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Objective: Most of the information in Electronic Health Records (EHRs) is represented in free textual
form. Practitioners searching EHRs need to phrase their queries carefully, as the record might use
synonyms or other related words. In this paper we show that an automatic query expansion method
based on the Unified Medicine Language System (UMLS) Metathesaurus improves the results of a robust
baseline when searching EHRs.
Materials and methods: The method uses a graph representation of the lexical units, concepts and

relations in the UMLS Metathesaurus. It is based on random walks over the graph, which start on the
query terms. Random walks are a well-studied discipline in both Web and Knowledge Base datasets.
Results: Our experiments over the TREC Medical Record track show improvements in both the 2011 and
2012 datasets over a strong baseline.
Discussion: Our analysis shows that the success of our method is due to the automatic expansion of the
query with extra terms, even when they are not directly related in the UMLS Metathesaurus. The terms
added in the expansion go beyond simple synonyms, and also add other kinds of topically related terms.
Conclusions: Expansion of queries using related terms in the UMLS Metathesaurus beyond synonymy is
an effective way to overcome the gap between query and document vocabularies when searching for
patient cohorts.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The automatic processing of Electronic Health Records (EHRs)
offers exciting possibilities for applications such as phenotyping
and biosurveillance. One of the main obstacles to exploit EHRs
arises from the fact that large portions of information are encoded
as free text. Thus, techniques from Natural Language Processing
(NLP) and Information Retrieval (IR) are necessary, and this has
stimulated a wealth of research in this area. Previous research
has studied different problems in this domain, such as acronym
and abbreviation resolution in clinical discourse [20], finding can-
cer staging information in text [14], or mapping references in text
into a medical ontology [1]. Recently, the project Khresmoi1 has
created a large consortium of European Research Centers joining
forces to improve medical analysis information and retrieval.
However, the datasets used in most of these projects have not
been shared with the research community, often due to ethical
clearance issues, and this has made the comparison of different
methodologies difficult. Some recent initiatives have tried to
address the lack of shared EHR testbeds, creating NLP and IR chal-
lenges where different systems participate. The most active has
been the i2b2 (Informatics for Integrating Biology and the Bedside)
initiative, funded by the National Institute of Health (NIH).2 This
center has organised several challenges since 2006, involving the fol-
lowing NLP tasks: de-identification of reports; classification of smok-
ing status; recognition of obesity and co-morbidities; extraction of
medication information; extraction of concepts, assertions and rela-
tions; co-reference identification; and temporal relations in EHR.

The study of IR over EHR information sources has been even less
explored than other NLP-related tasks, due to the need of larger
collections and the complexity involved in building evaluation
datasets, which include the selection of appropriate queries, the
need of relevance judgements, etc. The main contribution to this
line of research came with the 2011 and 2012 Medical Records
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tracks at the Text Retrieval Conference (TREC).3 For the first time,
search for cohorts of patients for relevant medical queries was
attempted at a large scale (more than 100,000 medical records).
The queries were built by targeting a list of research areas that the
U.S. Institute of Medicine considered priorities for comparative effec-
tiveness research.4 The relevance assessment was done by groups of
clinicians after pooling documents for each query. The queries
included different pathologies and treatments, as well as demo-
graphic constraints. These challenges allowed the comparison of dif-
ferent systems over a shared dataset. They attracted the interest of
29 research groups in 2011 and 24 groups in 2012.

In this paper we present in detail a random walk approach for IR
over EHR, which performs automatic query expansion based on the
concepts and relations in the knowledge bases included in the Uni-
fied Medical Language System (UMLS). The query expansion
method relies on an algorithm based on random walks, known as
Personalised PageRank, which is run over a graph representation
of the UMLS. The intuition behind our approach is the following:
if we initialise the probability distribution of the UMLS graph with
the terms identified in the query, the random walk will help iden-
tify relevant terms, which can be used to expand the query for
improved retrieval. Our approach is flexible with regard to the type
of relationship, and a variety of related terms are found with this
method. For instance, for the query ‘‘Patients with Primary Open
Angle Glaucoma (POAG)’’, terms such as ‘‘eye’’ and ‘‘ocular’’ are
selected by the system for expansion, leading to improved retrieval
performance.

