α = 1.5, b = 3 such that λ1 < 0, and to random strange attractor
d)–(f) for σ = 2, α = 1.5, b = 3 such that λ1 > 0.

as developed in [100]. Based on a specific machinery to explic-
tly express Lyapunov exponents for noisy oscillators [104,105]
ne can provide the formula

1(α, b, σ ) = −
α

2
+

bσ
2

∫
∞

0
v mσ ,b,α(v) dv , (12)

2(α, b, σ ) = −
α

2
−

bσ
2

∫
∞

0
v mσ ,b,α(v) dv , (13)

here

σ ,b,α(v) =

1
√

v
exp

(
−

bσ
6 v3

+
α2

2bσ v

)
∫

∞

0
1

√
u exp

(
−

bσ
6 u3 +

α2

2bσ u
)
du

, (14)

and λ2 is the second Lyapunov exponent, which is always nega-
tive unless α = σ = 0. Furthermore, one can prove the following
result [100]: assume the functions fi : S1

≃ [0, 1) → R to
be C2,κ for some 0 < κ ≤ 1 to guarantee differentiability of
the random dynamical system (see [53, Theorem 2.3.32]), and, to
make explicit calculations possible, assume m ≥ 2 with

m∑
i=1

f ′

i (ϑ)2 = 1 for all ϑ ∈ S1 . (15)

Then there is c0 ≈ 0.2823 such that for all α, b > 0, the number

σ0(α, b) =
α3/2

c1/20 b
> 0, (16)

is the unique value of σ where the top Lyapunov exponent
λ1(α, b, σ ) of (Xsic) changes sign:

λ1(α, b, σ )

⎧⎨⎩
< 0 if 0 < σ < σ0(α, b) ,
= 0 if σ = σ0(α, b) ,
> 0 if σ > σ0(α, b) .

n particular, we can just use the sign of the top Lyapunov
xponent as a definition of a property Psic for the shear-induced
haos problem (Xsic). Fig. 16 shows the graph of σ0 for 0 ≤ α ≤ 1
and fixed b = 1. Note that for b, σ ̸= 0, we can always conduct
a change of variables in the amplitude variable y to rescale the
shear parameter b to 1 and the effective noise amplitude to σb.
Hence, the above result and the corresponding illustration in
Fig. 16 hold in precisely the same way, when the roles of σ and
b are exchanged.

For all fixed α > 0, if σ = 0, i.e., in the zero-noise limit, we
clearly have λ1 = 0, now seen as the leading Lyapunov expo-
nent associated with the attracting deterministic limit cycle. The
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Fig. 16. Fixing b = 1 in model (Xsic), the figure shows the areas of negative (I)
and positive (II) λ1 in the (α, σ )-parameter space being separated by the curve
{(α, σ0(α, 1))} (III) of λ1 being zero, using formula (16) for σ0 . (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

convergence can also be seen by a different form of formula (12),
which is obtained by a change of variables as

λ1(α, b, σ ) =
α

2

(∫
∞

0
u m̃σ ,b,α(u) du − 1

)
, (17)

here

˜ σ ,b,α(u) =

1
√
u exp

(
−

α3

σ2b2
[ 1
6u

3
−

1
2u

])
∫

∞

0
1

√
w
exp

(
−

α3

σ2b2
[ 1
6w

3 −
1
2w

])
dw

.

ence, there is a continuous transition back to situation (III) at the
-axis. When α = 0 but σ > 0, dissipativity and the existence

of a random attractor are lost and the system becomes volume-
preserving. Still, the associated first Lyapunov exponent λ1 is
positive and the σ -axis belongs to situation (II), as can be easily
seen from formula (12). The origin (σ , α) = (0, 0) itself belongs to
(III). This gives a full categorization of model (Xsic) in terms of the
first Lyapunov exponent under the double limit of the parameters
σ , b on the one side and α on the other.

Generally, shear-induced chaos can take more complicated
forms with more nonlinearities. A paradigm problem is the nor-
mal form of a Hopf bifurcation with additive noise

dx = (αx − βy − (ax − by)(x2 + y2)) dt + σ dW 1
t ,

dy = (αy + βx − (bx + ay)(x2 + y2)) dt + σ dW 2
t ,

(XsH)

where σ ≥ 0 is the strength of the noise, α ∈ R equals the
eal part of eigenvalues of the linearization of the vector field
t (0, 0), b ∈ R represents shear strength, β ∈ R is the linear
omponent of rotational speed and W 1

t ,W 2
t denote independent

ne-dimensional Brownian motions. For α > 0, the deterministic
ystem (σ = 0) possesses a limit cycle at radius

√
α/a, for any

ixed a > 0, with linear contraction rate −2α.
The model has been studied in [85,106,107] with various, pre-

ominantly numerical, approaches to describing shear-induced
haos. Hence, it again makes sense to define PsH via the sign of the
irst Lyapunov exponent. For (XsH), only the case of synchroniza-
ion, i.e. λ1 < 0, has been proven analytically [85]. The change
f sign of λ1 to positive values is only proven in the particular
ontext of the conditioned Lyapunov exponent [108], considering
he random dynamics on a bounded domain with killing at the
oundary, by conducting a computer-assisted proof [109]. An
xplicit formula as before seems out of scope for system (XsH)
n the whole domain.
However, there are two small parameter results that give some

ndication concerning the question of double limits in this case
nd demonstrate the differences to the cylinder model. Firstly, it
as shown in [106] and then further elaborated in [85] that for
ny fixed a > 0, b <

√
2a and α smaller than a given bound
11
Fig. 17. Fixing all other parameters in model (XsH), in particular b ≫
√
2a, we

onsider the (α, σ )-parameter space for α, σ sufficiently small, and can associate
he area beneath the diagonal with negative λ1 (I) and the α-axis, including the
rigin, with λ1 = 0 (III). (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)

epending on all other parameters, the first Lyapunov exponent
s negative, i.e. λ1 < 0. This means that for the case b, α → 0 we
ill always be in scenario (I), in contrast to model (Xsic) where
cenario (II) can happen in the double-limiting case, as illustrated
n Fig. 16 — recall that σ and b are interchangeable in this case
nd the same formula and corresponding figure are also true for
eplacing σ by b. This does not transfer to the more compli-
ated, highly nonlinear situation of model (XsH). Secondly, DeVille
t al. [106] demonstrate that λ1 < 0 for σ a

α
→ 0. This allows us to

give at least a partial picture of the small parameter situation for
α, σ when the shear strength b ≫

√
2a is large; Fig. 17 depicts

such a sufficiently small domain in parameter space. Analytical
approximation of other areas than the one beneath the diagonal
seems out of reach with current methods.

The examples involving SDEs have shown clearly that small
noise is a common source of double limits. Yet, SDEs still carry
some regularity due to the (almost 1/2-Hölder) continuous input.
The next subsection illustrates that even for stochastic switching
problems one can frequently identify double limits.

3.4. Piecewise deterministic processes

Piecewise deterministic processes are stochastic processes
that evolve deterministically on most time intervals of short
length; random events occur instantaneously and come for ex-
ample in the shape of random switches between several driving
vector fields, or jumps to randomly chosen sites of the phase
space. In this subsection, we will consider two instances of piece-
wise deterministic processes, which are induced by a parameter-
dependent differential equation with an intermittently-acting
noise that depends itself on a small parameter. We work within
the following basic framework: Let M be an open subset of Rm,

∈ N, and let u0 and u1 be smooth vector fields on M that
epend on a small positive parameter δ. In addition, assume that
or i ∈ {0, 1} and for every x0 ∈ M , the initial-value problem

ẋ(t) = ui(x(t)), t > 0,
x(0) = x0

has a unique solution x(t) = Φ t
i (x0) that is defined for all t ≥ 0.

