5 research outputs found

    Accurate object reconstruction by statistical moments

    No full text
    Statistical moments can offer a powerful means for object description in object sequences. Moments used in this way provide a description of the changing shape of the object with time. Using these descriptions to predict temporal views of the object requires efficient and accurate reconstruction of the object from a limited set of moments, but accurate reconstruction from moments has as yet received only limited attention. We show how we can improve accuracy not only by consideration of formulation, but also by a new adaptive thresholding technique that removes one parameter needed in reconstruction. Both approaches are equally applicable for Legendre and other orthogonal moments to improve accuracy in reconstruction

    Accurate object reconstruction by statistical moments

    Full text link

    Modelling and extracting periodically deforming objects by continuous, spatio-temporal shape description

    Get PDF
    This thesis proposes a new model for describing spatio-temporally deforming objects. Through a novel use of Fourier descriptors, it is shown how arbitrary shape description can be extended to include spatio-temporal shape deformation. It is further demonstrated that these new spatio-temporal Fourier descriptors have the ability to be used as the basis for both the recognition and extraction of deforming objects. Application of this new recognition technique to human gait sequences demonstrates recognition rates of over 86% for individual human subjects, signifying that these descriptors possess unique descriptive properties. Based upon the new spatio-temporal Fourier descriptor model, a new technique for the detection and extraction of deforming shapes from an image sequence is presented through a new variant of the Hough transform (the Continuous Deformable Hough Transform) that utilises spatio-temporal shape correlation within an evidence-gathering context. This new technique demonstrates excellent success rates and tolerance to noise, correctly extracting human subjects in image sequences corrupted with noise levels of up to 80%. The technique is also tested extensively using real-world data, thus demonstrating its worth in a modern-day computer vision system. Both the spatio-temporal Fourier descriptor model, the Continuous Deformable Hough Transform, and aspects of their application are fully discussed throughout the thesis, along with ideas and suggestions for future research and development.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modelling and extracting periodically deforming objects by continuous, spatio-temporal shape description

    Get PDF
    This thesis proposes a new model for describing spatio-temporally deforming objects. Through a novel use of Fourier descriptors, it is shown how arbitrary shape description can be extended to include spatio-temporal shape deformation. It is further demonstrated that these new spatio-temporal Fourier descriptors have the ability to be used as the basis for both the recognition and extraction of deforming objects. Application of this new recognition technique to human gait sequences demonstrates recognition rates of over 86% for individual human subjects, signifying that these descriptors possess unique descriptive properties. Based upon the new spatio-temporal Fourier descriptor model, a new technique for the detection and extraction of deforming shapes from an image sequence is presented through a new variant of the Hough transform (the Continuous Deformable Hough Transform) that utilises spatio-temporal shape correlation within an evidence-gathering context. This new technique demonstrates excellent success rates and tolerance to noise, correctly extracting human subjects in image sequences corrupted with noise levels of up to 80%. The technique is also tested extensively using real-world data, thus demonstrating its worth in a modern-day computer vision system. Both the spatio-temporal Fourier descriptor model, the Continuous Deformable Hough Transform, and aspects of their application are fully discussed throughout the thesis, along with ideas and suggestions for future research and development.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore