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Abstract

This research compares XML and ASCII based event logging systems in terms

of their storage and processing efficiency. XML has been an emerging technology, even

for security. Therefore, it is researched as a logging system with the mitigation of its

verbosity. Each system consists of source content, the network transmission, database

storage, and querying, which are all studied as individual parts. The ASCII logging

system consists of the text file as source, FTP as transport, and a relational database

system for storage and querying. The XML system has the XML files and XML files in

binary form using Efficient XML Interchange encoding, FTP as transport using both

XML and binary XML, and an XML database for storage and querying. Further

comparisons are made between the XML itself and binary XML, as well as binary

XML to ASCII text when comparing file sizes such as, ASCII = 2211.58 KB, XML =

3463.56 KB, and binary XML = 425 KB. As well as, transmission efficiency having

times such as, ASCII = 12 msec, XML = 26 msec, and binary XML = 4 msec. XML

itself is a poor choice compared to ASCII for hard drive being 1.6 times greater and

network transport time being 2.2 times longer. However, in a binary form compared to

ASCII, it uses less hard drive space, that is 0.19 times the size, and network resources

being a 1/3. Because no XML databases support a binary XML, it is loaded without

any optimization. The ASCII loads into the relational database with less time than

XML into its database. ASCII’s loading time could load in 1.9 seconds compared to

the XML loading in 7.7 sec. However, querying each database, neither outperforms

the other as one query results in shorter time for one, and another query results in

a shorter time for the other. One query resulted in the relational database executing

in 3 sec and the XML database in 85 sec. Where as, another query has relational

database taking 37 sec and the XML database 6 sec. Therefore, XML and/or its

binary form is a viable candidate for use as a comprehensive logging system.
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A

Comparative Analysis of

ASCII and XML Logging Systems

I. An XML logging system?

Since the creation of Extensible Markup Language (XML) by the World Wide

Web Consortium in the late 1990’s there has been initiatives to create XML versions of

audit logs [HB99] [XLF01]. The advantage of XML logs is that they are in a standard

format for processing. This in a sense is true. However, at the time, and to a lesser

extent today, XML is much larger than the simpler ASCII text files. The question

then arises as to how to read, search, and analyze the XML.

Much has changed since the time that XML was initially created. Many more

standards and technologies have been built on top of the core of XML. A continuing

issue, however, is data naming collisions. In examining multiple logs, there is more

than one labeled “user”. What does “user” mean in each context? One solution is to

give each labeling a scope such as linuxAccount:user, relationalDatabaseAccount:user,

which provides context. XML has such a mechanism: XML Namespaces.

Another XML feature is the XML Schema. This is a separate document that

specifies what data is permitted into the document and how the document is laid

out. This provides a filter for audit or similar data to make sure that it conforms to

expected standards and formats.

However, it still remains that the XML data must be searched. Thus in mid-

2000s, a querying language was designed specifically for XML [Wal07]. XML can now

be placed into a database of its own for searching. The meaning / context of a parcel

of information is known since XML’s “markup” is self-documenting.

Finally, the newest technology of significance for this effort is Efficient XML

Interchange [Wor08]. This new standard converts XML from its well-documented

1



verbose form, into binary form which is compact and designed for efficient processing

on the receiving end.

This research is to determine if an XML logging system is feasible in comparison

to an ASCII logging system. XML has been an emerging technology, even for security

such as Security Content Automation Protocol (SCAP) [Cor08]. Therefore, integrat-

ing an XML logging system with other XML-based security makes security tools and

technology easier to build and use. XML logging information also becomes extensible,

resulting in easier future adaptations. Both of these benefits can save time, money,

and other resources.

Since there is limited time and resources, a full-scale implementation of a net-

work and other resources is not done. Instead, the technologies discussed above are

used to form “island” processes that could form the basis of a comprehensive logging

system. These islands focus on hard drive usage, network transmission time, coding

and decoding times, and database times. The times recorded for network traffic are

the least realistic since all communications are connected from one computer to an-

other via a switch. The databases’ times are also not as realistic, since they are not

set up on real-world servers.

More details are given in their appropriate chapters.

2



II. Background Material

There is the need for recording activities and keeping other records of certain activi-

ties. Financial system logs, for example, log capital inflow and expenditures outflow.

For inventory applications there are shipping logs that may include identification in-

formation, time arrived, and the origin of the item; or for items to be shipped, item

identification, destination, and departure time. In the medical field, very detailed

records are kept including who saw whom, and what care the provider gave to the

patient. It is no different for computers and networks. However, the number and

volume of the records or logs can be quite high. Logs are each tailored to a particular

service, product, or standard. Often, multiple logs may need to be correlated. XML

and the related XQuery standard can aide in this task.

2.1 Extensible Markup Language

Extensible Markup Language (XML) has been used to transport logging infor-

mation [LOG01], [CCC04], [GPR+03]. However, additional technologies and stan-

dards have made doing so more practical. Since XML is by design extensible, it is

easy to adapt to current standards and technologies, as well as to new standards and

technologies. The markup capability of XML can separate the data itself from the

presentation of data, as is shown in Figure 2.1. The data favorite is marked up to be

presented differently than its accompanying data using elements (element-pair) < i >

and < /i >. The “language” attribute also demonstrates the separation of data and

presentation, as the “name” is tailored to the language of the audience. Since logs are

not typically designed with presentation in mind, XML provides a means to do so for

data. This enables the information-system as well as end-users to process the logged

data. Another feature of XML is its hierarchical layout in which child-elements can

be repeated. These features are discussed further in the querying logs section.

3



Figure 2.1: Example XML: “Catalog”

Figure 2.2: EXI Compactness compared to Gzipped XML [EXI09] Test cases sorted
by best result

4



Figure 2.3: EXI Compactness compared to Fast Infoset [EXI09] Test cases sorted
by best result

XML’s verbosity is a significant drawback. Although it makes the document as

a whole and the data elements portable, self-explanatory, and easier to design for var-

ious processing methods, this results in a document that may be significantly larger,

compared to the data itself. This was considered by the XML designers, the World

Wide Web Consortium (W3C), and resulted in the formation of the XML Binary

Characterization Working Group. [Wor03]. The Binary Characterization Working

Group determined a Binary XML was warranted based on case studies [WG05]. Bi-

nary XML reduces disk, memory, and network bandwidth requirements, as well as

improves processing performance.

The Efficient XML Interchange (EXI) Working Group [Wor08] is to create an

open royalty-free, Binary XML standard. The “EXI” binary format has been tested

against other binary implementations of XML such as XML+gzip, as shown in Figure

2.2, and Fast Infoset, as shown in Figure 2.3. Fast Infoset is defined using the Abstract

Syntax Notation 1 (ASN.1) which specifies the components of binary data. It is then

encoded using the Packed Encoding Rule (PER), as is referred to in Figure 2.3. EXI

5



Figure 2.4: EXI Encoding Speed without compression [EXI09] Test cases sorted by
EXI result

encodes and decodes faster, based on TPS as defined by the previous working group

and as shown in figures 2.4, 2.5 respectively. The compacting and processing speed

is achieved by stripping out the information or performing a Huffman-like codec for

all information known to have a finite set of values. These values, known in advance,

are provided by an XML Schema. XML Schema, shown in Figure 2.6, is an XML

standard that gives XML structure by specifying constraints on the layout of the XML

document and data it contains within it. This is shown in the figure, demonstrating

the specifying of the hierarchy for “catalog” to have number, name, colorchoices, and

desc be children of the element product; product is to have an attribute “dept”. The

figure also demonstrates the restricting of a value set; the “language” attribute will

only use “en” and “fr”.