Consider the differential equation

dx
dt

= U(ω, x(t), t), (Xpd)

where ω is a realization of a continuous-time Markov chain on
0, 1} with transition rates

λ0 = lim
P(ωt = 1|ω0 = 0)

, λ1 = lim
P(ωt = 0|ω0 = 1)

,

t↓0 t t↓0 t
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(ω, x, t) :=

{
u0(x), ωt = 0,
u1(x), ωt = 1.

he differential equation in (Xpd) is thus alternately driven by the
ector fields u0 and u1, and switches between these vector fields

correspond to the jumps of a continuous-time Markov chain. The
latter being the only source of randomness, we shall assume
that the transition rates λ0 and λ1 depend on a second small
arameter ε > 0. For a typical choice of ω, the equation in (Xpd)

has a unique solution X(ω) that is defined for all t ≥ 0. The
resulting stochastic process X = (Xt )t≥0 on M can be turned
into a Markov process by adjoining the process E = (Et )t≥0
n {0, 1} defined by Et (ω) := ωt . The resulting two-component
rocess (X, E) on the state space M × {0, 1} belongs to the class

of piecewise deterministic Markov processes [110].
In line with standard terminology, a stationary distribution for

(X, E) is a probability measure µ on M×{0, 1} such that for every
Borel set A ⊂ M , i ∈ {0, 1}, and t ≥ 0,

µ(A × {i}) =

∑
j∈{0,1}

∫
M
Pt (x, j; A × {i}) µ(dx × {j}),

where (Pt )t≥0 denotes the Markov semigroup of (X, E).
Consider the dynamical system induced by randomly switch-

ing between the two-dimensional linear vector fields ui(x) = Uix,
i ∈ {0, 1}, where

U0 :=

(
−δ 1
0 −δ

)
, U1 :=

(
−δ 0
−1 −δ

)
. (Xpdl)

The switching rates are assumed to be λ0 = λ1 = ε−1, i.e., for
small ε we are in the regime of fast switching. This system be-
longs to the class of switching systems studied in [111]. Here, we
present some of the main findings from [111] using the viewpoint
of double limits in ε and δ. Note that the problem is singularly
perturbed since for ε → 0, one effectively obtains a single limit
ODE governed by the average of U0 and U1, while for δ = 0, the
individual linear vector fields give rise to ODEs whose solutions
are constant in one component.

Both U0 and U1 are defective matrices, meaning that the
eigenspaces corresponding to their only eigenvalue −δ have
dimension 1. Since −δ < 0, the equilibrium point (0, 0) shared
by u0 and u1 is globally asymptotically stable for each individual
ODE ẋ(t) = ui(x(t)). However, as pointed out in [111,112] for the
random case, and in [113] for the deterministic case, switching
between stable ODEs may cause instability. This phenomenon
can be easily apprehended if switching takes place between
two stable vector fields that admit an unstable average. As the
switching rates tend to infinity, the random dynamics start to
resemble the deterministic dynamics governed by the unstable
average [114]. For the present system, however, the mechanism
causing instability is more subtle (Fig. 18).

Let us be more precise: We call the random dynamical system
under consideration stable if the stochastic process X on R2,
induced by alternately flowing along u0 and u1, satisfies

Px,i

(
lim
t→∞

∥Xt∥ = 0
)

= 1

for every x ∈ R2 and i ∈ {0, 1}. Here, Px,i denotes the law of the
Markov process (X, E) starting at (x, i), and ∥ · ∥ is the Euclidean
norm on R2. The random dynamical system is said to be unstable
if for every x ∈ R2

\ {(0, 0)} and i ∈ {0, 1},

Px,i

(
lim
t→∞

∥Xt∥ = ∞

)
= 1.

A priori, there may be choices of ε and δ for which the system

is neither stable nor unstable. As we are about to see, this is, at

12
Fig. 18. Sample trajectories for the vector fields u0 and u1 associated with (Xpdl).
he blue and red curves represent trajectories for u0 and u1 , respectively. If one

first flows along the blue curve towards the origin and then switches to the red
one at the point where the curves touch, one can increase the distance to the
origin. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

least generically, not the case. We want to study the property

Ppdl =

{
1 if the system is stable,
0 if the system is unstable.

It is convenient to represent the stochastic process X in polar
coordinates (see [115] on the utility of polar decomposition for
the study of Lyapunov exponents). Following [112], one defines
the radial process Rt := ∥Xt∥ and the angular process At :=

Xt/∥Xt∥ whenever Xt ̸= (0, 0). The two-component process (A, E)
on S1 × {0, 1} is then again a piecewise deterministic Markov
process characterized by random switching between the vector
fields θ ↦→ sin2(θ ) and θ ↦→ cos2(θ ), where S1 is identified with
the interval [0, 2π ). According to [111, Lemma 3.2], (A, E) admits
a unique stationary distribution µ that is absolutely continuous
with respect to the product of arc-length measure on S1 and
counting measure on {0, 1}. In our example, µ only depends on
the switching rate, i.e., it is a function of ε while being indepen-
dent of δ. Let ρ be the probability density function of µ and let
ρi(·) := ρ(·, i) for i ∈ {0, 1}. Since µ is ε-dependent, so are ρ0 and
ρ1. Define

G(ε) :=

∫ 2π

0
(ρ0(θ ) − ρ1(θ )) cos(θ ) sin(θ ) dθ, (18)

which is set up in such a way that the integrand is positive for all
θ ∈ [0, 2π ), and thus G > 0. From [111, Lemma 3.3] one obtains
the following cases:

(I) If δ < G(ε), then Ppdl = 0.
(II) If δ > G(ε), then Ppdl = 1.

There are explicit formulae for ρ0 and ρ1 [111]. Together with (18),
this yields a reasonably explicit representation for the threshold
function G that is in principle amenable to asymptotic analysis.

If δ = 0, ε > 0, the process X alternately moves along lines
parallel to the x-axis and lines parallel to the y-axis. It is not hard
to see that [111, Lemma 3.3] remains valid in this limiting case.
Since G(ε) > 0, one has Ppdl = 0.

If ε = 0, the process X is not well-defined because the
switching rates are infinite. It does, however, make sense to study
the limiting behavior of the random dynamical system as ε → 0.
According to [111, Thm. 2.5], for ε sufficiently small (with the
required smallness depending on δ), one has Ppdl = 1. This
implies that limε→0 G(ε) = 0.

Finally, we examine the situation when δ = 0 and ε → 0. In
the classification diagram in Fig. 19, this corresponds to approach-
ing the origin along the ε-axis. By the averaging principle alluded
to earlier [114, Thm. 2.1], the process X converges in probabil-
ity, uniformly on compact time intervals, to the deterministic
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Fig. 19. Classification diagram with respect to the property Ppdl . The two regions
(I) and (II) correspond to the cases (I) (stable) and (II) (unstable). The blue
curve separating the regions (I) and (II) represents the graph of G. We have
not attempted to accurately render the asymptotic behavior for the graph of G
here. On the δ-axis, the problem is not well-defined, which makes a classification
impossible. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

solution of the averaged problem

ẋ(t) =
1
2
(U0 + U1)x(t) =

(
0 1/2

−1/2 0

)
x(t),

(0) =x0.

The matrices U0 and U1 contribute equally to the averaged matrix
1
2 (U0 + U1) because λ0 = λ1. The eigenvalues of the averaged
atrix are ±

i
2 , with zero real part. In this doubly singular sit-

ation, the previously observed dichotomy is broken: For every
0 ̸= 0, the trajectory of the solution to the averaged problem is
periodic orbit, more precisely a circle of radius ∥x0∥ centered at

the origin.
As second example for a piecewise deterministic Markov pro-

cess, we are going to use a logistic growth model with random
switching. Just as our first example, this Markov process is char-
acterized by random switching between two vector fields with
a critical point in common. Unlike the first example, though, the
vector fields share a compact trapping region of positive Lebesgue
measure that gives rise to a nontrivial stationary distribution.

The logistic model is a classical model for the growth of a
population that is limited by the capacity of the environment
to sustain the population. The model is described by the logistic
differential equation ẋ(t) = U(x(t), r, p), where

U(x, r, p) := rx(1 − x/p).

The time-dependent variable x represents the population size.
The parameters r (the growth rate) and p (the carrying capacity)
are assumed to be positive.

We consider the dynamical system induced by randomly
switching between the logistic vector fields

u0(x) := U(x, δ, 1),
u1(x) := U(x, 1, 2), (Xpdp)

at switching rates λ0 = ε and λ1 = 1. Notice the asymmetry in
the switching rates that will lead to the system spending more
and more time in the regime governed by u0 as ε approaches 0.
In [116], random switching between the vector fields U(·, p−, p−)
and U(·, p+, p+) was studied in detail, for parameters p− < 0 and
p+ > 0 to the left and to the right of the transcritical bifurcation
at p = 0. Even though the present setting is somewhat different,
we will follow [116] quite closely.

For r, p > 0, the logistic vector field U(·, r, p) has the equilib-
rium points 0 and p, which are unstable and asymptotically stable,
respectively. Stability of 1 and 2 for u0 and u1 implies that the
compact interval [1, 2] is positively invariant under the switching
13
Fig. 20. Classification diagram with respect to the property Pbdd . The two
egions I and II correspond to the cases (I) (bounded) and (II) (unbounded). The
lue ray separating the regions (I) and (II) belongs to region (I). The property is
ot well-defined on the axes. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

ynamics, i.e., every switching trajectory starting in [1, 2] stays in
his interval for all positive times. Since, in addition, the Markov
emigroup of (X, E) is Feller (see Proposition 2.1 in [117]), the
rylov–Bogoliubov method (Theorem 3.1.1 in [118]) yields the
xistence of a stationary distribution µ such that µ([1, 2] ×

{0, 1}) = 1. Moreover, by [119, Theorem 2] or by [117, Theorem
4.4], µ is the unique stationary distribution for (X, E) that assigns
full measure to (0, ∞)×{0, 1}. Finally, again by [119, Theorem 2],
µ is absolutely continuous with respect to the product of Lebesgue
measure on (0, ∞) and counting measure on {0, 1}. Hence, µ

admits a density ρ with respect to the latter measure.
For the invariant density ρ0(·) := ρ(·, 0), we consider the

property

Pbdd =

{
1, if ρ0 is bounded on (1, 2),
0, if ρ0 is unbounded on (1, 2).

By [120, Thm. 1], ρ0 and ρ1 := ρ(·, 1) are C∞ smooth in the
open interval (1, 2) because u0 and u1 are smooth vector fields
with no equilibrium points in (1, 2). As a result, the corresponding
probability fluxes ϕi := ρiui, i ∈ {0, 1}, satisfy the Fokker–Planck
equations [121]

ϕ′

i (x) = −

(
ε

u0(x)
+

1
u1(x)

)
ϕi(x), (19)

or all x ∈ (1, 2). The ODE in (19) has the general solution

i(x) = Cx−
ε
δ
−1(x − 1)

ε
δ (2 − x), x ∈ (1, 2),

hence

ρ0(x) =c1x−
ε
δ
−2(x − 1)

ε
δ
−1(2 − x),

ρ1(x) =c2x−
ε
δ
−2(x − 1)

ε
δ ,

for positive normalizing constant c1 and c2. These formulae for ρ0
and ρ1 show that ρ1 is always bounded on (1, 2). Furthermore, the
invariant density ρ0 has a singularity at the equilibrium point 1
of u0 if and only if ε < δ. We obtain the following cases:

(I) If δ ≤ ε, then Pbdd = 1.
(II) If δ > ε, then Pbdd = 0.

This dichotomy admits the following heuristic explanation: If
ε (the rate of switching away from the vector field u0) is small
compared to δ (the contraction rate of u0 at its equilibrium point
x = 1), then a large amount of probabilistic mass accumulates
in the vicinity of the equilibrium point; a singularity at x = 1 is
formed. Conversely, if ε is large in comparison with δ, the system
switches sufficiently often away from u to prevent a strong
0
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ccumulation of probabilistic mass near x = 1; the invariant
ensity ρ0 stays bounded (see Fig. 20).
In the singular case ε = 0, no switching away from u0 takes

lace. The process (X, E) still has a unique stationary distribution
on (0, ∞) × {0, 1}, namely the product of the Dirac measure at
x = 1 and the measure (1, 0) on {0, 1}. Of course, this distribution
o longer has a probability density function with respect to the
roduct of Lebesgue measure on (0, ∞) and counting measure on
0, 1}. It follows that the property Pbdd cannot be studied on the
-axis.
If δ = 0, the vector field u0 is constantly equal to zero. As long

s ε > 0, the system alternates between flowing along u1 and
taying put. The unique stationary distribution on (0, ∞)×{0, 1}
s then the product of the Dirac measure at the equilibrium point

= 2 of the measure ( 1
1+ε

, ε
1+ε

) on {0, 1}. Again, Pbdd cannot
e meaningfully studied. Finally, in the doubly singular case ε =

= 0, one obtains an infinite family of stationary distributions
µx)x>0, where µx is the product of the Dirac measure at x and
he measure (1, 0) on {0, 1}.

For switching systems in dimension greater than one, the set
f singularities of invariant densities can have a much richer
tructure than the one exhibited here (see [122] for a simple
et nontrivial example in 2D). This can result in more complex
lassification diagrams with respect to a suitably defined version
f Pbdd.
We conclude this subsection with some remarks on the two

xamples presented above. We also hint at additional topics in
he field of piecewise deterministic processes where double limits
ay be fruitfully studied.
In the first example, we saw that switching between vector

ields of a certain kind (stable, in our example) can result in a
ynamical system of a very different kind (unstable). In the same
ein, for a Lotka–Volterra system of two competing species, it is
hown in [123] that switching between two environments that
oth favor the same species can even lead to the extinction of
his species. The articles [123,124], and [125] together provide a
lear picture of which parameter choice results in which long-
erm behavior for the Lotka–Volterra system. It is thus possible
o represent the interplay of the parameters by a double-limit
iagram.
The boundedness property for invariant densities is straight-

orward to study for piecewise deterministic processes of spatial
imension one [120]. In higher dimensions, a regularity theory
or invariant densities is still missing. However, the double-limits
ramework can also be meaningfully applied to other ergodic
roperties, e.g., the number of stationary distributions, absolute
ontinuity of stationary distributions with respect to a suitable
eference measure, or exponential ergodicity. When it comes to
he number of stationary distributions, an essential tool is the
heory of stochastic persistence [126], which gives criteria for
he existence of a stationary distribution on the complement
f an invariant closed subset of the phase space (the so-called
xtinction set). In [127,128], this theory – originally devised for
arkov processes in general – has been further developed in the
ontext of piecewise deterministic processes.
In general, there is a lack of precise necessary conditions for

bsolute continuity and exponential ergodicity of the stationary
istribution. Besides, neither of these properties is affected by the
ates of switching, which makes it imperative to link both of the
mall parameters ε and δ to the vector fields in order to obtain
nontrivial double-limit diagram. Apart from [117,119], absolute
ontinuity for piecewise deterministic processes was studied for
nstance in [129,130], where the process X is allowed to have
umps. Sufficient conditions for exponential ergodicity in total-
ariation distance were given in [117,131], and [132]; and for

xponential ergodicity in Wasserstein distance in [133,134].

14
Fig. 21. (a) Numerically computed bifurcation diagram of the one-dimensional
membrane model, (Xmes), for ε = 0.05. (b) Corresponding solutions in
X, u)-space.

Other types of switching processes have been studied in the
iterature, some of them abundantly: switching between PDEs
135], non-Markovian switching [136], switching between diffu-
ions [137], etc. All of these classes of stochastic processes are
menable to the double-limit approach proposed in this article.
We have already seen in the current context, that one expects

ouble limit problems for stochastic systems to be directly linked
o double limits for Fokker–Planck (or Kolmogorov) equations.
e shall now continue with this theme and focus in the next two

ubsections on problems arising from various classes of partial
ifferential equations (PDEs).

.5. Matched asymptotic expansions & BVPs

Two-parameter singularly perturbed systems of differential
quations have been widely studied from the analytical as well
s from the numerical viewpoint (see [24,138–146] and refer-
nces therein). In most cases, the singularity is attributed to the
resence of small parameters in front of the derivative terms;
owever, as shown in [147], this is not a necessary condition. This
lso applies to the problem presented in this section.
We start with a PDE problem, which still links to ODEs and

lassical double limit fast-slow systems. We consider the follow-
ng boundary value problem:

XX =
λ

(1 + u)2

[
1 −

ε2

(1 + u)2

]
, X ∈ [−1, 1],

u = 0, X = ∓1.
(Xmes)

Eq. (Xmes) describes the steady states associated to a second-order
parabolic PDE problem arising in the context of Micro-Electro
Mechanical Systems (MEMS) [148]. In particular, the function
u(X) represents the deflection of an elastic membrane towards a
round plate under the action of an electric potential described by
he parameter λ > 0, while 0 < ε ≪ 1 appears as a regularization
arameter. The problem is evidently singularly perturbed in λ, as
or λ = 0 it becomes just a trivial linear boundary value problem,
hile we shall see below that there is a hidden fast-slow singular
erturbation structure with respect to ε.
The bifurcation diagram associated to (Xmes) consists of two

ranches of stable equilibria separated by a third, intermediate
ranch of unstable equilibria (see Fig. 21(a)). The middle and
pper branch meet at a saddle–node bifurcation point λ∗(ε). A
teady-state solution exists for every λ > 0, and the presence of
he regularizing ε-dependent term in (Xmes) guarantees that for
ny ε the solution is bounded below by u = −1+ε; see Fig. 21(b).
In [148], the authors have studied (Xmes) both analytically,

sing matched asymptotic expansions to construct solutions, and
umerically, investigating the structure of the ε-dependent bi-

furcation diagram. However, the analytical motivation behind
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ogarithmic switchback terms in the expansions, as well as a de-
ailed resolution of the bifurcation diagram for very small values
f ε, were left as challenging open questions. In [149], a detailed
symptotic resolution of 21(a), both in the singular limit of ε = 0

and for ε positive and sufficiently small, is accomplished through
separate investigation of three distinct, yet overlapping, regions
in the diagram, allowing us to tackle these questions.

To that end, we first reformulate the boundary value prob-
lem (Xmes) in a dynamical systems framework; then, identifica-
tion of two main parameters in the resulting equations yields
a two-parameter singular perturbation problem. Careful asymp-
totic analysis of that problem allows us to identify the corre-
sponding limiting solutions, and to show how the third branch
in the diagram found for non-zero ε emerges from the singular
limit of ε = 0, where only the lower and the middle branch are
present. On that basis, we prove the existence and uniqueness of
solutions close to these limiting solutions.