This article is partially based on the results obtained in our par-
ticipation in the TREC Medical Track in 2012, as reported in the
TREC working notes [15]. Our participation combined several
well-known query expansion techniques with a method based on
random walks. In this article we provide a better framing of our
proposed algorithm, as well as additional analysis, which allows
to separate the contribution of our expansion algorithm from the
contributions of the other techniques.

The PageRank graph-based random walk algorithm was first
introduced by Page et al. [17] as a way to better represent the
topology of the WWW in order to improve search. Since then, it
has been used for a variety of problems, including the prediction
of gene markers for cancer [24]. Personalised PageRank [9] was
developed in order to represent the importance of a particular
query when initialising the probability distribution, and it has been
successfully used in NLP tasks such as Word Sense Disambiguation
(WSD) [5,4,6,21] and word similarity [19,2,3]. It has been applied
both to a general purpose lexical knowledge-bases such as Word-
Net [2,3,5,4] and also to the UMLS [6,21]. In addition, recent results
show that it is useful to improve ad hoc IR with WordNet [16]. In
this work, we introduce a method to apply Personalised PageRank
over the UMLS to the EHR retrieval tasks of TREC 2011 and 2012.
We first present a baseline system, which achieved strong results
in the competition in both years, and then show that our query
expansion technique yields improvements over the baseline on
both datasets.
2. Material and methods

In this section we first present the document and query collec-
tions used in the Medical Records track organised by TREC in 2011
and 2012. This shared task was an ad hoc search challenge that
modelled the clinical task of finding patient cohorts for compara-
tive effectiveness research [23]. Next, we describe the steps of
3 http://trec.nist.gov/pubs/trec20/t20.proceedings.html and http://trec.nist.gov
pubs/trec21/t21.proceedings-tracks.html#medical.

4 http://www.iom.edu/Reports/2009/ComparativeEffectivenessResearchPriorities.
aspx.

5 International statistical classification of diseases and related health problems
http://en.wikipedia.org/wiki/List_of_ICD-9_codes.

6 http://www.iom.edu/Reports/2009/ComparativeEffectivenessResearchPriorities.
/

our method, including the processing of the documents and que-
ries, as used in the baseline approach. We then present our query
expansion technique and, finally, we detail the indexing and
searching steps.

2.1. Document and query collections

The document set was almost the same in both editions, with
minor changes in the collection for the TREC-2012 challenge,
which contains 844 fewer reports than TREC-2011. The set consists
of de-identified clinical reports made available for the competition
through the University of Pittsburgh. It contains one month of
reports from multiple hospitals, and includes nine types of reports,
such as Radiology Reports, Consultation Reports, and Surgical
Pathology Reports. In addition to free text, the reports also include
several ICD codes.5 Each report is linked to a ‘‘visit’’, which repre-
sents a patient’s single stay at a hospital. The set contains around
100,000 reports, which are grouped in around 17,000 visits. The unit
of retrieval in the track was the visit, i.e. the union of the content of
all the reports associated with that visit.

The test set for TREC-2011 contains 34 topics (or queries), and
TREC-2012 consists of 50 topics. The topics were obtained by rely-
ing on two sources: (i) a list of research areas that the U.S. Institute
of Medicine (IOM) had deemed priorities for clinical comparative
effectiveness research,6 and (ii) the OHSUMED literature retrieval
test collection. Some example topics are given below:

� Hospitalized patients treated for methicillin-resistant Staphylo-
coccus aureus (MRSA) endocarditis.
� Patients with hearing loss.
� Female patients with breast cancer with mastectomies during

admission.
� Adult patients who received colonoscopies during admission

which revealed adenocarcinoma.

The relevance assessments were collected manually, with sev-
eral groups of domain experts going over the sets of documents
pooled from the runs of participating systems. For the year 2011
there were two submission deadlines, and only the systems that
met the first deadline contributed to the pool (47). In 2012 there
was a single deadline, and all 88 runs were used for pooling.