2.2 Logs

Logs or audit trails are an important component of system security analysis

that can verify conformance with security policies and trace the cause of policy

6



Figure 2.5: EXI Decode Speed without compression [EXI09] Test cases sorted by
EXI result

breaches. Logs are typically one of three types: Binary, ASCII, or Formatted/Marked-

up (XML).

Binary type logs have the advantage of being the fastest and the most compact.

However, they are not human-readable as is shown in Figure 2.7, nor easily portable.

Thus, the use of specific tools to view logs, as shown in Figure 2.8 and to search them

is required. Although the binary type logs are not human-readable, this can mitigate

an attacker’s attempt to hide a break-in as some tools attempt to purge event entries

from binary logs which could corrupt them.

ASCII logs are very common on UNIX systems and are easy to use and under-

stand, but are not as compact as binary logs. However, they are human and machine

readable and very portable, as is shown in Figure 2.9. ASCII logs come in a variety

of different formats, i.e., comma-delimited rows, tab-delimited rows, key/value pairs,

other similar format, or strings of free-text.

XML logs are not as common as the other two types of logs. An XML log is

technically a text-based log, but is treated differently since XML is structured and

7



Figure 2.6: Example XML Schema: “Catalog”

uses UTF-8 or UTF-16 character encoding, as opposed to ASCII. Binary XML is

also considered “XML” rather than a binary log since it retains its XML properties.

Despite the popularity of XML as a medium of communication, it is not as “user-

friendly” for a person to read directly, but can be done. It is uncommon as a logging

format.

2.3 XML Logs

There are standards for XML logs. However, XML logs are often specified

and implemented for a particular technology or organization, such as the “XML Log

Standards of Digital Libraries”[GPR+03]. XML for data in transport is more common.

In intrusion detection systems, standards such as the “Intrusion Detection Message

Exchange Format” (IDMEF) [IDM04] and Security Event Exchange (SDEE) [SDE]

8



Figure 2.7: Binary Log shown in hexadecimal ASCII strings
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Figure 2.8: Binary Log Viewer

Figure 2.9: ASCII Log

10



Figure 2.10: SEAL Revision 1

use XML as a means of transport. DEViSE is an open middleware architecture

that manages and coordinates information between security visualization tools using

XML [RXB09].

XML logs are sometimes proprietary as is Microsoft’s Windows Vista [Sch07].

XML logs fixed problems with the old Windows NT event logging system which loaded

large tables into memory and was unable to query or filter log entries. Although an

XML log can be verbose, it was used in the low-cost compact Spatial Environmental

Autonomous Logger (SEAL) shown in Figures 2.10 and 2.11. SEAL can be used in

non-real-time unmanned aerial vehicles. [CC08]

There have been efforts to create a universal log system. The Extensible Log

Format Initiative created a universal format based on XML [HB99]. The LOGML

format was last used in the proof-of-concept “web usage mining” in 2002 [PKZ02].

IBM created a universal log system using their Common Base Event (CBE)

standard in the Common Event Infrastructure (CEI), their implementation of the

11



Figure 2.11: SEAL’s XML log

“Web Service Distribution Management”(WSDM) standard from the Organization for

the Advancement of Structured Information Standards (OASIS). The CBE specifies

how events are to be formatted [Cor03] [IBM03], while storage and processing of the

XML documents is left to applications. To simplify implementation and promote

the CBE, a set of APIs known collectively as CEI was developed. These APIs create,

distribute, and process CBEs which are configured by the user, as dictated by business

and performance needs.

Another universal logging system is MITRE ’s Common Event Expression (CEE)

standard [CEE08]. CEE has four components: Taxonomy, Syntax, Transport, and

Recommendations, as displayed in Figure 2.12. The categorizing, “labeling” of syn-

tax, and choosing the most appropriate transport method makes the standard much

more abstract and adaptable, which could lead to wider adoption of this standard.

CEE members are still determining how to build the standard from use-cases and

mailing-list discussions.
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Figure 2.12: Common Event Expression chart

2.4 Querying Logs

Querying logs directly is problematic. It is not possible to query a log of binary

data without a tool designed specifically for that purpose. Even then, one is limited

to the capabilities of the tool itself. Basic ASCII-text files can be queried to some

extent using scripting tools such as PERL. The difficulty is designing combinations

of retrievable data or developing multiple scripts for the individual combinations. Of-

ten, log data is transferred or copied into a database management system (DBMS),

frequently a relational database (RDBMS). The RDBMS works well for logs that

store line-entries for events or for tuple-like data. RDBMSs do not handle log data

that have components with subcomponent(s) or a list of data which must be de-

coupled. XML databases, on the other hand, process component-subcomponent and

component-list data organization very well. In the query shown in Figure 2.13, the

query statement returns every third “product” element and associated children from

the “catalog” [Wal07].
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Figure 2.13: Example: simple XQuery query statement

2.5 Summary

Because of its self-documenting ability and hierarchical structure, XML facili-

tates the analysis of log data. Because it is text it is also portable. Additional XML

standards make querying an XML log simpler than binary or ASCII logs queries.

Although XML logs are “specialized” when used in particular open standards or pro-

prietary products, they lend themselves to standards that complements XML’s struc-

ture.

14



III. Methodology

3.1 Introduction

XML is ideal for compartmentalizing information, is ubiquitous, and is verbose.

The first two characteristics of XML, its ability to compartmentalize information

and its ubiquitousness, suggest it may be useful for logging audit data. However,

XML’s verboseness poses a challenge, particularly in systems that generate a signif-

icant amount of data. Therefore, the question arises: Are XML computer logs a

reasonable use of this technology?

3.2 Problem Definition

3.2.1 Goals and Hypothesis. The goal of this research is to determine

if XML logs use fewer resources and less bandwidth to transport after being en-

coded into binary XML (which preserves XML characteristics) than ASCII logs. A

relational/object-relational database containing ASCII log data and an XML database

with XML log data are compared.

It is known that XML logs do in fact use more computer and network resources

than ASCII logs. However, XML logs encoded with or without an XML Schema might

use fewer resources than ASCII logs. It is expected that binary XML with a schema

will use fewer resources than one without a schema.

Furthermore, it is expected that an XML database with a schema will outper-

form other audit databases. Without a schema, the XML database can only presume

the data is“generic”and cannot be optimized. A relational/object-relational database,

however, is configured for optimization, and will likely outperform an XML database

without a schema.

3.2.2 Approach. This research compares an ASCII Audit System to an XML

Audit System. The ASCII system has one form, while the XML system has two. As

part of the comparison, ASCII will be compared to both XML forms. In addition,
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Figure 3.1: System Under Test

the two XML forms are compared to each other. Thus, which audit system is better

overall is determined.

3.3 System Under Test

The System Under Test (SUT) is the Audit Logging System, as shown in Figure

3.1. The SUT has four components: a computer, a network, a database, and the data

encoding method. The SUT does not measure the execution time of the software nor

the hardware system that generates audit events. Therefore, how fast and how many

resources are used to create ASCII versus XML versus XML binary audit data is not

addressed. Rather, the computer’s storage, and network’s data transmission resources

are measured, based on the submitted workload.