We reformulate (Xmes) as a first-order system by relabeling u
with x, introducing the variable y = xX , and appending the trivial
dynamics for the spatial variable X , which we relabel as ξ , and ε.
Moreover, we desingularize the flow near x = −1 and define a
shift in x via x̃ = 1 + x, which translates the singularity to x̃ = 0.
Omitting the tilde and denoting differentiation with respect to
the new independent variable by a prime, we obtain

x′
= x4y, (20a)

y′
= λ(x2 − ε2), (20b)

ξ ′
= x4, (20c)

ε′
= 0, (20d)

subject to the boundary conditions x = 1 at ξ = ∓1. For ε = 0,
this systems admits the line of degenerate equilibria

S0
=

{
(0, y, ξ , 0)

⏐⏐ y ∈ R, ξ ∈ R
}
. (21)

When λ = 0, there is an additional manifold of equilibria
for (20a)–(20b) given by

M0
:=

{
(x, 0, ξ , 0)

⏐⏐ x ∈ R+, ξ ∈ R
}
. (22)

As it turns out, in two of the three regions we investigate it is
useful to introduce a rescaled variable ỹ = δy, where

δ =

√
ε

λ
. (23)

mitting the tilde for sake of simplicity, System (20) hence be-
omes

x′
= x4y, (24a)

y′
= ε(x2 − ε2), (24b)

ξ ′
= δx4, (24c)

ε′
= 0. (24d)

We observe that (24) is a fast-slow system, where x is fast and y
is slow. The nature of ξ , however, depends on δ: in particular,
ξ is fast when δ = O(1), and it is slow when δ = O(ε). For
δ = 0, the manifolds S0 and M0 represent two branches of the
critical manifold for (24). Since S0 is not normally hyperbolic, and
the reduced flow on it is highly degenerate, one can apply the
blow-up method to describe the dynamics of (24) in its vicinity
[150–152]. Such method has proved to be particularly useful
when tackling two-parameter perturbed systems [153,154]. To
this aim, we introduce the following blow-up transformation:

x = r̄ x̄, y = ȳ, ξ = ξ̄ , and ε = r̄ ε̄, (25)

where (ȳ, ξ̄ ) ∈ R2 and (x̄, ε̄) ∈ S1, i.e., x̄2+ε̄2
= 1. The vector field

induced by (25) on the cylindrical manifold in (x̄, ȳ, ξ̄ , ε̄, r̄)-space
 F

15
is best described in coordinate charts; in particular, to carry out
our analysis we require the two following charts:

K1 : (x, y, ξ , ε) = (r1, y1, ξ1, r1ε1), (26a)

2 : (x, y, ξ , ε) = (r2x2, y2, ξ2, r2). (26b)

e note that the phase-directional chart K1 describes the ‘‘outer’’
egime, which corresponds to the transient from x = 1 to x = 0
pproaching S0, while the rescaling chart K2 covers the ‘‘inner’’
egime where x ≈ 0, in the context of (24). The corresponding
ynamics are given by

1 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r ′

1 = r1y1,

y′

1 = ε1(1 − ε2
1),

ξ ′

1 = δr1,
ε′

1 = −ε1y1.

K2 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′

2 = x42y2,

y′

2 = x22 − 1,

ξ ′

2 = δr2x42,
r ′

2 = 0.

(27)

n order to construct singular solutions, we define the entry and
xit sections in K1

in
1 :=

{
(ρ, y1, ξ1, ε1)

⏐⏐ y1 ∈ [y−, y+],

ξ1 ∈ [ξ−, ξ+], ε1 ∈ [0, σ ]} ,
(28)

out
1 :=

{
(r1, y1, ξ1, σ )

⏐⏐ r1 ∈ [0, ρ],

y1 ∈ [y−, y+], ξ1 ∈ [ξ−, ξ+]} ,
(29)

here 0 < ρ < 1 and 0 < σ < 1 are appropriately defined
onstants, while y∓ and ξ∓ are real constants, with y− < −

2
√
3

nd y+ > 2
√
3
. Translating Σout

1 in terms of K2-coordinates, we
btain the section
in
2 :=

{
(σ−1, y2, ξ2, r2)

⏐⏐ y2 ∈ [y−, y+],

ξ2 ∈ [ξ−, ξ+], r2 ∈ [0, ρσ ]} .
(30)

n terms of matched asymptotics, such sections describe the tran-
ition between outer and inner regions. In particular, the outer
egime corresponds to the area limited by Σ in

1 and Σout
1 in K1,

hile the inner regime is limited by Σ in
2 and the hyperplane

y = 0} in K2.
Solutions to (Xmes) arise as perturbations of singular solutions

btained in the limit of ε = 0. Such solutions are constructed
y analyzing the dynamics in charts K1 and K2 separately in the
imit as ε → 0. In particular, solutions are constructed via two
trategies:

trategy 1. We consider two sets of boundary conditions, corre-
sponding to suitable intervals of y-values that are defined
at ξ = −1 and ξ = 1, respectively. Flowing these
two sets of boundary conditions forward and backward,
respectively, we verify the transversality of the intersection
of the two resulting manifolds at ξ = 0. Each initial y-value
y0 for which these two manifolds intersect gives a solution
to the boundary value problem (Xmes).

trategy 2. Since all such solutions are even, we can focus our
attention on the ξ -interval [−1, 0], with boundary condi-
tions x(−1) = 1 and y(0) = 0. The set of initial conditions
at ξ = −1 and x = 1, but with arbitrary initial y-value
y0, is then tracked forward up to the hyperplane {y = 0}.
The resulting manifold is parameterized by x(y, ε, δ, y0)
and ξ (y, ε, δ, y0); the unique ‘‘correct’’ value y0(ε, δ) corre-
sponding to a solution to (Xmes) is then obtained by solving
ξ (y0, ε, δ) = 0 under the constraint that y(y0, ε, δ) = 0.

e distinguish three types of singular solutions to (Xmes) (see

ig. 22):
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Fig. 22. Singular solutions to (Xmes). (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this
rticle.)

ype M1. Solutions of type M1 (indicated in blue in the following
figures) satisfy x = 0 for X ∈ I , where I is an interval
centered at X = 0. They occur in two subtypes: the ones
corresponding to λ = O(ε) have constant finite slope w
outside of I , while the ones corresponding to λ = O(1)
vanish on I = (−1, 1).

ype M2. Solutions of type M2 (indicated in green) are those of
slope y ≡ ∓1. These solutions reach {x = 0} at one point
only, namely at X = 0.

ype M3. Solutions of type M3 (indicated in black) never reach
{x = 0}.

For ε > 0, we divide the bifurcation diagram in (λ, ∥x∥2
2), in

erms of the original variable, into three overlapping regions, as
hown in Fig. 23:

1 := [0, 1] ×

[
2
3

+ ν1, 2
]
, (31a)

2 := [0, ελ2] ×

[
2
3

− ν2,
2
3

+ ν2

]
, (31b)

R3 := [0, 1] ×

[
0,

2
3

+ ν2

]
\ [0, ελ3] ×

[
2
3

− ν3,
2
3

+ ν2

]
,

(31c)

ith ν2 > ν1 > 0, ν2 > ν3 > 0, and λ2 > λ3 > 0 large.
In our analysis, we consider λ ∈ [0, 1]. In region R3, away

from the point B =
(
0, 2

3

)
, the perturbation with ε is regular,

nd we consider λ and δ as the two main parameters for our
nvestigation. In regions R1 and R2, singular solutions exist only
or λ ≥

3
4ε or, equivalently, for δ ≤

2
√
3
. Hence, in these regions,

e need to take λ ∈
[ 3
4ε, 1

]
, i.e. δ ∈

[
√

ε, 2
√
3

]
; see Fig. 24. The

wo main parameters we consider in our proofs are here ε and δ.
e define

ss := singular solutions of (24) exist. (32)

n Regime (I), such property is satisfied and singular solutions
f type M1 and M2 exist, whereas in Regime (IV ) there are no
ingular solutions. Two special cases are represented by Regime
II) (corresponding to B1), where singular solutions of type I exist,
nd Regime (III) (corresponding to B2 ∪ B3), where we recover
ingular solutions of type M1 and M3.
By definition, δ = 0 occurs only when ε = 0. The correspond-

ng, highly degenerate limit gives a singular orbit of type M1 with
 w

16
Fig. 23. Covering of the bifurcation diagram for (Xmes) by regions R1 (brown),
R2 (pink), and R3 (magenta). The branches of solutions to (Xmes) for ε = 0.01
(dotted curve) and ε = 0 (solid curve) are displayed. For ε = 0, the upper
branch reduces to the union of a vertical part B1 , corresponding to λ = O(ε),
and a horizontal part B2 which corresponds to λ = O(1). The green dot at B
represents the singular solution of type M2 for λ = 0. The black curve for type
M3-solutions is labeled B3 . (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 24. Classification diagram of (Xmes) with respect to the property Pss in
εδ-space. Regime (I) is bounded below by

{
δ =

√
ε
}
(blue curve) and above by{

δ =
2

√
3

}
(dashed gray line). Regime (I): two singular solutions of type M1 and

M2 exist. Regime (II): singular solutions of type M1 exist. Regime (III): singular
solutions of type M2 and M3 exist. Regime (IV): no singular solutions exist. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

very singular structure, as shown in 22(b). Hence, the whole line
B2 corresponds to that one singular solution.

