13 research outputs found

    Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning

    Full text link
    This paper focuses on how to take advantage of external relational knowledge to improve machine reading comprehension (MRC) with multi-task learning. Most of the traditional methods in MRC assume that the knowledge used to get the correct answer generally exists in the given documents. However, in real-world task, part of knowledge may not be mentioned and machines should be equipped with the ability to leverage external knowledge. In this paper, we integrate relational knowledge into MRC model for commonsense reasoning. Specifically, based on a pre-trained language model (LM). We design two auxiliary relation-aware tasks to predict if there exists any commonsense relation and what is the relation type between two words, in order to better model the interactions between document and candidate answer option. We conduct experiments on two multi-choice benchmark datasets: the SemEval-2018 Task 11 and the Cloze Story Test. The experimental results demonstrate the effectiveness of the proposed method, which achieves superior performance compared with the comparable baselines on both datasets.Comment: Accepted at CIKM'19, 4 page

    Multi-Perspective Fusion Network for Commonsense Reading Comprehension

    Get PDF
    Commonsense Reading Comprehension (CRC) is a significantly challenging task, aiming at choosing the right answer for the question referring to a narrative passage, which may require commonsense knowledge inference. Most of the existing approaches only fuse the interaction information of choice, passage, and question in a simple combination manner from a \emph{union} perspective, which lacks the comparison information on a deeper level. Instead, we propose a Multi-Perspective Fusion Network (MPFN), extending the single fusion method with multiple perspectives by introducing the \emph{difference} and \emph{similarity} fusion\deleted{along with the \emph{union}}. More comprehensive and accurate information can be captured through the three types of fusion. We design several groups of experiments on MCScript dataset \cite{Ostermann:LREC18:MCScript} to evaluate the effectiveness of the three types of fusion respectively. From the experimental results, we can conclude that the difference fusion is comparable with union fusion, and the similarity fusion needs to be activated by the union fusion. The experimental result also shows that our MPFN model achieves the state-of-the-art with an accuracy of 83.52\% on the official test set

    Teaching Pretrained Models with Commonsense Reasoning: A Preliminary KB-Based Approach

    Full text link
    Recently, pretrained language models (e.g., BERT) have achieved great success on many downstream natural language understanding tasks and exhibit a certain level of commonsense reasoning ability. However, their performance on commonsense tasks is still far from that of humans. As a preliminary attempt, we propose a simple yet effective method to teach pretrained models with commonsense reasoning by leveraging the structured knowledge in ConceptNet, the largest commonsense knowledge base (KB). Specifically, the structured knowledge in KB allows us to construct various logical forms, and then generate multiple-choice questions requiring commonsense logical reasoning. Experimental results demonstrate that, when refined on these training examples, the pretrained models consistently improve their performance on tasks that require commonsense reasoning, especially in the few-shot learning setting. Besides, we also perform analysis to understand which logical relations are more relevant to commonsense reasoning
    corecore