2.2. Processing the document collection

In order to explore the benefits of the random walk algorithm
over a strong baseline, we rely on the pipeline developed by Karimi
et al. [11] to process the document collection. The pipeline distin-
guishes several fields based on patterns and medical codes as
found in the document collection, and allows to build several indi-
ces. This pipeline participated in TREC-2011 with competitive
results, and was used to build our baseline system. The process
consists on the four steps listed below, which are combined in dif-
ferent ways to build document indices, as described in Section 2.5.
The document processing steps are the following:

� Expansion of mentions of ICD9 codes into text descriptions.
� Identification of headings.
� Identification of negations.
� Stemming.

The first step expands the mentions of ICD9 codes of admission
and discharge diagnoses in the metadata with their text
:

http://trec.nist.gov/pubs/trec20/t20.proceedings.html
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descriptions. Both the original code and expanded forms are
included for indexing.

In the second step, heading identification is performed. The
documents in the collection contain different sections, with their
corresponding headings. The system applies hand-crafted pat-
tern-matching rules to identify the main headings, in order to build
different indices and allow for field-based search. In addition,
hand-made rules are also used to identify and normalise some
demographic information, as, for instance, gender, age, and other
specific conditions (such as weight) mentioned in the text, so it
is added to separate fields. The extracted fields are the following:

� ADMITDIAG: Diagnostic during admission.
� AGE: Patients age by decades (e.g. age30 means people in their

thirties).
� ALLERGIES: Allergies listed in the report.
� CHIEFCOMP: Chief complaint, this may be equal to diagnostics

during admission.
� DISCHDIAG: Discharge diagnostics.
� GENDER: Patient’s gender extracted from text.
� HISTORY: History of the patient’s medical condition or past

medical illness.
� MEDICATIONS: Medications.
� PRESHIS: Present illness medical history.
� PASTHIS: Past medical history.
� REPORT: All the textual information, including history (past and

present).

The third step runs NegEx7 over the entire collection in order to
detect negated phrases. It relies on the NegEx parser built into Meta-
Map-2010 [7], which specifies which of the identified phrases are
negated. We use this information to build an index that converts
negated terms into an encoded representation whenever the negated
form is the most frequent in the document. For instance, when a doc-
ument in the collection contains a sentence such as ‘‘There is no
chronic back pain’’, NegEx detects that negation is implied for the
phrase ‘‘chronic back pain’’. After parsing the whole document, if
‘‘chronic back pain’’ appears in negated form more often than in
positive form, all instances of ‘‘chronic back pain’’ in the document
are replaced with the word ‘‘nochronicbackpain’’, that is, the negated
phrase is transformed into a single word, with no spaces, and a ‘‘no’’
prefix.

Our aim with the negated index is to avoid matching cases
where the term is framed as negative in the document more often
than as positive. Due to the lack of negated queries in the collec-
tions, the result of transforming words is the same as removing
them. The method to detect negation allows us to build indices
with and without this module.

Finally, the fourth step is to stem the words in the documents
using the Porter stemmer. We experimented with both stemmed
and original words.
2.3. Processing queries: identifying fields

Based on Karimi et al. [11], we apply a set of manually con-
structed patterns to map query terms into the available fields.
These patterns were based on the sample clinical questions pro-
vided by the National Library of Medicine (NLM) as provided by
[10]; and covered seven broad categories of age, weight (using
body mass index), diagnostics, treatments, medications, history,
allergies and abbreviations. For example, if a query contained
‘‘elderly patients’’, we expanded ‘‘elderly’’ with an equivalent age
7 http://code.google.com/p/negex.
field that covered people in their 60s to 90+. Table 1 shows all
the selected transformation rules. For example the query:

Elderly patients with ventilator-associated pneumoniais automat-
ically translated into:

PRESTHIS: (ventilator associated pneumonia) OR
DISCHDIAG: (ventilator associated pneumonia) OR
AGE: (age60 age70 age80 age90) OR
REPORT: (elderly with ventilator associated pneumonia).
2.4. Query expansion using Personalised PageRank

In addition to the processing mentioned in the previous section,
which is the core of the baseline system, we propose to use an
automatic method for query expansion. For this, we use a graph
algorithm based on random walks over the graph representation
of a knowledge-base of concepts and relations, which yields terms
related to the input query. The UMLS Metathesaurus is used as the
knowledge-base, and we thus represent the UMLS as a graph.