In R1, we construct singular solutions and show their persis-
ence for ε ∈ (0, ε0) (with ε0 small) using Strategy 1 as follows.
or a fixed λ ∈

[
ε

δ21
, 1

]
with 0 < δ1 < 2

√
3
, i.e. δ < 2

√
3
, the

resence of a saddle–node equilibrium for the (x2, y2)-subsystem
n chart K2 at (1, 0), on which the reduced flow w.r.t. ξ2 occurs,
llows us to determine the unique, correct boundary value for y
t ξ = −1 by following the stable manifold of such equilibrium,
hich does not depend on ε and does therefore not change for
> 0, backwards until Σ in

2 = Σout
1 , and then tracking the flow in

hart K1 backwards until ξ1 = −1. The intrinsic symmetry of the
roblem allows us to apply the same argument to the right part
f the orbit, tracking the unstable manifold of the equilibrium
x2, y2) = (1, 0) and following the flow in chart K1 until ξ1 = 1.
hen 0 ≤ δ < δ̂, the proof is analogous except for the fact that
e must rescale δ =

√
εδ̃ and obtain a slower reduced flow.
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he assumption that δ < 2
√
3

ensures a non-trivial slow drift
i.e. the portion of the orbit where x = 0 does not reduce to a
oint), which allows us to apply the Exchange Lemma to infer
ersistence of solutions for 0 < ε ≪ 1.
For 1

√
λ2

≤ δ ≤ δ1, i.e. in R2, we show the existence of
wo unique type M1 and type M2 solutions which coincide when
=

2
√
3
. The proof consists of two parts: we first consider a small

eighborhood of δ∗ =
2

√
3
, i.e. of λ =

3
4ε, where the saddle–node

ifurcation occurs. We define a suitable bifurcation equation,
hich describes the transition from solutions which limit on type
1-solutions to those which limit on solutions of type M2. Such
quation is constructed by imposing that ξ2(y0, ε, δ) = 0 when
(y0, ε, δ) = 0, i.e. using Strategy 2. Based on that equation, we in-
er the presence of the saddle–node bifurcation, and we calculate
he expansion of the corresponding λ-value λ∗. This expansion
resents logarithmic switchback terms due to both a resonance
henomenon in chart K1 and the passage close to the saddle point
x2, y2) = (1, 0). In a second step, we consider the branch of
olutions that limit on type M2-solutions for the remaining values
f λ in R2. That branch is then shown to connect to solutions that
re covered by region R3, for which δ = 0. In that case, the type
2-solution constructed in R2 collapses onto the line {y1 = 0},
hich leads to singular dynamics in K1. Since such singular nature

s due to the w-rescaling introduced to obtain System (24), this
egime is better studied using System (20) and replacing ε = δ2λ.
ince this region contains a neighborhood of (δ, λ) = (0, 0), we
ust perform an additional blow-up of (u, λ) = (0, 0) and split
3 into two sub-regions: for λ ∈ [λ̃, λ∗

] with λ̃ > 0 and δ = 0, we
an show the existence of a unique singular solution of type M3
hich perturbs regularly when 0 < δ ≪ 1 (in particular δ ≤

1
√

λ3

n R3). When λ ∈ [0, λ̃], i.e. when R3 and R2 overlap, we have a
ingular solution of type M2 as λ → 0, and of type M3 as δ → 0.
In summary, even unfolding a rather innocent-looking PDE

roblem via spatial dynamics in one dimension leads to a highly
nteresting double limit problem. In the next section, we con-
inue this theme and consider a multi-component stationary PDE
roblem.

.6. Fast reaction limits

A variety of biological and ecological phenomena present dif-
erent intrinsic time-scales, and typically some processes are
aster than others. The singular limit, or fast reaction limit, ex-
resses the fact that instantaneous dynamics is also included
n the system. For instance, in a population, there can be a
ichotomy of two groups, and switching between them may be
ossible. Compared to other interactions, the switch may seem
nstantaneous and give rise to interesting effects such as an aggre-
ation of individuals or a population density pressure [155,156].
ast reaction limits have also been studied in other contexts,
uch as reversible and irreversible chemical reactions [157,158],
acteria proliferation [159], proteins localization in stem cell
ivision [160], but also to model the Neolithic spread of farmers
n Europe [161,162].

In the context of predator–prey interactions, the expression
f widely used functional responses can also come out of a
ystematic process in which one starts with a system of more
han two equations with simple reaction terms and performs
ne [163–166] or more limits [167,168].
We consider here the cross-diffusion system, known as

higesada–Kawasaki–Teramoto (SKT) model [169], proposed to
ccount for stable inhomogeneous steady states exhibiting spatial

egregation between two species competing for resources. We

17
efer to [170–172] and references therein for more details. The
ystem is given by

∂tu − ∆x ((d1 + d12v)u) = f (u, v)u,
∂tv − ∆x ((d2 + d21u)v) = g(u, v)v,

(33)

ndowed with initial conditions and homogeneous Neumann
oundary conditions. The quantities u(t, x), v(t, x) ≥ 0 represent
he population densities of two species at time t and position
x, confined on a bounded and connected domain Ω ⊂ RN . The
movements of the individuals on the domain are described by
non-linear cross-diffusion terms: the positive coefficients d1, d2
refer to the (standard) diffusion, while the non-negative cross-
diffusion coefficients d12, d21 stand for competition pressure. The
reaction terms describe the growth and the interaction of the two
species, where

f (u, v) = r1 − a1u − b1v,

g(u, v) = r2 − b2u − a2v,
(34)

ith the non-negative coefficients ri, ai, bi (i = 1, 2) being the
intrinsic growth, the intra-specific competition and the inter-
specific competition rates.

Model (33) falls into the class of quasilinear parabolic systems
for which even the existence problem of solutions is not trivial.
When d21 = 0 (triangular cross-diffusion system), it has been
shown [173,174] that the solutions of (33) can be approximated
in a finite time interval by those of a three-component reaction–
diffusion system if the solutions are bounded and provided that a
suitable parameter is small enough. The rigorous proof of the con-
vergence of solutions of the three-component reaction–diffusion
system towards the solutions of a triangular cross-diffusion sys-
tem of two equations has been initially given in dimension N =

1 [175], and later generalized to a wider set of admissible reaction
terms and in any dimension [176].

The convergence of the stationary steady states of the fast-
reaction system towards the ones of the cross-diffusion system
has been also investigated by looking at bifurcation diagrams
with respect to different bifurcation parameters [171,174]. In
particular, it has been observed that the bifurcation structure of
the fast-reaction expands and converges as the time scale param-
eter becomes smaller, sometimes going through major qualitative
changes.

When d21 > 0, the full cross-diffusion system (33) can be ob-
tained, at least formally, as the singular-limit of a four-component
fast-reaction system involving two small time scale parameters
ε, δ, so the problem has a doubly singular perturbation structure.
In this case both species are split into quiet and active states, de-
noted by u1, v1 and u2, v2 respectively. Hence, we have that u :=

u1 + u2, v := v1 + v2. The resulting reaction–diffusion system is

∂tu1 − d1∆xu1 = f (u, v)u1 +
1
ε
h(u1, u2, v),

∂tu1 − d̂1∆xu2 = f (u, v)u2 −
1
ε
h(u1, u2, v),

∂tv1 − d2∆xv1 = g(u, v)v1 +
1
δ
k(u, v1, v2),

∂tv2 − d̂2∆xv2 = g(u, v)v2 −
1
δ
k(u, v1, v2),

(Xfr)

together with initial conditions and homogeneous Neumann
boundary conditions. Active states are supposed to have a larger
diffusion coefficient than the corresponding quiet state. In partic-
ular, we assume that the diffusion coefficients of the active states
are given by d̂1 := d1+d12M2 and d̂2 := d2+d21M2, where M1, M2
are positive constants such that 0 ≤ u(t, x) ≤ M1, M1 ≥ r1/a1
and 0 ≤ v(t, x) ≤ M2, M2 ≥ r2/a2 in R × Ω . The functions h, k
describing the switch between the states are

h(u1, u2, v) =

(
1 −

v

M2

)
u2 − u1

v

M2
,

k(u, v1, v2) =

(
1 −

u
)

v2 − v1
u

,

(35)
M1 M1
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Fig. 25. Schematic representation of the systems of PDEs in the εδ-plane.
he first quadrant corresponds to the four-equation system (Xfr). The ε-axis
orresponds to the reduced system with three equations for u1, u2, v, being the
ast equation with cross-diffusion. The δ-axis corresponds to the reduced system
ith 3 equations for u, v1, v2 , being the first equation with cross-diffusion.
inally, the origin corresponds to system (33) with two cross-diffusion equations.

hile the time scale parameters ε, δ describe that the switch
etween the two different states happens much faster than the
ther processes.
At a formal level, when ε → 0, system (Xfr) reduces to an

ntermediate three-component reaction–cross-diffusion system
n the variables u, v1, v2. The equation for u represents cross-
iffusion, while the other time scale parameter δ is still present in
he equations for v1, v2. Letting δ → 0, the intermediate three-
omponent system reduces to the full cross-diffusion system. The
ame considerations hold if we let δ → 0 first, and ε → 0. In
he time scale parameter plane (Fig. 25), the first quadrant corre-
ponds to the four-equation system (Xfr). The ε-axis corresponds
o the reduced system with three equations for u1, u2, v, being
he last equation with cross-diffusion. The δ-axis corresponds to
he reduced system with three equations for u, v1, v2, being the
irst equation with cross-diffusion. Finally, the origin corresponds
o system (33) with two cross-diffusion equations.

To the best of the authors’ knowledge, there are currently
o rigorous results of convergence of solutions of the four-
omponent reaction–diffusion systems to the solutions of the full
ross-diffusion system. From a numerical point of view, despite
greater number of equations, the structure of system (Xfr) is

impler than the cross-diffusion system (33), since it presents
tandard diffusion terms. For suitable small values of the time
cale parameters ε, δ that leads to a ‘‘good’’ approximation of
he cross-diffusion system (33), the four-component fast-reaction
ystem tends to be more tractable. In order to establish how ac-
urate is the approximation, we look at the bifurcation structure
f stationary solutions when ε, δ become small.
On the one hand, system (33) admits the homogeneous coex-

stence state (u∗, v∗) where

∗ =
r1a2 − r2b1
a1a2 − b1b2

, v∗ =
r2a1 − r1b2
a1a2 − b1b2

,

hich is positive for suitable parameter values (see [170,171]).
t is known that the homogeneous solution undergoes some
ifurcations under parameter variation, and branches of non-
omogeneous solutions originate at these bifurcation points
hich correspond to different spatial distributions (patterns) of
he species on the domain.
18
Table 1
Set of parameter values relevant to 27. The set ri, ai, bi, (i = 1, 2) corresponds
o the strong-competition case (a1a2 − b1b2 < 0), namely the homogeneous
oexistence state is unstable for the reaction part.
r2 a1 a2 b1 b2 d d12 d21 M1 M2

5 2 3 5 4 0.03 3 3 5 2

On the other hand, also system (Xfr) admits the homogeneous
coexistence state (u1∗, u2∗, v1∗, v2∗), given by

u1∗ = u∗

(
1 −

v∗

M2

)
, u2∗ = u∗

v∗

M2
,

v1∗ = v∗

(
1 −

u∗

M1

)
, v2∗ = v∗

u∗

M1
.

The homogeneous coexistence state turns out to be independent
of the parameters ε, δ. However, the number and the position of
the bifurcation points on the homogeneous branch, and hence the
global bifurcation structure, changes depending on the time scale
parameters. Then, we say that the cross-diffusion system (33) and
the four-component fast-reaction system (Xfr) are equivalent if
they have the same property

Pfr := number of bifurcation points
on the homogeneous branch w.r.t.
the bifurcation parameter.

In the following, we select a set of parameters already used
in [170] and reported in Table 1. It corresponds to the strong com-
petition case a1a2 − b1b2 < 0, in which the homogeneous coex-
istence state is unstable in absence of diffusion. However, stable
non-homogeneous solutions arise on branches originating from
bifurcation points on the homogeneous branch. In Figs. 26(a)–
26(e) we show different bifurcation diagrams obtained for smaller
values of the parameters ε, δ, considering r1 as bifurcation pa-
rameter and fixing the other parameter values, while Fig. 26(f)
corresponds to the non-triangular cross-diffusion system (33).

As shown in Fig. 26, considering the parameter set in Table 1,
we have that Pfr = 2, 4. In Fig. 27 the qualitative classification
diagram of system (Xfr) with respect to the property Pfr in the εδ-
plane is shown. The εδ-plane can be split into two regions. Note
also that in general the εδ-diagram is not symmetric with respect
to the diagonal ε = δ, but the intersections of the separation
curves with the axis depend on the parameter set, in particular
on the cross-diffusion coefficients. With different parameter sets,
mainly with smaller standard diffusion coefficients d, one can
obtain more bifurcation points on the homogeneous branch, and
more zones in the εδ-plane, but its structure remains qualitatively
similar to Fig. 27.

The same study can be performed for other fast-reaction sys-
tems with multiple time scales and their cross-diffusion lim-
its [168,177].

3.7. Coupled oscillators

As the last example, we proceed to systems on networks.
As discussed above, the presence of multiple time scales can
lead to oscillations that are relevant in a variety of physical
contexts; whether it is simple relaxation oscillations [178], mixed
mode oscillations [48], or other examples of oscillatory deter-
ministic dynamics discussed in Sections 3.1 and 3.3 . However,
it is not only the oscillations themselves but also the interac-
tion between different oscillatory processes that play an impor-
tant role in many physical systems: These range from Huygens’
synchronizing clocks [179] to coupled oscillatory dynamics in
neuroscience [180,181]. From a mathematical perspective, such
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Fig. 26. Bifurcation diagrams with respect to the bifurcation parameter r1 and
he parameter set in Table 1 corresponding to different values of ε and δ.
he black line corresponds to the homogeneous branch, while blue and red
ines denote the bifurcating branches of non-homogeneous solutions. Bifurcation
oints are marked by circles. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

Fig. 27. Qualitative classification diagram of system (Xfr) with respect to the
property Pfr in the εδ-plane. Region I: two bifurcation points. Region II: four
bifurcation points. Gray points correspond to the bifurcation diagrams in Fig. 26.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

systems can be understood as networks of coupled oscillators. In
isolation, each node oscillator has state z ∈ Rd whose evolution
19
is determined by a smooth ODE

z ′
:=

d
dt

z = F (z) (36)

that gives rise to an asymptotically stable limit cycle γ ⊂ Rd.
In a network, nodes interact non-trivially if there is an edge
between the two nodes. Despite the dynamics of each node
being fairly simple, the network dynamics, namely the dynamics
of joint state of all nodes in the network, can be rich. While
synchronization is probably one of the best understood dynamical
phenomena in networks of coupled oscillators [182–184], even
networks consisting of just a few fully symmetric nodes can
give rise to complicated dynamics [185]. The network dynamics
depend on both the intrinsic dynamical properties of each node
and the network interactions. Here we will consider networks
of weakly coupled relaxation oscillators, which have two small
parameters: The time scale separation δ as an intrinsic property
of the oscillators themselves and the coupling constant ε that is
small by the assumption of weak coupling.

A network of N identical all-to-all coupled oscillators consists
f N copies of (36) whose states zk ∈ Rd, k ∈ {1, . . .N}, evolve

according to

z ′

k = F (zk) +
η

N

N∑
j=1

H(zj, zk), (37)

where H is a smooth interaction function and η the coupling
strength. If the coupling is weak, then the dynamics of this system
on RNd can be reduced to a lower-dimensional system [186]: If
η = 0 then (37) has a normally hyperbolic invariant torus γ N

which persists for small coupling [180]. Specifically, there exists
an η0 > 0 such that for any η < η0 the system (37) has an
attracting normally hyperbolic invariant torus T as a perturbation
of γ N

⊂ RNd. In the following assume that η0 is maximal
with this property; note that, depending on H , this may allow
for ε0 = ∞, for example, for trivial coupling H = 0. The dynamics
of (37) reduce to the interaction of N circular phase variables
that evolve on T, a phase oscillator network. The dynamics on
the invariant torus are typically referred to as a phase reduction
of (37); cf. [187,188] for more details on how to compute these.

While a phase reduction is possible for any smooth oscillator,
in many contexts the oscillators have particular properties. Re-
laxation oscillators are characterized by two time scales leading
to a combination of slow quasi-static and fast transitions. The
most famous examples include the van der Pol oscillator [189]
and FitzHugh–Nagumo oscillator [190,191]. Consider a planar
system (36) with state z = (x, y) that evolves according to

εx′
= f (x, y) (38a)

y′
= g(x, y) (38b)

where f , g : R2
→ R are smooth and ε > 0 is the time scale

separation of the fast variable x and the slow variable y. Now
assume that (38) gives rise to a family of relaxation oscillators,
that is there is a family of asymptotically stable limit cycles γδ ⊂

R2 that converge in the limit ε → 0 to a union of orbit segments
consisting of part of the critical manifold {(x, y) | f (x, y) = 0} and
line segments that correspond to the fast transitions.