3.4 System Services

The SUT provides the services of audit data storage, audit data transmission,

and query of audit data. The Computer provides the storage service, with the out-

comes of success or failure. The storage service is successful if audit data can be read

and written to the hard drive, and is a failure otherwise.
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The audit data transmission service is provided by the Network. It has service

outcomes of success or timed-out. The service is a success if all audit data to be sent

arrives without data loss or corruption. If a time constraint is associated with the

test undertaken, then the data sent must also be within the time constraint. Finally,

if the data is delivered after the time constraint specified, the outcome is defined as

timed-out.

The placing of audit data into the database can be performed either with or

without human involvement. Possible outcomes are success or failure. Failure results

when any portion of the data cannot be placed into the database due to an error in

the database itself. An error may also occur due to physical storage failure. If data is

input into the database correctly, but not within the time specified, a time-out occurs.

The querying of audit data also applies to the Database. Its output is the result

returned from the query. Outcomes are successful, erroneous data, or timed-out. The

querying service is successful if the results are correct/expected and done within the

time constraint specified. An erroneous outcome occurs if the results returned do not

match the criteria specified in the query. A time-out results if the results are returned

correctly, but not within the time allotted. The use of time constraints are optional

in all tests.

The data encoding method component is addressed in the following section.

3.5 Workload

3.5.1 ASCII. Workloads are categorized into three types: “ASCII”, “XML”,

and “binary XML”. The ASCII log is a copy of actual logs generated from an AFIT

Linux operating system’s “Linux Audit Subsystem”, i.e., Linux’s kernel logs, which is

configured as a cluster, running Red Hat Enterprise Linux 4/5. The audit content is

from mid-February to early-June 2010 and transformed into an ASCII form by using

the Linux command-line tool “ausearch”. This ASCII form is an interpreted version

of the default content, interpreting user IDs, and other number data into human-
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readable text/names. The command presented below uses the option “-i” to interpret,

and returns content between the interval specified by the start-time and end-time,

respectively.

ausearch -i -if <filename> -st DD/MM/YYYY hh:mm -te DD/MM/YYYY hh:mm > <outputfile>

A PERL script automates the process of taking raw logs and using the ausearch tool

to also break the logs into individual files per time-unit (i.e., daily, halfday, hourly).

This results in 102-daily files, 205-halfday files, and 2,446-hourly files.

These ASCII files are used in the computer, networking, and database com-

ponents. However, the ASCII files as they are cannot be placed directly into the

database. They must be transformed into a format that the database supports, which

is comma-delimited columns and rows (.csv files). This transforming is outside the

experiment; thus tools, time and other resources used are ignored. However, the pro-

cess uses the XML database itself as the vehicle to transform the ASCII to CSV. The

ASCII in the experiment is not directly transformed, and the XML content is trans-

formed into the CSV files. This would not be done in the real-world, although it was

done here, to aid in determining and laying out the ASCII-CSV / relational-database

equivalence. The “conversion time” is not included in the processing time discussed

in Section 3.6.

3.5.2 XML. The ASCII files are analyzed to see how the information is

related and interconnected, using a document about Linux Audit Logs from [IBM08].

Based on this an XML Schema file is created such that information with more than

one occurrence is placed in an element of its own versus an attribute which can only

have one value. Once the the Schema is done, another PERL script creates XML

equivalent logs conforming to the Schema.

These XML files are used in the computer, networking, database, and data

coding components.
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3.5.3 Binary XML/EXI. The binary XML is the binary encoded form of an

XML log. The XML binary encoding/decoding (codec) is based on the “candidate”

(since it has not been ratified) standard created by the same organization that created

XML, The World Wide Web Consortium. The data encoding component tested is the

tool that creates Binary XML or EXI files. This tool is a Java-coded program using

different coding modes, options (i.e. preservation options), and either the inclusion

or non-inclusion of an XML Schema.

This workload type is used in the computer and networking components.

3.6 Performance Metrics

The first system metric is a storage metric, the amount of hard drive space used

on the computer for logging measures storage efficiency.

The network communications metric is throughput, which consists of bits per

second. This determines the feasibility of an XML log scheme; therefore, it is an

important metric.

The database component uses in-process time, as it stores audit data in the

database. The in-process time determines whether placing ASCII log data into a

relational database is faster than XML log data placed into an XML database. Re-

trieving the queried information in a timely manner is also important. Thus, the time

to query is also recorded.

3.7 System Parameters

The amount of memory in the system affects the performance of the Audit

Logging System.

The hard drive capacity of a computer largely determines the capacity of a

system and, as a result, influences the services provided and their capabilities.
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The type of processors can affect the performance significantly. If a processor is

tailored to a particular often used operation, then it is highly likely that the “tailored”

processor will outperform a general purpose processor.

The operating system is typically general purpose and is seldom“specialized” for

desktop computers and servers. However, some operating systems are better suited to

particular applications. For example, Unix/Linux systems lend themselves to network-

ing as web servers, while Windows systems are oriented toward business applications,

such as marketing.

Swap space/paging is another system parameter which, if not controlled, may

cause unforeseen or erroneous results. Since without sufficient memory, code or data

may be placed on the hard drive rather than in memory, swapping will cause a delay

in execution.

The number of processes executing on a computer significantly affects perfor-

mance and the ability to perform controlled tests, as processes may compete for the

CPU and interrupt the test process.

The network has fewer system parameters to control. A major system parame-

ter, however, is the “type of network”, such as Token Ring, Ethernet, etc. The choice

of a network protocol can affect throughput, in addition to correctness of the datum

sent from one system to another. The type and number of network services utiliz-

ing the network affects performance since bandwidth is shared, resulting in a greater

likelihood of corruption as collisions can occur.

The database parameters consist of the database management system software

used, indexing of the database, and how the database is configured. The choice

of the vendor of a database management system influences performance due to the

vendor’s particular specialties. This has been shown for relational databases tested

against relational database benchmarks [Gra93]. Indexing is enabled, which affects

audit service because additional work is done by a database system. This indexing is

necessary in order for the experiments to execute reasonably in seconds versus hours;
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Table 3.1: Factors Table
The column titles are the factors and levels are below.

Workload Volume Schema: Transfer Binary XML Schema: XML Database

daily With XML-Schema (BYTE) With XML-Schema
halfday Without XML-Schema (BYTE) Without XML-Schema
hourly With XML-Schema (bit)

Without XML-Schema (bit)

also, it’s more realistic. The rows and columns of tables created for the relational

database are in at least First Normal Form [Kro02], which does not allow duplicate

rows and thus the need to create additional tables for pieces of data that have one-to-

many or many-to-many relationships. This follows the basic layout and configuration

of tables in a relational database that is to store log data. A relational-database

schema is in appendix A.1.1, which contains the create table commands used for each

table with their respective columns’ data type.

3.8 Factors

Among the workloads, there are several factors that affect different resource

usage or performance. It is expected that when using XML Schema to derive binary

XML from an XML log, it will be created more compactly than when not using XML

schema. The binary XML created with an XML schema is dependent upon that

schema. Another factor that affects file size results is the coding mode (BYTE or

bit). Bit mode is certainly to be more compact than BYTE because of its Huffman-

like encoding and that it is not aligned to bytes as BYTE coding is. When“aligned”to

a byte, if for example the data is encoded to 9 bit, then it would require 2 bytes. There

are some trade-offs with each coding mode for other resources. When transmitting

across the network, it should be transmitted in a shorter amount of time because of

its compactness.

