4 research outputs found

    Low Power Explicit Pulse Triggered Flip-Flop Design Based On A Pass Transistor

    Full text link
    In VLSI system design, power consumption is the ambitious issue for the past respective years. Advanced IC fabrication technology grants the use of nano scaled devices, so the power dissipation becomes major problem in the designing of VLSI chips. In this paper we present, a low-power flip-flop (FF) design featuring an explicit type pulse-triggered structure and a modified true single phase clock latch based on a signal feed-through scheme using pass transistor. The offered design successfully figure out the long discharging path problem in conventional explicit type pulse-triggered FF (P-FF) designs and achieves better power performance by consuming low power. The proposed design also significantly reduces delay time, set-up time and hold time. Simulation results based on TMC 180nm CMOS technology reveal that the proposed design features the best power and delay performance in several FF designs under comparison

    Novel Low Complexity Pulse-Triggered Flip-Flop for Wireless Baseband Applications

    Get PDF

    Power Efficient Enhancement Technique for Flip- Flop Design

    Get PDF
    Abstract-Low power pulse triggered flip-flop is designed in this paper. In the pulse generation control logic, AND function is removed and a simple twotransistor AND gate design is used to reduce complexity and to facilitate a faster discharge operation. A pulse enhancement technique is applied to speed up the discharge along the critical path when needed. In resultant circuit, transistor size in the delay inverter and pulse generator circuit is reduced for power saving. Various post layout simulation results based on UMC CMOS 90-nm technology reveal that the proposed design features the best power-delay-product performance in seven FF designs under comparison. Its maximum power saving against existing design is up to 38.4%. Compared with the conventional transmission gatebased FF design, the average leakage power consumption is also reduced by a factor of 3.52

    XNOR-Based Double-Edge-Triggered Flip-Flop for Two-Phase Pipelines

    No full text
    The conventional approach of double-edge-triggered flip-flops (DET-FFs) is to have two similar edge-triggered latches. And the achieved faster speed is at the cost of double chip area and complex logic structure. By contrast, the XNOR-based approaches is difficult to reach the speed demand due to the delay of the XNOR-based clock generator. This paper proposes a new designed DET-FF based on an alternative XNOR gate. By utilizing the sensitivity to the driving capacity of the previous stage, we use this simplified XNOR gate as a pulse-generator. A modified transparent latch following the pulse-generator acts as an XNOR-based DET-FF, which accomplishes the almost same speed and less power dissipation as compared with two conventional DET-FFs under HSPICE simulation. We also implemented the XNOR-based DET-FF in a two-phase-pipeline system, and the HSPICE simulation in the TSMC 0.25 um CMOS process shows our proposed DET-FF is much faster than those two conventional DET-FFs
    corecore