The UMLS Metathesaurus contains a wide range of information
about the relations between terms in the form of database tables.
The MRREL table lists relations between concepts, such as ‘‘par-
ent’’, ‘‘can be qualified by’’ and ‘‘related and possibly synonymous’’
among others. In order to obtain the graph structure of the UMLS,
we simply treat the concepts in the UMLS as vertices, and the rela-
tions listed in the MRREL table as directed edges. No weights are
used for the relations that are extracted from the MRREL table.
The graph construction method is the same as in Agirre et al. [6],
and uses publicly available scripts8 on version 2012AA of the UMLS.

We did not explicitly represent and use the rich information on
types and terminology sources of relations and concepts. In related
work on WSD using UMLS [6], the authors did an analysis of rela-
tions and sources, and the results showed that using all the rela-
tions and terminology sources was beneficial, with no explicit
representation of them.

Given a query and the graph-based representation of the UMLS,
we obtain a ranked list of related concepts as follows:

1. We first identify the fields in the query (cf. Section 2.3), and
then run MetaMap to identify the UMLS terms in the query.
MetaMap allows to disambiguate those terms and return
directly the relevant concept, using the built-in WSD module.
We explored MetaMap both with and without WSD. Note that
in the cases where the fields are recognised, we expand the
value of each field separately.

2. We assign a uniform probability distribution to the concepts
found in the query. The rest of the nodes are initialised to zero.
If WSD is not turned on, we use all possible concepts meant by
the term. For instance, for the term ‘‘cold’’, the three concepts in
MetaMap will be assigned a uniform distribution of 1=3:
C0009443 ‘‘Common Cold’’, C0009264 ‘‘Cold Temperature’’
and C0234192 ‘‘Cold Sensation’’. When WSD is turned on, only
the concept returned by MetaMap is used. In the case of ‘‘cold’’,
and depending of the context in the query, one of the concepts
just mentioned would be used.

3. We compute Personalised PageRank [9] over the graph (see
below). The computation is initialised using the concepts in the
query, as mentioned in the previous step. The result is a probabil-
ity distribution over UMLS concepts. The higher the probability
for a concept, the more related it is to the given query.

The intuition behind Personalised PageRank is that of an agent
performing infinite walks in the graph at random. The agent starts
8 http://staffwww.dcs.shef.ac.uk/people/M.Stevenson/biomedical_wsd/.
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Table 1
Rules (patterns in the queries and their translations) used in the query transformation step. Words that are all in capital letters are field names (cf. Section 2.2).

What Pattern Translation

Gender Women/female GENDER:genderfemale
Men/male GENDER:gendermale

Age Young adult AGE: (age20 age30 age40)
Younger/young AGE: (agebirth12 ageteen age20 age30 age40)
Adult AGE: (age20 age30 age40 age50 age60 age70 age80 age90)

Weight (BMIjBody Mass Index)
(Bigger thanjmore thanjofjapproximately of)
>¼ 36 WEIGHT: (obesity obese overweight ‘‘morbidly obese’’ ‘‘morbid obese’’ ‘‘morbid

obesity’’ ‘‘markedly obese’’)
>¼30 and <¼35 WEIGHT: (obesity obese overweight ‘‘moderately obese’’ ‘‘moderate obesity’’)
>¼25 and <¼30 WEIGHT: (obesity obese overweight ‘‘slightly obese’’ ‘‘mildly obese’’)
>¼18.5 and <¼25 WEIGHT: (‘‘normal weight’’)
(BMIjBody Mass Index)
(less thanjofjapproximately of)
>16 and <¼18.5 WEIGHT: (underweight)
<¼16 WEIGHT: (underweight ‘‘severely underweight’’)

Treatments Taking X (whojwithjwithoutjtreated) MEDICATIONS:X
Who are on X MEDICATIONS:X
Patients on X for Y MEDICATIONS:X

Admission Admitted (forjwith) X who CHIEFCOMP:X OR ADMITDIAG:X
Diagnostics Treated for X (whojduringjwhile) PRESTHIS:X OR DISCHDIAG:X

(Patients withjmen withjwomen with) X PRESTHIS:X OR DISCHDIAG:X
Who were discharged X DISCHDIAG:X