In a series of papers [192,193], Somers and Kopell developed
a theory to explain rapid synchronization in networks of coupled
relaxation oscillators motivated by computational neuroscience.
Write zk = (xk, yk) for the state of oscillator k which evolves
according to (38) when uncoupled. The networks analyzed in
[192,193] include systems of the form

εx′

k = f (xk, yk) +
δ
N

∑N
j=1 h(xj, xk),

′
(Xnet)
yk = g(xk, yk),
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Fig. 28. Sketch of a typical classification diagram expected for a phase reduction
f a network of relaxation oscillators. The property Pnet divides the parameter

space for (Xnet) into a region (I), where a phase reduction is possible and a
region (II), where we expect a torus breakdown for a generic coupling function h.
The line dividing the region is given by δ0(ε). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

for k ∈ {1, . . . ,N} and coupling function h without specific
assumptions on the coupling strength ε. Note that (Xnet) is clearly
singularly perturbed in ε due to its fast-slow structure, while δ =

yields a singular limit since we go from a networked dynamical
ystem to an uncoupled case without network structure. The
nalysis [192,193] considers the singular limit ε → 0 for network

interactions such that the input from one node to the other is
constant on each segment of the critical manifold and evaluates
the ‘‘compression’’ of time it takes a singular trajectory to traverse
segments of the critical manifold. But even in the context of
coupled neurons, other forms of network interactions h – such
as pulsatile coupling – are relevant.

If both the time scale separation ε for the relaxation oscilla-
tor and the coupling strength δ are small, then the qualitative
dynamics of (Xnet) can be understood in terms of the unified
framework above. Consider the property

Pnet := a phase reduction is possible.

We obtain a system of the form (37) by dividing the fast
Eqs. (Xnet) by ε and setting η = δ/ε. By fixing ε we obtain
an η0(ε) such that Pnet holds for all η < η0. Hence, there
is δ0(ε) such that Pnet holds for δ < δ0(ε) in (Xnet). This leads
to the classification of the parameter space K into a region (I)
where Pnet holds and its complement (II). Depending on the
coupling function h, we may have limε→0 δ0(ε) ̸= 0 (for example
if h = 0 as mentioned above). However, for a generic interaction
function one would expect η0(ε) < C for some constant C . In
this case, we have limε→0 δ0(ε) = 0. The resulting classification
diagram is sketched in Fig. 28.

Izhikevich [194] derived explicit expressions for the dynamics
on the invariant torus in the relaxation limit. As noted there, these
expressions only describe the doubly singular limit for paths in
parameter space converging to the limit point (ε, δ) = (0, 0)
that lie entirely within region (I). A first-order truncation of the
phase dynamics – as commonly considered – does not describe
the dynamics of the full oscillator network (Xnet) for all points
in (I) since higher-order terms may play a nontrivial role in the
dynamics [195–197].

While we focused on the interplay of small parameter in the
intrinsic oscillator dynamics and the network coupling, interact-
ing small parameters also arise in different ways in networked
systems. In contrast to coupled relaxation oscillators, one can
also consider the case of coupled oscillators close to a Hopf
bifurcation where oscillations are almost sinusoidal. Considering
both small bifurcation parameter and weak coupling, one obtains
explicit phase reductions [198] that can – depending on the order
20
of the approximation – contain nonpairwise interaction terms
as mentioned above. Limits involving multiple small parameters
also occur if the network connections are adaptive [199]. This
includes for example networks of neurons [200–202] or adap-
tation in epidemic networks [203]. Indeed, oscillator networks
with adaptive interactions on have received renewed attention
recently, whether the adaptation is slow (see, e.g., [204–206]) or
fast [207] relative to the oscillatory dynamics. However, there
are only few approaches taking into account distinct time scales
explicitly (cf. [41]) in particular when multiple small parameters
interact. Thus, for adaptive networks with multiple time scales,
the framework presented here may help classify the dynamics of
such coupled oscillator networks.

4. Comparison

In Section 3, we have described a wide variety of doubly-
singular limit problems arising in differential equations. Yet, from
the different examples, several themes emerge for the future of
multiple singular limit systems.

Property Types: We have seen various ways of defining prop-
erties P to obtain double limits which, however, share quite
surprising similarities:

• Individual Pattern Classification: It turned out to be extremely
useful to define P via important types of patterns, e.g., the
number of solutions/roots of an algebraic equation in Sec-
tion 2.1, the slow manifold shapes near the transcritical
point as well as the oscillation patterns for the Olsen model
in Section 3.1, the stochastic excitable patterns for FitzHugh–
Nagumo SDEs in Section 3.2, the types of stationary patterns
for MEMS in Section 3.5, and the number of bifurcation
points for fast reaction PDEs in Section 3.6.

• Phase Space Structure: A strongly related class of properties
emerges once one investigates pattern-forming properties
more on a global level, by studying the entire phase space at
once. Examples are probabilistic quantifiers such as escape
probabilities in Section 3.2, the sign of the first Lyapunov
exponent in Section 3.3 for oscillators with shear, or the
global stability for linear PDMPs in Section 3.4.

• Mathematical Features: A last important class of properties
has emerged corresponding to elements of proofs or mathe-
matical properties. This includes convexity from Section 2.1,
the exchange of partial derivatives in Section 2.2, the ex-
istence of a stationary distribution in Section 3.4, or the
applicability of phase reduction for networks of oscillators
in Section 3.7.

In view of all the preceding examples, it seems difficult to
imagine that, for practical problems in singularly perturbed dif-
ferential equations, there are highly useful properties that do
not fit within the three classes mentioned above. In fact, we see
that each class asks a different type of question, namely: How
to understand individual/observed patterns? How to understand
the global structure of phase space? What are the technical in-
gredients for proofs? Looking forward, it always seems useful
directly at the start of a work on double- (or multiple-) limits to
state carefully the major type of property one is interested in for
dissecting the non-negative parameter cone K.

Diagram Structures: Even if one has obtained a suitable par-
titioning of K, one can now ask, comparing to other typical
double limit problems, whether this partitioning via P is ‘‘typical’’
or ‘‘common’’? Quite surprisingly, a cohesive and well-founded
answer to this problem is possible as many common features
seem to emerge in (ε, δ) → (0, 0) double-limit diagrams:
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• Origin Ill-Posedness: Sometimes it turns out that classifying
the origin (ε, δ) = (0, 0) is ill-posed as P is not well-
defined or virtually impossible to evaluate at the origin.
This situation may still be completely satisfactory from an
applied mathematical perspective. Indeed, if the important
regime for practical applications only occurs for small posi-
tive values, and we can analyze this regime, we do not really
lose major information if we exclude the origin in certain
problems.

• Special Axes: Another common theme is that the two axes
{ε = 0, δ > 0} {ε > 0, δ = 0} have special or degen-
erate properties with respect to P . These axes are often
crucial in proofs to construct perturbation results, i.e., to
infer the scaling laws in the small parameters via singular
limit constructions. Hence, it is often a suitable strategy to
first understand the axes, and then aim for a perturbation,
homotopy, or extension of the results to the interior of the
cone K.

• Polynomial Dissection: As expected from classical scaling law
results in physics as well as from the mathematical view-
point of singularity/regularity theory, we often find curves
δ = δ(ε) (resp. ε = ε(δ)) with δ(0) = 0 (resp. ε(0) =

0), which provide a partitioning of the cone K. Indeed,
local Taylor (or Hölder-type) expansions should appear, and
one can then classify the partitioning of K via the critical
powers/exponents of the leading-order terms of the curves.

• Special Features: Certain problems, either due to their inher-
ent problem formulation or due to dynamical effects, may
lead to non-polynomial or otherwise special dissection. Ex-
amples are exponential terms arising in stochastic metasta-
bility as well as for canard problems, or curves without
ε(0) = 0 as for fast-reaction bifurcation points.

In summary, it seems clear that a complete unifying clas-
sification is impossible but in many cases a rather exhaustive
description can be provided within a common framework. First,
one can aim to classify the behavior on the axis for a single limit
problem. Second, one can aim to obtain a set of (polynomial)
curves partitioning the interior of K including the leading-order
scaling exponents. Third, one aims to check whether there are
any special cases occurring for the polynomial scaling or lack
of connectivity of the curves to the origin; these special cases
are then treated on a case-by-case basis and/or using a suitable
shift or re-scaling to obtain polynomial order and/or connecting
curves.