Regarding the XML database, there are no implementations at this time that

import/export from a binary XML file. Therefore, the XML log itself is used, com-

pared with versus without the schema.
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Since the query language XQuery was designed for use with XML Schema, it is

expected to perform better with the schema with a shorter response time, although

loading the data into the database itself is expected to be slower.

Another factor that affects performance is the workload size. It is expected

the volume of log data transmitted across a network and stored in a database could

vary widely. Therefore, different workload sizes are tested, namely daily, halfday, and

hourly. Each unit is a file made of an audit content for that day, halfday, or hour,

respectively.

3.9 Evaluation Technique

The evaluation technique used is measurement. However, there is no attempt

to replicate a “real-world” network. Rather, minimal background traffic is used. The

measuring of the network transmission uses FTP since it is one of the simplest network

protocols. “rcp” would be simpler, but systems do not have them by default, nor is

it used because of security risks. Using an encrypted variant would have too much

overhead, resulting in exaggerated transmission times.

The equipment used consists of three desktop computers and 100 megabit Eth-

ernet network cables and a switch. Each computer has 2 Intel Duo CPU T2450 at 2.0

gigahertz processors with 2 gigabytes of memory and 146.5 gigabytes of hard drive

capacity using the “ext3” file system. The operating system is Linux Ubuntu 9.10

(kernel 2.6.31-14-generic) configured with minimal services for the least impact on

the system performance. The swap space for Linux is not used, in order to control

memory usage.

The databases used for the ASCII log system and XML log system are “Post-

greSQL 8.4.2” and “Berkeley DB XML 2.5.16”, respectively. The databases are on

dedicated computers to avoid interference with each other, which could result in bi-

ased measurements. They are configured with indexing in order for the experiments

to execute reasonably in seconds versus hours. It is also more realistic.
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The two database systems, in addition to being different types, do not have

the same focus. The PostgreSQL is designed and setup as a stand-alone server in

client/server architecture. This allows it to start up and prepare and optimize itself

before receiving any connectivity and processing queries. The Berkeley is an embedded

system. It is designed to be integrated into a individual application. Thus, it does not

have the opportunity to prepare or optimize itself in advance. It performs the query

when the application does the querying. This is noted, but the PostgreSQL is used

because it supports some querying features that are equivalent to that of the XQuery

language for an unbiased comparison.

The Java library used to program the tool to encode and decode an XML log

into binary XML is “exificient-0.4”. Although many options are used, only a specific

combined-set is analyzed, Preserve Namespace Prefixes & Preserve schemaLocation,

since it retains those properties that a system or human would use. Workloads are

stored and “originate” on the third computer.

To validate the measured results, analytic analysis is used. The size of hard

drive is relatively static and an analytic technique is used to estimate typical, current,

and future or real-world usage.

3.10 Experimental Design

The experimental design is partial factorial; that is, a subset of combinations are

tested: binary XML with schema and a medium volume versus binary XML without

schema and a halfday volume versus XML log with schema and halfday volume versus

XML log without schema and halfday volume. To gather reasonable data for statistical

analysis, experiments are performed at least 3 times each.

3.11 Methodology Summary

This experiment compares the two ASCII log and XML log systems. It is

expected that the ASCII log will use fewer resources on the computer and have overall
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better performance for the network and database than the XML log. However, the

XML Binary log should do better than ASCII logs in hard drive space and shorter

network transmission time.
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IV. Analysis of ASCII, XML, & EXI

4.1 Introduction

Analysis moves through each component in the order of computer, encoding,

network, and database. Beginning with the computer, the simple metric of hard drive

space is compared for ASCII, XML, and the different variants of EXI per workload

type from largest to smallest (daily, halfday, hourly). The variants of EXI are in

the order encoded using BYTE mode without Schema, BYTE mode with schema,

bit mode without schema, and bit mode with schema. Since the number of files

of each type per workload type is the same (e.g., 102 daily ASCII files, 102 daily

XML files, 102 daily EXI BYTE w/o schema files, etc.) and all these test files are

greater than 100, an average (mean) of sizes are taken. It can also be seen that all

relevant results collected on the respective tests of components that involve files (i.e.

computer, encoding, network) are a statistical sample and not a population because

logs are infinite over time and thus always a sample. Therefore, all statistical analyses

done are samples, with a confidence level of 95% where necessary.

In analyzing the codec (i.e. encoding & decoding) component times are com-

pared among BYTE with schema, BYTE without schema, etc. Then the correlation of

file size to time is analyzed. Between the encoding & decoding, encoding is examined

first, then decoding.

The second to last component analyzed is the network. The similar comparison

cycle of ASCII, XML, EXI, with its variations BYTE without schema, etc., is analyzed

for transmission time.

The last component analyzed is the database. The analysis is divided into two

parts, the first being loading logs into the database, and the other being the querying

of data. ASCII are loaded logs into the relational database, and XML logs are loaded

into the XML database, but having the Schema factor with and without a schema.

The loading of the CSV files into the database, is executed on the server backend,

using its “copy” command. This command is not to be confused with the identically
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Table 4.1: File Sizes Averages Summary (Kilobytes)
ASCII XML EXI

w/o w/
Daily 2211.58 3463.56 BYTE 674.49 614.7

bit 517.27 425
Halfday 1412.14 2215.72 BYTE 430.39 393.54

bit 330.1 272.17
Hourly 118.35 185.23 BYTE 35.95 32.82

bit 27.49 22.46

named command used on the client side or frontend. The copy command is executed

per file and placed in its appropriate table, i.e., a 1-to-1 file to table correspondence.

Therefore, in order to load a collection of CSV files into their tables that is equivalent

to the corresponding XML document, the collection of CSV files are executed within

a SQL transaction block. This makes it an all-or-nothing single process, made of a

series of small “copy” processes.

The loading of the XMLDB is the execution of the “putDocument” command.

The command is written as:

putDocument <documentnameInDatabase> <XMLfileToLoad> f

The documentnameInDatabase is the name of the XML file once in the database. The

“f” informs the database that the second argument, <XMLfileToLoad>, is a file, and

not the result of another query or a string containing XML.

The analyzing of the querying experiments involves only two unrelated queries

of the four executed on each database, due to limited research time for analysis. The

latter query is more complex and is the rationale for the RDBMS used. In both

parts, time is analyzed. And because there are differences initial and subsequent

trials/rounds (R1, R2, R3), the first and second are looked at more closely.

4.2 Computer

4.2.1 Comparing file sizes. A summary of file sizes’ averages are presented

in Table 4.1, which also includes the XML binary forms with the two coding modes
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without and with the schema used. The Daily is an average of 102 files, Halfday of 205

files, and Hourly of 2446 files. Kilobytes and Megabytes are shown when appropriate

for each instead of the raw bytes for more compact numbers, although calculations

are in bytes.

XML is shown to be larger than ASCII across all workloads, as is expected. The

EXI files in all combinations presented are smaller than XML, as the binary encoding

is designed to do, and are smaller than the ASCII. At a glance, the use of an XML

Schema does result in smaller file sizes, and bit mode does use less than the byte mode

since the data does not need to be aligned. Thus the most compact files are bit mode

encoded with a schema. It is also shown in each column that the size of the workload

(daily versus hourly) is a contributing factor to file size across all types.

