874 research outputs found

    Improving patient record search: A meta-data based approach

    Get PDF
    The International Classification of Diseases (ICD) is a type of meta-data found in many Electronic Patient Records. Research to explore the utility of these codes in medical Information Retrieval (IR) applications is new, and many areas of investigation remain, including the question of how reliable the assignment of the codes has been. This paper proposes two uses of the ICD codes in two different contexts of search: Pseudo-Relevance Judgments (PRJ) and Pseudo-Relevance Feedback (PRF). We find that our approach to evaluate the TREC challenge runs using simulated relevance judgments has a positive correlation with the TREC official results, and our proposed technique for performing PRF based on the ICD codes significantly outperforms a traditional PRF approach. The results are found to be consistent over the two years of queries from the TREC medical test collection

    On the Impact of Entity Linking in Microblog Real-Time Filtering

    Full text link
    Microblogging is a model of content sharing in which the temporal locality of posts with respect to important events, either of foreseeable or unforeseeable nature, makes applica- tions of real-time filtering of great practical interest. We propose the use of Entity Linking (EL) in order to improve the retrieval effectiveness, by enriching the representation of microblog posts and filtering queries. EL is the process of recognizing in an unstructured text the mention of relevant entities described in a knowledge base. EL of short pieces of text is a difficult task, but it is also a scenario in which the information EL adds to the text can have a substantial impact on the retrieval process. We implement a start-of-the-art filtering method, based on the best systems from the TREC Microblog track realtime adhoc retrieval and filtering tasks , and extend it with a Wikipedia-based EL method. Results show that the use of EL significantly improves over non-EL based versions of the filtering methods.Comment: 6 pages, 1 figure, 1 table. SAC 2015, Salamanca, Spain - April 13 - 17, 201

    Improving search over Electronic Health Records using UMLS-based query expansion through random walks

    Get PDF
    ObjectiveMost of the information in Electronic Health Records (EHRs) is represented in free textual form. Practitioners searching EHRs need to phrase their queries carefully, as the record might use synonyms or other related words. In this paper we show that an automatic query expansion method based on the Unified Medicine Language System (UMLS) Metathesaurus improves the results of a robust baseline when searching EHRs.Materials and methodsThe method uses a graph representation of the lexical units, concepts and relations in the UMLS Metathesaurus. It is based on random walks over the graph, which start on the query terms. Random walks are a well-studied discipline in both Web and Knowledge Base datasets.ResultsOur experiments over the TREC Medical Record track show improvements in both the 2011 and 2012 datasets over a strong baseline.DiscussionOur analysis shows that the success of our method is due to the automatic expansion of the query with extra terms, even when they are not directly related in the UMLS Metathesaurus. The terms added in the expansion go beyond simple synonyms, and also add other kinds of topically related terms.ConclusionsExpansion of queries using related terms in the UMLS Metathesaurus beyond synonymy is an effective way to overcome the gap between query and document vocabularies when searching for patient cohorts

    Semantic concept extraction from electronic medical records for enhancing information retrieval performance

    Get PDF
    With the healthcare industry increasingly using EMRs, there emerges an opportunity for knowledge discovery within the healthcare domain that was not possible with paper-based medical records. One such opportunity is to discover UMLS concepts from EMRs. However, with opportunities come challenges that need to be addressed. Medical verbiage is very different from common English verbiage and it is reasonable to assume extracting any information from medical text requires different protocols than what is currently used in common English text. This thesis proposes two new semantic matching models: Term-Based Matching and CUI-Based Matching. These two models use specialized biomedical text mining tools that extract medical concepts from EMRs. Extensive experiments to rank the extracted concepts are conducted on the University of Pittsburgh BLULab NLP Repository for the TREC 2011 Medical Records track dataset that consists of 101,711 EMRs that contain concepts in 34 predefined topics. This thesis compares the proposed semantic matching models against the traditional weighting equations and information retrieval tools used in the academic world today

    Using a combination of methodologies for improving medical information retrieval performance

    Get PDF
    This thesis presents three approaches to improve the current state of Medical Information Retrieval. At the time of this writing, the health industry is experiencing a massive change in terms of introducing technology into all aspects of health delivery. The work in this thesis involves adapting existing established concepts in the field of Information Retrieval to the field of Medical Information Retrieval. In particular, we apply subtype filtering, ICD-9 codes, query expansion, and re-ranking methods in order to improve retrieval on medical texts. The first method applies association rule mining and cosine similarity measures. The second method applies subtype filtering and the Apriori algorithm. And the third method uses ICD-9 codes in order to improve retrieval accuracy. Overall, we show that the current state of medical information retrieval has substantial room for improvement. Our first two methods do not show significant improvements, while our third approach shows an improvement of up to 20%

    Exploiting semantics for improving clinical information retrieval

    Get PDF
    Clinical information retrieval (IR) presents several challenges including terminology mismatch and granularity mismatch. One of the main objectives in clinical IR is to fill the semantic gap among the queries and documents and going beyond keywords matching. To address these issues, in this study we attempt to use semantic information to improve the performance of clinical IR systems by representing queries in an expressive and meaningful context. In this study we propose query context modeling to improve the effectiveness of clinical IR systems. To model query contexts we propose two novel approaches to modeling medical query contexts. The first approach concerns modeling medical query contexts based on mining semantic-based AR for improving clinical text retrieval. The query context is derived from the rules that cover the query and then weighted according to their semantic relatedness to the query concepts. In our second approach we model a representative query context by developing query domain ontology. To develop query domain ontology we extract all the concepts that have semantic relationship with the query concept(s) in UMLS ontologies. Query context represents concepts extracted from query domain ontology and weighted according to their semantic relatedness to the query concept(s). The query context is then exploited in the patient records query expansion and re-ranking for improving clinical retrieval performance. We evaluate this approach on the TREC Medical Records dataset. Results show that our proposed approach significantly improves the retrieval performance compare to classic keyword-based IR model
    corecore