Mathematical Techniques: Another important lesson from
the comparison of the different examples of doubly-singularly
perturbed problems is that the analytical and numerical tech-
niques tend to look very different at first sight. Yet, this seems
to be a superficial view if one delves deeper into each methodol-
ogy. There are many common themes appearing. First, numerical
methods tend to become more ‘‘stiff’’ near singular limits, yet
analytical methods become far more feasible the closer we are
to the origin within K. This implies that a natural approach is
to combine both approaches within K by locally using analytical
techniques and then extend the results beyond a small neigh-
borhood of (ε, δ) = (0, 0) via numerical computations. Second,
analytical methods are always based upon similar principles,
regardless of the differential equation studied:

• Limit equations: In a simple limit with one parameter fixed,
i.e., on the coordinate axes in the two-parameter plane, we
can often obtain a reduced problem from which to start.

• Relative scaling: It frequently makes sense to assume the ex-
istence of a relative scaling ε = ε(δ) (resp. δ = δ(ε)), which
provides again one-parameter families of sub-problems ly-
ing on curves in the interior of K.
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• Desingularization: It often makes sense via geometric desin-
gularization such as blow-up, or just via purely algebraic
scaling, to generate a more complicated differential equa-
tion, which better splits the relative scalings.

• Regularization: Some problems become significantly easier
if another singular parameter is added, e.g., noise is well-
known to regularize the dynamics in many instances. In fact,
we have seen this effect for excitable systems as well as for
stochastically perturbed limit cycles where a non-hyperbolic
structure collapses.

In summary, also the mathematical techniques to attack very
distant-looking singular perturbation problems are more deeply
related than one might anticipate.

5. Outlook

In this review, we have only been able to illustrate a more
general framework for differential equations with multiple small
parameters for certain classes of problems. It is evident that
many important questions still remain. To illustrate the diversity
of remaining problems, we present a few crucial questions that
seem tractable within the next couple of decades:

Q1) For many double-singular perturbations, multiple method-
ological approaches exist and we definitely need a bet-
ter understanding how these approaches can be compared
more directly in concrete double-limit test problems. This
approach is very common in other mathematical disciplines,
e.g., in numerical analysis, which often provides sharp and
precise comparisons of algorithms, or even in classical anal-
ysis, where many problems involve the derivation of best-
possible upper a-priori bounds. As a concrete example for
the case of double limits, consider the case of multiple time
scale stochastic problems discussed in Section 3.2. We have
shown a sample-paths approach to estimate probabilities,
but alternatively one could also use a distributional ap-
proach via the Fokker–Planck equation, non-autonomous
dynamics techniques such as skew-product flows, quasi-
stationary distributions, matched asymptotic expansions,
numerical methods, as well as many other methods to study
the double limit. The same remark applies to all other
examples we have discussed. A detailed discussion of the
advantages and disadvantages of every method for double
limits is clearly an open problem.

Q2) For many double-limit problems, there are concrete con-
jectures left to be proven for certain regions in the two-
parameter diagrams. A good example is the Olsen model
in Section 3.1, where the case of non-classical relaxation
oscillations is solved. Yet, rigorous proofs for mixed-mode/
bursting-type oscillations as well as chaotic dynamics are
missing, although the geometry of the orbits has been well
illuminated via singular limits as well as via numerics. This
is actually a common theme for all the problems, i.e., even
though certain scaling regimes are tractable, it is often ex-
tremely challenging to cover the entire parameter space
via rigorous proofs. An excellent goal for future research
could be to develop better first-principles mathematical in-
dicators, which tell us much quicker about the difficulties
of certain scaling regions. Currently, trial-and-error is still
often our best approach in this regard.

Q3) Another question to follow within future work is the role
played by low regularity in singular-perturbation problems.
An astonishing variety of small-parameter problems in dif-
ferential equations are connected to trajectories, which may
have low regularity. Beyond this, even the important dy-
namical invariant structures (such as attractors) have low
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regularity. One example has been presented in Section 3.3,
as shear-induced chaos for stochastic differential equations
is connected to relatively rough individual sample paths and
simultaneously to a chaotic attractor. Since chaotic attrac-
tors often have fractal dimension, they contribute another
aspect of low regularity. In more generality, the same theme
also appears for chaotic deterministic switching problems
or in a completely different setting in large-scale network
limits, where the regularity of the finite-dimensional prob-
lem may not always transfer to the mean-field or continuum
limit.

Q4) From a numerical perspective, many crucial challenges are
posed by double-limit dynamics. In fact, even very classi-
cal stiff differential equations with a single small param-
eter constitute a vast area already. Having two different,
yet possibly connected, singular parameters tends to make
the situation much worse. It seems wise to combine ana-
lytical pre-processing, i.e., re-writing the differential equa-
tions first into the best possible numerical problem, and
careful a-priori error estimates, to avoid spurious solutions.
A good example of re-writing the numerical setting has
been discussed in Section 3.6, where numerical continu-
ation in the small parameters leads to well-conditioned
boundary-value problems instead of quite poorly condi-
tioned initial-value problems. It is a very worthwhile general
goal to develop as many numerical methods as possible that
have robustness/well-conditioning against small-parameter
limits.

Q5) Another aspect where many open questions remain is the
interplay between double limits and areas usually quite
far from classical singular-limit problems for differential
equations. An illustrating example are limits in coupled
oscillators as discussed in Section 3.7. More generally, one
can assume that the oscillators are coupled on a graph, on
a simplicial complex, or a general hypergraph [197,208].
In these cases, methods from graph theory, combinatorics,
and geometry/topology are going to enter the mathematical
challenge, and double-limit problems are not as classical
in these areas as they are for differential equations. Yet,
exploring whether it is possible to translate open ques-
tions in double-limit problems into new areas seems to be
promising.

Q6) We have often assumed throughout this work that the stud-
ied differential equations have quite a high degree of regu-
larity in their defining equations as this is often the most
natural starting point, e.g., by invoking a more microscopic
modeling approach to retain smoothness. Even in the case
of SODEs with classical white noise, we have Hölder reg-
ularity in Sections 3.2 and 3.3 . Only for the PDMP case
in Section 3.4, we have less regularity as discontinuous
jumps occur. Of course, if one allows for arbitrary degen-
eracy in terms of input regularity, then this leads already
to very intriguing questions on the level of existence of
a suitable dynamical system, even for ODEs [209,210]. Al-
ready for ODEs the number of possibilities for bifurcations
in non-smooth systems is extremely large [211,212] and
their unfoldings via multiple small parameters involving a
regularization is still under active development [213,214].
For non-smooth SDEs and PDEs, the situation will be even
more complicated. In summary, identifying principles to
derive universally valid and sufficiently low-dimensional
double-limit problems is already challenging once regularity
assumptions are relaxed.

Q7) The biggest, and practically most pressing, remaining chal-
lenge is to broaden the applicability of double-limit results.

In fact, the steps (S1)–(S3) in the introduction apply to
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many other problems. For example, double-limit differen-
tial equations occur in homogenization of PDEs [215], in
homogenization of fast chaos [216], in rate-independent
systems modeling viscoelasticity [217], in bursting oscilla-
tions in neuroscience [218], in oscillators from systems bi-
ology [154], in plasma physics [219], in mean-field analysis
of particle systems [220], in stochastic optimization [221],
and in fluid dynamics [222]. Of course, this list could be
continued with many additional fields.

Q8) From a theoretical perspective, one of the most challenging
conceptual open problems is how to delineate the class
of singular perturbation problems, where one has to care-
fully apply steps (S1)–(S3), from those differential equa-
tions where direct abstract techniques allow us to neglect
the small parameters easily. For ODEs, several approaches
have been proposed, and one might intuitively think that
it should be easy to sharpen or restrict our definition of
singular perturbation, and use this improvement to transfer
certain results to other classes of differential equations.
Unfortunately, this is not simple. As an example consider
the commonly used definition that a problem is ‘‘singular’’
if a small parameter multiplies the highest derivative. Now
consider an SDE. If a small parameter makes the entire drift
term vanish in the limit, then we view the problem as
singularly perturbed. Yet, if one re-writes the SDE via the
Fokker–Planck PDE, then the drift term is generically not
the highest derivative. Similar struggles appear with other
approaches to find more restrictive definitions for ‘‘singular
perturbation’’ if one wants to transport them across classes.

Finally, we would like to point out that our general view on
double-limit problems in differential equations might also have
a general impact in several respects, not only within the areas of
the examples we have presented, for the questions (Q1)–(Q8), but
also well beyond:

• The diagram structure, which we have utilized to summarize
the main results for each case, seems to be well-adapted to
the basic case of two parameters but, using suitable pro-
jections, higher-dimensional generalizations are certainly
conceivable.

• Although a complete classification of all possible scaling
laws in all double-limit problems seems out of reach, a
classification into generic cases via an abstract universality
theory, analogous to critical exponents in physics, may very
well exist.

• It seems very promising to consistently reconsider double-
limit problems that might have looked too challenging in the
past. With a more coherent data base and a more structured
classification, one might be able to search for new methods
in virtually any other doubly-singular limit problem.
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