The file size ratios with ASCII as base Table 4.2 shows that XML should not

be used for any term of storage other than short since it will consume hard drive

space over 1.6 times the rate that ASCII. Coding should be used for XML if is is to

be stored in files for any longer length of time. For the EXI, as the workload size

is smaller, there is less to be converted to binary, resulting less saving in hard drive

resource, although the reduction remains significant.

T-tests are used to verify that there is a statistically significant difference in file

sizes between the non-use and use of a schema across all workloads. If the confidence

interval includes zero, they are not statistically different; otherwise they are at the p-

value level of significance. As is seen in Table 4.3, the p-values are quite small for both

BYTE and bit among all workloads. Thus, the null hypothesis, the mean difference

between with a Schema and without Schema is zero, is rejected. The confidence

intervals not including zero support this same conclusion. A similar conclusion for

BYTE and bit mode encodings is shown in Table 4.4.
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Table 4.2: File size (avg) Ratios: ASCII as base
XML EXI

w/o w/
Daily 1.621 BYTE 0.345 0.302

bit 0.271 0.202
Halfday 1.636 BYTE 0.353 0.304

bit 0.278 0.203
Hourly 1.629 BYTE 0.434 0.321

bit 0.357 0.22

Table 4.3: File sizes EXI Schema significant difference T-test
datatype BYTE bit
t-value -3.3219 -3.845
degrees of freedom 101 101

Daily confidence level 95% 95%
p-value 0.0012 0.00021
confidence interval (-97774.31, -24660.20) (-143231.88, -45737.06)
t-value -4.6942 -5.1697
degrees of freedom 204 204

Halfday confidence level 95% 95%
p-value 4.9 × 10−06 5.6 × 10−07

confidence interval (-53575.77, -21881.98) (-81944.31, -36696.16)
t-value -11.4589 -10.2089
degrees of freedom 2445 2445

Hourly confidence level 95% 95%
p-value < 2.2 × 10−16 < 2.2 × 10−16

confidence interval (-3750.69, -2654.57) (-6137.13, -4159.37)
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Table 4.4: File sizes EXI Coding-mode significant difference T-test
datatype without Schema with Schema
t-value 3.7594 3.9469
degrees of freedom 101 101

Daily confidence level 95% 95%
p-value 0.00029 0.00015
confidence interval (76037.15, 245931.56) (96618.76, 291884.38)
t-value 4.5157 4.7362
degrees of freedom 204 204

Halfday confidence level 95% 95%
p-value 1.1 × 10−05 4.1 × 10−06

confidence interval (57857.73, 147537.92) (72548.47, 176029.90)
t-value 8.9231 8.845
degrees of freedom 2445 2445

Hourly confidence level 95% 95%
p-value < 2.2 × 10−16 < 2.2 × 10−16

confidence interval (6757.62, 10564.25) (8255.08, 12958.03)

4.3 Codec Methods

4.3.1 Codec Time & Memory. The execution time is the difference of end-

time − start-time, retrieved after the end and prior to the start of the execution.

The times retrieved were system-calls that returned the number of milliseconds from

January 1, 1970 UTC.

The collecting of memory usage for the encoding and decoding processes was

orchestrated by clearing all garbage memory to form a clean baseline of memory usage

prior to executing the encoding / decoding action. Since Java has no function that

returns the amount of memory that the process itself is using, it was determined by

taking the difference of the total memory of the runtime in the Java Virtual Machine

(JVM) and subtracting the amount of Free memory of the runtime in the JVM. Since

there are no other processes executing within the JVM other than the codec, this

provides an accurate memory recording at the heart of the encoding and decoding

functions. However, due to limited research time, memory usages are shown for

encoding in Table 4.6 and decoding in Table 4.7, but not analyzed.
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Table 4.5: Encoding times Average Summary (Seconds)
Encoding Time

w/o w/
Daily BYTE 2.341 2.211

bit 1.910 1.695
Halfday BYTE 1.506 1.430

bit 1.228 1.091
Hourly BYTE 0.135 0.140

bit 0.108 0.110

Table 4.6: Encoding memory Average Summary (Kilobytes)
Encoding Time

w/o w/
Daily BYTE 14966.63 16062.90

bit 15051.02 14806.50
Halfday BYTE 10674.51 12871.77

bit 10683.82 12238.27
Hourly BYTE 3423.999 4611.014

bit 3423.984 4610.996

Table 4.7: Decoding memory Average Summary (Kilobytes)
Encoding Time

w/o w/
Daily BYTE 21739.32 24414.55

bit 21693.05 24482.91
Halfday BYTE 14377.95 17622.66

bit 14356.90 18394.41
Hourly BYTE 4489.800 5362.809

bit 4488.068 5353.718
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4.3.2 Time. As shown in Table 4.5, the use of the schema for the two

larger files does result in a shorter encoding time. However, when encoding small

files hourly, the schema becomes a liability if time is the variable to reduce. This is

likely due to more time spent analyzing content to optimize compactness, but little

or nothing is gained, resulting in wasted time. Among the larger files, there is a

statistical difference in time between the use and non-use of a schema for both modes

of coding, as shown in Table 4.8. However, for the hourly workload, because the times

on average are close, it is not necessarily statistically different either. It is shown to

be for byte mode encoding, but not for bit mode. The p-value is in the region of

the confidence interval, so it cannot be rejected and is to be accepted that bit mode

encoding with or without a schema are the same in time. It is also observed that the

confidence interval includes zero, so the same conclusion is reached.

In comparing time usages at the coding mode level, again in Table 4.5, the bit

mode is shorter than byte mode encoding for all the workloads for both without and

with schema. It was presumed that using the more compact bit mode would require

more time for the process to encode source data that is generally byte-oriented to

bits, versus source byte-oriented data to byte data that is less change and less work,

resulting in less time. The T-tests verifies that there are statistical differences in time,

shown in Table 4.9, among workloads and schema usage or not.

It is shown in Table 4.5 that the time decreases as the workloads used are

smaller. Correlation tests using Pearson are used to verify that, shown in Table 4.10.

Having all results being very close to +1, it is concluded that there is a strong positive

correlation of file sizes affecting the encoding time.

The decoding times shown in Table 4.11 are much smaller than the encoding

times. This is important in that the receiving end doing the decoding is able to equal

the encoding time or use less time, so that it is not overwhelmed. When decoding,

more time is needed when using a schema versus without a schema, which is the

reverse of the encoding process. The bit mode decoding is often uses less time than
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Table 4.8: Encoding time Schema significant difference T-test
datatype BYTE bit
t-value 2.904 3.4217
degrees of freedom 101 101

Daily confidence level 95% 95%
p-value 0.0045 0.0009
confidence interval (0.041 , 0.218) (0.09, 0.34)
t-value 3.6118 4.7628
degrees of freedom 204 204

Halfday confidence level 95% 95%
p-value 0.00038 3.6 × 10−06

confidence interval (0.034, 0.116) (0.081, 0.195)
t-value -6.1166 -1.198
degrees of freedom 2445 2445

Hourly confidence level 95% 95%
p-value 1.1 × 10−09 0.2310
confidence interval (-0.0078, -0.004) (-0.0046, 0.0011)

Table 4.9: Encoding time Coding-mode significant difference T-test
datatype without Schema with Schema
t-value 3.891 3.9931
degrees of freedom 101 101

Daily confidence level 95% 95%
p-value 0.00018 0.00012
confidence interval (0.21, 0.65) (0.26, 0.77)
t-value 4.4152 4.7984
degrees of freedom 204 204