History With a⁄ history of X (whojnow) HISTORY:X
Allergy With X allergy ALLERGY:X

Without allergy ALLERGY: (noallergies)
‘ER’ abbreviation Seen in the erjpresented to the er REPORT: (‘‘emergency room’’ OR ER)
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in any of the concepts mentioned in the query, and follows at ran-
dom one of the relations to another concept, then to another con-
cept, ad infinitum. With certain probability, the agent would
restart in any of the concepts mentioned in the query, and continue
its walk. If the agent walked infinite time, the number of visits to
each concept in the graph would give an indication of how related
that concept is to the query terms. Traditional PageRank is based
on the same intuition, but there is no reference to any query:
instead of (re) starting the walk on specific concepts, it (re) starts
in any concept in the knowledge-base, and it thus gives an indica-
tion of which concepts are more ‘‘central’’ in the graph, regardless
of the query.

The implementation of Personalised PageRank is based on
the traditional PageRank equation, which we formalise as fol-
lows. Let G be a graph with N vertices v1; . . . ;vN and di be
the outdegree9 of node i; let M be a N � N transition probability
matrix, where Mji ¼ 1

di
if an edge from i to j exists, and zero

otherwise. The transition matrix contains all relations in MRREL.
The calculation of the PageRank vector P over G is equivalent to
resolving Eq. (1).

P ¼ cMPþ ð1� cÞv ð1Þ

The first term of the sum in the equation models the case where
the random walker follows one of the relations. In the equation, c is
the so-called damping factor, a scalar value between 0 and 1, which
models the probability of the random walker following one rela-
tion, instead of restarting. The second term represents restarting,
loosely speaking, the probability of the random walker jumping
to any node, i.e. without following any relation in the graph. v
models the concepts where the random walker might restart,
and is a N � 1 vector of probabilities. The damping factor, usually
set in the [0.85 . . . 0.95] range [9], models the way in which these
two terms are combined at each step.

The second term on Eq. (1) can also be seen as a smoothing fac-
tor that makes any graph fulfill the property of being aperiodic and
9 The number of edges starting in edge i. 10 http://ixa2.si.ehu.es/ukb/.
irreducible, and thus guarantees that the PageRank calculation
converges to a unique stationary distribution.

In the traditional PageRank formulation the vector v is a sto-
chastic normalised vector whose element values are all 1

N, thus
assigning equal probabilities to all nodes in the graph in case of
random jumps. In the case of Personalised PageRank as used here,
v is initialised with uniform probabilities for the concepts in the
query, and 0 for the rest of concepts. In other words, Personalised
PageRank is computed by modifying the random walk distribution
vector in the traditional PageRank equation. As said above, all
probability mass is concentrated on the concepts identified in the
query.

PageRank is actually calculated by applying an iterative algo-
rithm which computes Eq. (1) successively until a fixed number
of iterations are executed. In our case, we used a publicly available
implementation.10 Following usual practice, we used a damping
value of 0.95, and 30 iterations.

As an illustration of the Personalised PageRank scores, Fig. 1
shows a subgraph of the UMLS around concept ‘‘Primary open
glaucoma’’ (C0339573). If this concept was found in a query, we
would (re) start the random walk distribution on that concept,
and the concepts around it would receive high scores. As the Fig-
ure shows, the top ranking concepts would include ‘‘Glaucoma
syndrome’’ (C0017601), ‘‘Eye, optic’’ (C0015392) and ‘‘GLC1E’’
(C1842026).

In order to select the expansion terms for a given query, we sort
all concepts in the UMLS according to their Personalised PageRank
value, and pick the top concepts according to a threshold. The
selected concepts are then lexicalised, using the terms specified
in the UMLS Metathesaurus. We explored two approaches to select
the top concepts: (i) select the top k concepts, or (ii) select all the
concepts with weights above a given threshold t. Our preliminary
experiments over the TREC-2011 dataset suggested that the former
approach was able to provide better performances for different
settings, and we thus decided to use the top k concepts for our

http://ixa2.si.ehu.es/ukb/


Fig. 1. Example showing a partial subgraph of UMLS centred around the concept
‘‘Primary Open Angle Glaucoma’’ (C0339573). Relation types are also described
when applicable as UMLS does not provide type labels for all the relations. The
numbers in the nodes correspond to their rank after computing Personalised
PageRank, where the random walk distribution is concentrated on the concept
C0339573 (in grey).
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experiments, where k was selected according to development
experiments (see Section 3).

