2,698 research outputs found

    Interpolation Methods for Binary and Multivalued Logical Quantum Gate Synthesis

    Full text link
    A method for synthesizing quantum gates is presented based on interpolation methods applied to operators in Hilbert space. Starting from the diagonal forms of specific generating seed operators with non-degenerate eigenvalue spectrum one obtains for arity-one a complete family of logical operators corresponding to all the one-argument logical connectives. Scaling-up to n-arity gates is obtained by using the Kronecker product and unitary transformations. The quantum version of the Fourier transform of Boolean functions is presented and a Reed-Muller decomposition for quantum logical gates is derived. The common control gates can be easily obtained by considering the logical correspondence between the control logic operator and the binary propositional logic operator. A new polynomial and exponential formulation of the Toffoli gate is presented. The method has parallels to quantum gate-T optimization methods using powers of multilinear operator polynomials. The method is then applied naturally to alphabets greater than two for multi-valued logical gates used for quantum Fourier transform, min-max decision circuits and multivalued adders

    On SAT representations of XOR constraints

    Full text link
    We study the representation of systems S of linear equations over the two-element field (aka xor- or parity-constraints) via conjunctive normal forms F (boolean clause-sets). First we consider the problem of finding an "arc-consistent" representation ("AC"), meaning that unit-clause propagation will fix all forced assignments for all possible instantiations of the xor-variables. Our main negative result is that there is no polysize AC-representation in general. On the positive side we show that finding such an AC-representation is fixed-parameter tractable (fpt) in the number of equations. Then we turn to a stronger criterion of representation, namely propagation completeness ("PC") --- while AC only covers the variables of S, now all the variables in F (the variables in S plus auxiliary variables) are considered for PC. We show that the standard translation actually yields a PC representation for one equation, but fails so for two equations (in fact arbitrarily badly). We show that with a more intelligent translation we can also easily compute a translation to PC for two equations. We conjecture that computing a representation in PC is fpt in the number of equations.Comment: 39 pages; 2nd v. improved handling of acyclic systems, free-standing proof of the transformation from AC-representations to monotone circuits, improved wording and literature review; 3rd v. updated literature, strengthened treatment of monotonisation, improved discussions; 4th v. update of literature, discussions and formulations, more details and examples; conference v. to appear LATA 201

    Binary Independent Component Analysis with OR Mixtures

    Full text link
    Independent component analysis (ICA) is a computational method for separating a multivariate signal into subcomponents assuming the mutual statistical independence of the non-Gaussian source signals. The classical Independent Components Analysis (ICA) framework usually assumes linear combinations of independent sources over the field of realvalued numbers R. In this paper, we investigate binary ICA for OR mixtures (bICA), which can find applications in many domains including medical diagnosis, multi-cluster assignment, Internet tomography and network resource management. We prove that bICA is uniquely identifiable under the disjunctive generation model, and propose a deterministic iterative algorithm to determine the distribution of the latent random variables and the mixing matrix. The inverse problem concerning inferring the values of latent variables are also considered along with noisy measurements. We conduct an extensive simulation study to verify the effectiveness of the propose algorithm and present examples of real-world applications where bICA can be applied.Comment: Manuscript submitted to IEEE Transactions on Signal Processin
    corecore