Halfday confidence level 95% 95%
p-value 1.6 × 10−05 3.09 × 10−06

confidence interval (0.15, 0.4) (0.2, 0.48)
t-value 8.6315 8.8115
degrees of freedom 2445 2445

Hourly confidence level 95% 95%
p-value < 2.2 × 10−16 < 2.2 × 10−16

confidence interval (0.02, 0.03) (0.02, 0.04)
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Table 4.10: Encoding time to file size correlation (Pearson)
Encoding Time = file size correlation

w/o w/
Daily BYTE 0.9997 0.9999

bit 0.9995 0.9996
Halfday BYTE 0.9996 0.9996

bit 0.9997 0.9993
Hourly BYTE 0.9965 0.9977

bit 0.9994 0.9989

Table 4.11: Decoding times Average Summary (Seconds)
Decoding Time

w/o w/
Daily BYTE 0.237 0.269

bit 0.249 0.298
Halfday BYTE 0.170 0.187

bit 0.159 0.173
Hourly BYTE 0.02126 0.03738

bit 0.02066 0.03736

the byte decoding except for the largest workload, daily, regardless of schema. This

may be because more work is required to reconstruct the larger content. T-tests are

used to verify the difference in schema results, shown in Table 4.12. As can be seen

regarding the schema in the T-tests, most of the time when taking the schema into

consideration is statistically different, except for the bit mode decoding on the large

daily logs, where zero is included in the confidence interval. However, when looking

at the statistical difference of coding modes using T-tests shown in Table 4.13, many

times there is not a difference, except for the halfday workload. However, the p-

value, relative to other previous statistical analyses, is not that small. It should be

cautiously stated there are statistical differences in time between using BYTE and bit

mode decodings regardless of schema usage. There is a strong correlation of file size

to decoding time with all results shown in Table 4.14 close to +1.
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Table 4.12: Decoding time Schema significant difference T-test
datatype BYTE bit
t-value -4.1575 -1.6928
degrees of freedom 101 101

Daily confidence level 95% 95%
p-value 6.758 × 10−05 0.09358
confidence interval (-0.047, -0.017) (-0.1064, 0.0084)
t-value -3.45 -3.9414
degrees of freedom 204 204

Halfday confidence level 95% 95%
p-value 0.00068 0.00011
confidence interval (-0.0276, -0.0075) (-0.0216, -0.0072)
t-value -14.664 -36.5649
degrees of freedom 2445 2445

Hourly confidence level 95% 95%
p-value < 2.2 × 10−16 < 2.2 × 10−16

confidence interval (-0.018, -0.014) (-0.018, -0.016)

Table 4.13: Decoding time Coding-mode significant difference T-test
datatype without Schema with Schema
t-value -1.3751 -0.9912
degrees of freedom 101 101

Daily confidence level 95% 95%
p-value 0.1721 0.324
confidence interval (-0.029 , 0.0053) (-0.087 , 0.029)
t-value 2.3479 2.5669
degrees of freedom 204 204

Halfday confidence level 95% 95%
p-value 0.0198 0.011
confidence interval (0.0018, 0.0207) (0.0033, 0.0254)
t-value 0.5484 0.0463
degrees of freedom 2445 2445

Hourly confidence level 95% 95%
p-value 0.583 0.96
confidence interval (-0.0015, 0.0027) (-0.0008 0.0008)
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Table 4.14: Decoding time to file size correlation (Pearson)
Encoding Time = file size correlation

w/o w/
Daily BYTE 0.997 0.996

bit 0.996 0.924
Halfday BYTE 0.995 0.996

bit 0.993 0.996
Hourly BYTE 0.827 0.979

bit 0.976 0.982

4.4 Network Transfer

Due to a misconfiguration of FTP commands for the Hourly bit mode binary

XML, some results are missing from the hourly set of the network component. Any

analysis of that set of results would be incorrect. Therefore, bit coded hourly re-

lated results and analysis is excluded. Correcting and regenerating the correct results

cannot be done because of limited time.

Table 4.15 shows, similar to the file sizes presented earlier, that with schema is

a shorter time than without schema for all workloads shown. It is also shown that bit

mode can be a shorter time, but does not appear to be so on average for daily and

halfday workloads. For the daily, the bit mode with the schema becomes a liability.

When using ASCII as the base for ratios and presented as averages in Table 4.16, it is

clear the XML when transmitting does worse than ASCII, as is expected. However,

when compared to EXI (ASCII as base), EXI performs better than ASCII, although

it may only be a little bit shorter in time, as is the case for workload halfday used

with bit encoding and with a schema.

Since there appears to be no consistent pattern, a t-test determines if there are

any differences in using a schema, shown in Table 4.17, and if there is any difference

between modes, shown in Table 4.18. As can be seen in workloads daily and halfday

sets of t-tests, the daily workload use of a schema and bit mode, respectively, is each

statistically different and thus better than without a schema on Byte mode. On

the other hand, the halfday t-tests all show the confidence interval including zero,
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Table 4.15: Transmission times Averages Summary (seconds)
ASCII XML EXI

w/o w/
Daily 0.2008 0.3215 BYTE 0.0556 0.0375

bit 0.0544 0.0479
Halfday 0.1329 0.2102 BYTE 0.0556 0.0375

bit 0.0394 0.0351
Hourly 0.0121 0.0257 BYTE 0.0042 0.0038

bit UNKNOWN UNKNOWN

Table 4.16: Network Times (avg) Ratios: ASCII as base
XML EXI

w/o w/
Daily 1.5591 BYTE 0.6401 0.5867

bit 0.6961 0.7230
Halfday 1.5472 BYTE 0.7211 0.3953

bit 0.7341 0.9924
Hourly 2.1219 BYTE 0.3491 0.3128

bit UNKNOWN UNKNOWN

concluding that neither the use of a schema or bit packed is better. The hourly, for

byte mode, shows the schema factor is statistically different.

To confirm that EXI does transmit in a shorter time than ASCII, a t-test com-

pares to Byte mode without Schema, since it is the least efficient of EXI transfers.

As shown in Table 4.19, the confidence intervals for all workloads do not include zero.

Thus there is a statistical difference, meaning that EXI is verified to transmit data in

shorter time.

There is a scatter plot with the regression line drawn to show the strong corre-

lation of file size to transmission time, as are shown in Figures 4.1 and 4.2.
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Table 4.17: Transmission times Schema significant difference T-test
datatype BYTE bit
t-value 3.0684 2.6429
degrees of freedom 101 101

Daily confidence level 95% 95%
p-value 0.002763 0.00953
confidence interval (0.002, 0.009) (0.0016 , 0.0114)
t-value 2.1292 0.5211
degrees of freedom 204 204

Halfday confidence level 95% 95%
p-value 0.03444 0.6029
confidence interval (0.001, 0.03) (-0.01 , 0.02)
t-value 4.143 UKNOWN
degrees of freedom 2445 2445

Hourly confidence level 95% 95%
p-value 3.544 × 10−05 UNKNOWN
confidence interval (0.00023, 0.00065) UNKNOWN

Table 4.18: Transmission time Coding-mode significant difference T-test
datatype without Schema with Schema
t-value 3.0261 2.5965
degrees of freedom 101 101

Daily confidence level 95% 95%
p-value 0.003143 0.01082
confidence interval (0.0042, 0.0204) (0.0032, 0.0236)
t-value 1.8379 0.2748
degrees of freedom 204 204