2.5. Indexing and searching

In this section we describe the method for indexing all docu-
ments and performing the search. We explored several alternatives
of the baseline and our query expansion technique. As a first param-
eter, we distinguish between two types of indexing in our runs:
visit-based and report-based. In the former approach, all related
reports for a visit were concatenated (removing duplicate diagnos-
tics codes) to create a single ‘‘multi-document’’ item for indexing. In
the latter, each report is indexed as a separate item. We refer to the
former approach as VISIT, and as REPORT to the latter.

As explained before, we extracted fields from the query and
generated different indices depending on the use of separate fields
or not (FIELDS/COMBINED). The COMBINED index simply repre-
sents the normalised terms as a flat string. The use of fields
(FIELDS) is implemented as a Boolean search over the fields, where
the operator ‘OR’ is used to join the results on each field index, and
a ranking of documents is obtained from all the documents
retrieved.

Another alternative we explored refers to the application (or
not) of stemming when indexing (STEM/NOSTEM). When using
stemming, we performed stop-word removal both in query pro-
cessing and indexing. The standard list of stop-words was aug-
mented with the word patient, and we also removed all single
characters and words and, or, not, and no from the list.

As mentioned before, there were minor changes between the
document collections of TREC-2011 and TREC-2012 (a small
amount of reports were not included in 2012), and we generated
separate indices for each query set. Regarding negation, we pre-
processed the document collection with NegEx, in order to handle
negated terms, and built separate indices (cf. Section 2.2). How-
ever, few terms were affected, and the changes were minimal
when we tested the different indices over the 2011 dataset. We
report the results for the NegEx-processed index for TREC-2011,
and the full index for TREC-2012.11
11 We did not perform the NegEx processing step over the new 2012 dataset, due to
the lack of impact over the 2011 dataset.
The search engine used for indexing and searching in our runs
was Apache Lucene (v3.2). We applied both the BM25 and the
tf-idf ranking algorithms [18].
3. Results

The metric used in the experiments presented here is Bpref, the
main evaluation metric of the 2011 TREC Medical Record track.12 It
was chosen because of its robustness for incomplete judgement sets,
since it is computed on the basis of judged documents only [8]. It is
inversely related to the fraction of judged non-relevant documents
that are retrieved before judged relevant documents:

Bpref ¼ 1
R

X

r

1� nranked higher than rj j
R

ð2Þ

where R is the number of documents judged relevant for a topic, r is
a relevant retrieved document and n is a member of the first R
retrieved documents judged non-relevant.

As explained before, we tested alternative configurations of the
indexes. In summary, these are the different settings we explored:

� Use visit-based (VISIT) or report-based (REPORT) index.
� Application of stemming or not (STEM/NOSTEM).
� Use index with separate fields (FIELDS) or all fields together

(COMBINED).
� Perform (or not) WSD prior to choosing the initial concepts

when applying PageRank.
� Use either tf-idf or BM25 as the ranking algorithm.
� Process the query (following the steps to identify fields pre-

sented in Section 2.3) before or after applying PageRank
(BEFORE/AFTER).
� Different thresholds (THR) for the number of top concepts to

use for expansion, ranging from 3 to 20.

All alternatives apply to the baseline and our query expansion
system, except for the last two, which only apply to our query
expansion system.

We performed several experiments on each query set to select
the best configuration. In order to avoid overfitting, the single best
configuration of the TREC-2011 query set was used to test the
TREC-2012 query set; and in the same way, we tested the TREC-
2011 query set with the best configuration obtained on the TREC
2012 query set.

The best configurations for each development query set, includ-
ing the baseline system and the PageRank expansion system, are
listed in Table 2. We observe that the optimal setting for the base-
line varies across the two datasets. The best configuration for the
PageRank expansion system is quite consistent in both datasets:
REPORT, COMBINED and TFIDF for indexing, not performing
WSD, parsing the query AFTER PageRank, and a threshold of 3 or
4 concepts for expansion, although stemming seems to help in
one dataset, and not in the other. The results on the development
set showed that, in both cases, the use of PageRank expansion
improved the results over the baseline.

