97,041 research outputs found

    Enhancing Content-And-Structure Information Retrieval using a Native XML Database

    Get PDF
    Three approaches to content-and-structure XML retrieval are analysed in this paper: first by using Zettair, a full-text information retrieval system; second by using eXist, a native XML database, and third by using a hybrid XML retrieval system that uses eXist to produce the final answers from likely relevant articles retrieved by Zettair. INEX 2003 content-and-structure topics can be classified in two categories: the first retrieving full articles as final answers, and the second retrieving more specific elements within articles as final answers. We show that for both topic categories our initial hybrid system improves the retrieval effectiveness of a native XML database. For ranking the final answer elements, we propose and evaluate a novel retrieval model that utilises the structural relationships between the answer elements of a native XML database and retrieves Coherent Retrieval Elements. The final results of our experiments show that when the XML retrieval task focusses on highly relevant elements our hybrid XML retrieval system with the Coherent Retrieval Elements module is 1.8 times more effective than Zettair and 3 times more effective than eXist, and yields an effective content-and-structure XML retrieval

    XML Security in Certificate Management - XML Certificator

    Get PDF
    The trend of rapid growing use of XML format in data/document management system reveals that security measures should be urgently considered into next generation's data/document systems. This paper presents a new certificate management system developed on the basis of XML security mechanisms. The system is supported by the theories of XML security as well as Object oriented technology and database. Finally it has been successfully implemented in using C&#, SQL, XML signature and XML encryption. An implementation metrics is evidently presented

    A Comparative Analysis of ASCII and XML Logging Systems

    Get PDF
    This research compares XML and ASCII based event logging systems in terms of their storage and processing efficiency. XML has been an emerging technology, even for security. Therefore, it is researched as a logging system with the mitigation of its verbosity. Each system consists of source content, the network transmission, database storage, and querying which are all studied as individual parts. The ASCII logging system consists of the text file as source, FTP as transport, and a relational database system for storage and querying. The XML system has the XML files and XML files in binary form using Efficient XML Interchange encoding, FTP as transport using both XML and binary XML, and an XML database for storage and querying. Further comparisons are made between the XML itself and binary XML, as well as binary XML to ASCII text when comparing file sizes and transmission efficiency. XML itself is a poor choice for hard drive and network transport time compared to ASCII. However, in a binary form, it uses less hard drive space and network resources. Because no XML databases support a binary XML, it is loaded without any optimization. The ASCII loads into the relational database with less time than XML into its database. However, querying each database, neither outperforms the other as one query results in shorter time for one, and another query results in a shorter time for the other. Therefore, XML and/or its binary form, is a viable candidate for use as a comprehensive logging system

    PFTijah: text search in an XML database system

    Get PDF
    This paper introduces the PFTijah system, a text search system that is integrated with an XML/XQuery database management system. We present examples of its use, we explain some of the system internals, and discuss plans for future work. PFTijah is part of the open source release of MonetDB/XQuery

    Hybrid XML Retrieval: Combining Information Retrieval and a Native XML Database

    Get PDF
    This paper investigates the impact of three approaches to XML retrieval: using Zettair, a full-text information retrieval system; using eXist, a native XML database; and using a hybrid system that takes full article answers from Zettair and uses eXist to extract elements from those articles. For the content-only topics, we undertake a preliminary analysis of the INEX 2003 relevance assessments in order to identify the types of highly relevant document components. Further analysis identifies two complementary sub-cases of relevance assessments ("General" and "Specific") and two categories of topics ("Broad" and "Narrow"). We develop a novel retrieval module that for a content-only topic utilises the information from the resulting answer list of a native XML database and dynamically determines the preferable units of retrieval, which we call "Coherent Retrieval Elements". The results of our experiments show that -- when each of the three systems is evaluated against different retrieval scenarios (such as different cases of relevance assessments, different topic categories and different choices of evaluation metrics) -- the XML retrieval systems exhibit varying behaviour and the best performance can be reached for different values of the retrieval parameters. In the case of INEX 2003 relevance assessments for the content-only topics, our newly developed hybrid XML retrieval system is substantially more effective than either Zettair or eXist, and yields a robust and a very effective XML retrieval.Comment: Postprint version. The editor version can be accessed through the DO

    Research on Elaboration of an Integrated System Based on Xml Data Analysis

    Get PDF
    This paper approach the importance of XML for organizing and managing better the data based on texts. This document provides the specification for a data model for describing information organization structures (metadata) for collections of networked information. As an important result we propose a new model of an integrated system based on XML and using the data analysis It also provides some steps we must follow for this data model using XML, the Extensible Markup LanguageXML, Integrated System, Database

    MonetDB/XQuery: a fast XQuery processor powered by a relational engine

    Get PDF
    Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met

    Staircase Join: Teach a Relational DBMS to Watch its (Axis) Steps

    Get PDF
    Relational query processors derive much of their effectiveness from the awareness of specific table properties like sort order, size, or absence of duplicate tuples. This text applies (and adapts) this successful principle to database-supported XML and XPath processing: the relational system is made tree aware, i.e., tree properties like subtree size, intersection of paths, inclusion or disjointness of subtrees are made explicit. We propose a local change to the database kernel, the staircase join, which encapsulates the necessary tree knowledge needed to improve XPath performance. Staircase join operates on an XML encoding which makes this knowledge available at the cost of simple integer operations (e.g., +, <=). We finally report on quite promising experiments with a staircase join enhanced main-memory database kernel
    corecore