Halfday confidence level 95% 95%
p-value 0.06753 0.7837
confidence interval (-0.001, 0.033) (-0.01, 0.02)
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Table 4.19: Transmission time ASCII versus EXI significant difference T-test
datatype value
t-value 3.8722
degrees of freedom 101

Daily confidence level 95%
p-value 0.0001916
confidence interval (0.065, 0.20)
t-value 3.4844
degrees of freedom 204

Halfday confidence level 95%
p-value 0.0006037
confidence interval (0.03, 0.12)
t-value 9.3186
degrees of freedom 2445

Halfday confidence level 95%
p-value < 2.2 × 10−16

confidence interval (0.0062, 0.0095)

38



0 10 20 30 40

0
1

2
3

4

Daily: ASCII time to filesize correlatation

Text File: size (Megabytes)

se
co

nd
s

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●

●●●●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

Figure 4.1: Daily: ASCII scatter plot time to file size correlation
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Figure 4.2: Daily: XML scatter plot time to file size correlation
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Table 4.20: Loading avg Time (sec)
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Daily 2.583 11.398 12.026
Halfday 1.890 7.696 7.651
Hourly 0.148 0.605 0.610

4.5 Database

4.5.1 Loading database. The loading time of each of the workloads that is

made using the average time of each is seen in a summary in Table 4.20. Across work-

loads the RDBMS executes in less time than the XMLDB. RDBMS is a stand-alone

client/server architecture which allows it to do preliminary setup and optimization

before any connections or data are dealt with. The XMLDB is used in an embed-

ded system and is only active as an application uses its internal database. Thus

preliminary setup and optimization cannot occur.

When comparing the loading of XML with a schema versus without the schema,

more often than not, using an XML Schema does result in a longer time to load the

data with the expected delay in checking the data against schema compliance. The

occurrence in which it did not take longer was loading the halfday set of data.

However, regarding the statistical significance of not using a schema in providing

a shorter loading performance, this is not so for halfday and hourly workloads, as

shown in Table 4.21. Their confidence intervals include zero. The daily workload

marginally states it does, with the p-value being 0.01.

4.5.2 Querying database. The databases querying uses a series of query

scripts with the appropriate language for each database system. Structured Query

Language:2003 (SQL) is for the relational database, and XML Query Language (XQuery)

for the XML database. Scripts are executed without human error and/or human in-

efficiency.
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Table 4.21: Loading XMLDB Daily Schema significant difference T-test
datatype values
t-value 2.4354
degrees of freedom 101

Daily confidence level 95%%
p-value 0.01663
confidence interval (0.12, 1.14)
t-value -0.8308
degrees of freedom 204

Halfday confidence level 95%
p-value 0.4071
confidence interval (-0.2 0.1)
t-value 0.9492
degrees of freedom 101

Hourly confidence level 95%
p-value 0.3426
confidence interval (-0.0056, 0.016)

4.5.2.1 Query: System’s Arguments. One set of items queried, the

“Arguments list” of the syscall, is recorded in the Linux logs. Another set of items

queried is the filesystem path information in the audit log system, particularly only

the third path item.

The results from the querying of the “arguments” shows that the XMLDB exe-

cuted the query quicker, using less memory. Tables 4.22, 4.23, and 4.24 show query

times, and Tables 4.25, 4.26, and 4.27 show memory usage. The shorter execution

times occur after the initial run, which gives the XMLDB time to do some caching.

If caching-size for the XML db is set to 0, the system would slow considerably, and

would be less realistic. There is only one case where XMLDB uses more memory than

the RDBMS, i.e., on the third run for hourly set of data. Graphical comparisons are

presented in Figures 4.3 to 4.8, showing the first and second round of each dataset.

Below is the SQL code:

SELECT entry.*, syscall.*, args.*

FROM syscall, args, entry

WHERE syscall.entry_key = args.entry_key and args.entry_key = entry.entry_key;
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Table 4.22: Querying System’s Arguments avg Time (sec) Daily
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 29.653 30.044 10.019
Round 2 32.7115 6.033 5.997
Round 3 36.550 5.926 5.980

Table 4.23: Querying System’s Arguments avg Time (sec) Halfday
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 51.444 41.601 41.685
Round 2 51.814 7.713 7.8995
Round 3 50.696 7.777 7.8149

As seen

The XQuery code follows

! The setting of namesapce in this context is XQuery syntax per se, but
is Berkeley DB XML’s command line tool’s command.

setNamespace la "urn:xmlns:xmlschema:AFIT/logs/Linux/Audit"

let $args_in_sys := collection()/la:LinuxAuditLog/la:entry[./la:syscall/la:arguments]

return data($args_in_sys)

Table 4.24: Querying System’s Arguments avg Time (sec) Hourly
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 56.776 75.198 74.782
Round 2 53.336 7.912 7.923
Round 3 55.564 7.809 8.003

42



Table 4.25: Querying System’s Arguments Memory (MB) Daily
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 144.141 110.199 102.117
Round 2 144.141 110.457 107.102
Round 3 144.141 105.930 111.106

Table 4.26: Querying System’s Arguments Memory (MB) Halfday
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 145.137 137.805 136.637
Round 2 145.016 133.013 133.801
Round 3 145.016 133.801 134.430

Table 4.27: Querying System’s Arguments Memory (MB) Hourly
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 190.141 148.496 149.922
Round 2 184.086 148.512 152.516
Round 3 143.133 148.109 143.965

SQL XQuery w/o Schema XQuery w/Schema

Query Arguments: time Daily Round 1

se
co

nd
s

0
5

10
15

20
25

30

Figure 4.3: Querying for System Arguments: time Daily Round 1
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Figure 4.4: Querying for System Arguments: time Daily Round 2
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Figure 4.5: Querying for System Arguments: time Halfday Round 1
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Figure 4.6: Querying for System Arguments: time Halfday Round 2
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Figure 4.7: Querying for System Arguments: time Hourly Round 1
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Figure 4.8: Querying for System Arguments: time Hourly Round 2
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4.5.2.2 Query: System’s third path. The significance of this query

is to show that XQuery has “position” determination as part of the standard. The

equivalent SQL statement, if the RDBMS does not support“Window functions”, would

require the use of a cursor to determine position. However, the use of cursors would

put the RDBMS at a disadvantage, causing the results to be biased. The results

from the querying of the “third path” are the complete opposite of the “arguments”

query, shown in Table 4.28, 4.29, and 4.5.2.2. There is not a plateau for XMLDB

as there was with the previous query. The memory of the RDBMS is lower than

XMLDB for all runs of all datasets, shown in Tables 4.30, 4.31, and 4.32, yet there

are some significant variations in memory for RDBMS, as well. For the initial round

of the halfday dataset, it executes in 28 seconds, then drops to 3 seconds for the later

rounds. A longer time for an initial round followed by shorter times does happen for

the daily and hourly sets of data for this query, as well. Graphical comparisons are

in Figures 4.9 to 4.14

Comparing the use of a schema or not, there are no consistent results. Sometimes

the schema runs in a shorter time than without it. Other times it takes longer. Thus,

there is no effect.