The main experiments were performed in each query set using
the best configuration according to the respective development set.
Table 3 reports the results, showing that our expansion strategy
based on PageRank improves over the baseline in both cases. The
difference with the baseline is statistically significant according
to the 2-tailed Student t-test (p < 0:01) for the TREC-2011 query
set. The table also contains the best and mean scores among TREC
participants. Our baseline systems are close to the mean of the
TREC participants for both datasets, while the PageRank system
2 The 2012 challenge relied also on inferred metrics.
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Table 2
Best configurations for each system and development query set.

Development
query set

System Best configuration

TREC-2011 Baseline VISIT + STEM + COMBINED + TFIDF
PageRank REPORT + NOSTEM + COMBINED + TFIDF

+ NOWSD + AFTER + THR3

TREC-2012 Baseline REPORT + STEM + FIELDS + BM25
PageRank REPORT + STEM + COMBINED + TFIDF

+ NOWSD + AFTER + THR4

Table 3
Results over the test query sets as Bpref.

Test collection TREC systems Our systems

Best Mean Baseline PageRank

TREC-2011 0.5523 0.4283 0.4160 0.5469a

TREC-2012 0.4515 0.3288 0.3205 0.3542

a Indicates statistically significant improvement over the baseline.

Table 4
Queries with highest improvement for PageRank, together with the learnt expansion
terms and the Bpref increase.

Query TREC
version

Expansion terms Bpref
increase

Hospitalized patients
treated for methicillin-
resistant

2011 MRSA elsewhere/NOS 0.931

Staphylococcus aureus
(MRSA) endocarditis

Personal history of
poliomyelitis
Personal history of other
infectious and parasitic
disease

Patients with Primary
Open Angle Glaucoma

2012 Eye, Eyeball, Globe,
Ocular. . .

0.742

(POAG) Glaucoma syndrome
Open cleft glaucoma
GLC1E

Patients with adult
respiratory distress
syndrome

2012 Immunology 0.722

Taxonomy
Metabolism
Historical aspects
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is better in both, and close to the top system for the TREC-2011 col-
lection. Our query expansion system would have ranked 3rd
among the 109 automatic runs submitted to TREC-2011, and
20th among 82 automatic runs in TREC-2012,13 which shows its
competitiveness with the state of the art. The overall performance
in TREC-2012 for our system is lower than in TREC 2011, but also
for the rest of participants at the challenge, with the top automatic
system reaching a Bpref of 0.4515 (compared to 0.5523 for the best
system in TREC-2011).

In fact, the task coordinator mentions that the ‘‘2012 task was
inherently harder’’ [22, p. 245], because the selection of topics in
2012 could have been biased against ‘‘obviously easy topics’’ [22,
p. 241]. She also mentions that a specific participant [13] ran the
same system on both years, finding that the system would have
scored among the five top participants in 2011, but slightly above
the median on the second, with a drop of 16 absolute points in
Bpref between both years. This confirms that the 2012 topics were
more difficult, and largely agrees with the results of our baseline.

Another aspect to consider are the differences between the best
performing systems in the two challenges. In 2011 there was no
training data available, and the top performing system [12] only
relied on their own manual annotation to tune their set of param-
eters. They applied a document-analysing pipeline that built differ-
ent indices depending on the different sections and types of the
documents in the collection. This team did not participate in
2012, when the best system applied an ensemble model which
benefited from combining several IR systems and expansion
sources, trained over the full 2011 query set [26]. They performed
cross-validation experiments over a large set of configurations, and
their results suggest that their strategy performs well when using a
training collection with a similar set of queries. Their earlier partic-
ipation in 2011 [25] applied a single underlying model (mixture
relevance model), and they estimated the parameters by concept
overlapping of topics with external collections, instead of training
data. Their best Bpref score in 2011 was 0.522 (below our Page-
Rank system, cf. Table 3). Even after they developed a more sophis-
ticated architecture for 2012 and achieved the best score, their
absolute Bpref score was lower than in 2011.

The goal of our research is to show that query expansion
beyond synonymy (based on the UMLS and PageRank) improves
13 Note that our official participation on TREC-2012 did not test PageRank-based
expansion alone, as it combined several query expansion techniques.
the results of a strong system, which we build using a single IR
model. Surpassing the state of the art was not the goal of this
investigation. We are aware that an ensemble of IR systems finely
tuned on the 2011 data (as done by the top system in 2012) per-
forms better, and we would like to explore incorporating our query
expansion technique there in the future. In any case, note that our
system has very few parameters and variations, making it, in prin-
ciple, more robust to datasets which are not similar to the train
data, as shown in related work [16,13]. We leave the exploration
of these issues for the future.
4. Discussion

In order to analyse the reason for the improvement obtained
with query expansion, we selected the queries where the differ-
ence in performance of PageRank with respect to the baseline
was largest. Table 4 shows the UMLS concepts that were returned
by our method, as used to expand some of those queries. We can
see that the proposed expansion terms have different characteris-
tics. Some terms are synonyms of a query term, e.g. ‘‘open cleft
glaucoma’’ in the second query in Table 4 is synonymous to ‘‘open
angle glaucoma’’. This was expected, as previous work has shown
that synonyms are good candidates for query expansion. We also
observe some high-level concepts that have a distant taxonomic
relationship with the query terms, such as the expansion terms
‘‘metabolism’’ and ‘‘historical aspects’’ in the third query.14 For
the first row, the term contributing most to the performance gain
is ‘‘Personal history of other infectious and parasitic disease’’, mainly
because of ‘‘parasitic’’ which is related to topic of the question. For
the third row, ‘‘Historical aspects’’ contributes to the improved per-
formance by boosting the score of patients with mentions of ‘‘patient
history’’ or ‘‘family history’’. The latter result was an artifact of the
dataset, and not an intended effect.

Most interestingly, the examples also show that some relations
beyond synonymy and taxonomy are helpful, e.g. the query term
‘‘glaucoma’’ in the second query is related to the expansion terms
‘‘eye’’ and ‘‘optic’’, according to a relationship of type ‘‘disease has
associated anatomic site’’ in the UMLS (cf. Fig. 1). By looking at a
sample of relevant documents, we observed that the expansion
terms related to ‘‘eye’’ and ‘‘optic’’ are useful to boost the score
14 These terms occur as direct, unlabeled links in the UMLS graph.
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of those documents because the glaucoma patients usually use
medication to treat their eyes, and this is explicitly mentioned in
most of the documents associated to them. All in all, the fact that
they help to reach high performance in the cohort retrieval task
is an indication that there is some correlation for those concepts
over the positive patients in the data.

Our overall results over the two datasets suggest that our Page-
Rank-based query expansion performs robustly in the task of
retrieving patient cohorts. Another advantage of our method (and
other explicit query expansion techniques) is that the added terms
can be presented to the user in an interactive way for selection
(such as in the PubMed interface for searching the biomedical lit-
erature); this would allow flexibility for building queries for find-
ing patient cohorts.

5. Conclusions and further work

Most of the information in Electronic Health Record is repre-
sented in free textual form. Practitioners searching EHRs need to
phrase their queries carefully, as the text in EHR might use syn-
onyms or other related words instead of the query terms. We have
presented an automatic query expansion method based on the
UMLS, which improved the results of a strong baseline when
searching for patient cohorts. The method uses a graph representa-
tion of the lexical units, concepts and relations in the UMLS Meta-
thesaurus. It is based on random walks over the graph, where the
random walks are initialised with the query terms.

Our experiments over the TREC Medical Record track show
improvements in both the 2011 and 2012 datasets over a strong
baseline. Note that we tuned the parameters of our method and
the baseline on the other dataset. Our analysis shows that the suc-
cess of our method is based on the automatic expansion of the
query with different types of concepts. The terms added in the
expansion go beyond simple synonyms, and they are helpful to
identify patients that are considered relevant for the queries.

For the future, we would like to explore whether our query
expansion technique would improve the results of a state-of-the-
art system, both in the scenario where the test set is similar to
the train set, and in the scenario where they differ [16]. Another
avenue of research is the exploitation of the rich relation and
knowledge sources of information in the UMLS.
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