The query for the syscall information that has 3 or more “path” items associated

to the syscall returns that syscall information but with only the third path and related

entry information. The SQL code follows:

select *

from (SELECT row_number() over (partition by entry_key) positionNumber, path.*

FROM path) thirdPath natural join syscall natural join entry

where positionNumber = 3

The XQuery then follows, with the advantage of annotating the data presented

is abridged:

let $entries_that_have_syscall_w_third_plus_paths :=
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Table 4.28: Querying System’s Third path avg Time (sec) Daily
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 3.754 68.351 68.747
Round 2 2.809 68.565 68.772
Round 3 2.843 68.334 68.924

Table 4.29: Querying System’s Third path avg Time (sec) Halfday
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 28.378 83.726 84.243
Round 2 3.325 82.597 84.667
Round 3 3.354 84.350 86.780

collection()/la:LinuxAuditLog/la:entry[./la:syscall/la:items/count(./la:path) >= 3]

let $thisResults := <result>{

for $thisentry in $entries_that_have_syscall_w_third_plus_paths

let $this_path := $thisentry//la:path[3]

return <entry>{$thisentry/@*} {

<syscall>{$thisentry/la:syscall/@*} {

$this_path

}<!--This is a stripped down version of the syscall information--></syscall>

}</entry>

}</result>

return $thisResults/*

captionQuerying System’s Third path avg Time (sec) Hourly
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 3.298 86.371 84.012
Round 2 3.3049 85.119 83.290
Round 3 3.291 85.368 82.682
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Table 4.30: Querying System’s Third path Memory (MB) Daily
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 138.887 176.699 173.734
Round 2 95.711 167.301 173.992
Round 3 127.461 162.262 176.184

Table 4.31: Querying System’s Third path Memory (MB) Halfday
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 181.996 179.922 181.223
Round 2 85.520 167.430 172.584
Round 3 95.820 181.223 181.223

Table 4.32: Querying System’s Third path Memory (MB) Hourly
RDBMS XMLDB w/o Schema XMLDB w/ Schema

Round 1 139.125 165.883 169.492
Round 2 139.125 181.223 181.223
Round 3 95.820 166.527 181.223
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Figure 4.9: Querying for Only System’s third path: time Daily Round 1
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Figure 4.10: Querying for Only System’s third path: time Daily Round 2
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Figure 4.11: Querying for Only System’s third path: time Halfday Round 1
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Figure 4.12: Querying for Only System’s third path: time Halfday Round 2
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Figure 4.13: Querying for Only System’s third path: time Hourly Round 1
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SQL XQuery w/o Schema XQuery w/Schema
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Figure 4.14: Querying for Only System’s third path: time Hourly Round 2
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V. Conclusions

5.1 XML Files

The use of XML files for the storage or transmission of data, and particularly for

Linux Audit Log representation, is less efficient and should not be done unless there is

a compelling reason to do so apart from log performance. It makes sense to use XML

as storage if logs originate as XML and are to be used shortly, such as when placing

data into an XML database. Using XML as the transport of data may be worthwhile

if technologies already use XML, as may be the case for some web-services.

The testing of Efficient XML Interchange (EXI) or binary XML shows it does

reduce the size of XML significantly and thus makes storing XML with XML’s benefits

of self-documenting data, extensibility, and almost universal application-supported

technology without XML’s excessive size feasible. It was anticipated that XML would

be at least twice the size of the ASCII text file and that EXI would reduce the XML

file to at most half the XML size, resulting in the binary XML being equal to or

slightly larger than the original ASCII file. Instead, XML binary form resulted in

being smaller than the ASCII, even when preserving the XML Namespace prefixes,

and the SchemaLocation attribute information.

The only drawback to the use of EXI is a large memory footprint. Memory

usage is reflective of the configurations applied, i.e., whether the encoding is packed

at the bit level or aligned at the byte level, in addition to what is to be “preserved”.

Memory is also affected the reading in of XML Schema if used for the encoding /

decoding processes. These are all factors in EXI’s memory usage. Even so, memory

usage may not be a concern as it is relatively inexpensive. The significant issue for

XML is the network transmission and database query times.

5.2 Networking

There is a strong correlation of file size to time to transmit data, as expected.

Since the XML files were the largest, followed by the ASCII, and lastly the EXI in
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the different configurations tested, the transmission times were in proportion to their

sizes.

5.3 Database

5.3.1 Loading data. It was expected that the XML database would be more

efficient than the relational database as there is not anything that needs to be trans-

formed/changed because the data of an XML database is the XML document itself.

The relational database, on the other hand, type-cast the numeric text into integers

among other data-types before placing it into the database. However, the relational

database loaded the data in a shorter amount of time and used less memory. It is

suspected that the relational database does so because it is designed as a standalone

dedicated server, whereas the the XML database is not. Furthermore, the loading of

the relational database was done from the server-side and not from the client side. In

actual use, data would likely be loaded from the client side, which would have a longer

processing time due to client overhead, as well as process connectivity and throughput

limitations from the client to the server. The rationale for using the server-side was

that it provides a more accurate comparison since the embedded XML database does

not have a client/server overhead.

The time and memory taken to transform the ASCII text into a comma delim-

itated (.csv) file was not taken into consideration. There is no set method to convert

ASCII text into .csv.

If XML databases support the new EXI “natively”, then the loading time could

be on par or better than that of RDBMS. “Natively” means no decoding of EXI to

XML and that the XML database itself stores the XML in binary form.

5.3.2 Querying data. For the querying of the databases, neither is better

than the other with respect to time or memory usage. It depends on how the query is

written and how the database system processes, interprets, and optimizes the query

in addition to what and how data is indexed. Even among the same class of databases
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(i.e., relational) there are numerous disputes and comparisons of the performance of

queries, as can be seen in the Transaction Processing Performance Council (TPC)

database benchmarking.

5.4 Further Research

A more detailed comparison of the different configuration options and their

usage of time and resources should be studied. The EXI code used in the experiment

is not fully implemented and thus not everything in EXI such as dictionary-tables was

tested. The implementation of a full ASCII log system versus XML logs system from

start to finish would provide a more complete picture. The design, implementation

and testing of integrated statistical analysis software such as R with an XML database

system would bring an XML database closer on par with modern relational databases.

5.5 Conclusion

The use of ASCII logs and relational databases is the status quo. However,

as more technologies/standards, businesses, and governments rely on XML for data

organization and transport, transitioning from the ASCII and relational database

logging/audit systems to an XML based system will likely be warranted.
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Appendix A. Databases

A.1 Relational Database

A.1.1 Database Schema. The Following are a series of SQL create table

commands used to create the number and types of columns for the each respective

table.

A.1.1.1 entry.

CREATE TABLE entry

(

"timestamp" timestamp without time zone,

entry_tag bigint,

entry_key character(20) NOT NULL

-- CONSTRAINT "entry_key_PK" PRIMARY KEY (entry_key)

)

WITH (

OIDS=FALSE

);

A.1.1.2 syscall.

CREATE TABLE syscall

(

entry_key character(20),

arch character(6),

syscall character(15),

personality character(12),

syscall_sucess boolean,

exit bigint,

ppid bigint,

pid bigint,
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audit_uid character(12),

uid character(12),

gid character(12),

euid character(12),

suid character(12),

fs_uid character(12),

egid character(12),

sgid character(12),

fs_gid character(12),

terminal character(15),

com_name character varying,

exe_name character varying,

filter_key character varying

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

A.1.1.3 args.

CREATE TABLE args

(

entry_key character(20),

argnum bigint,

argvalue character varying

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION
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)

WITH (

OIDS=FALSE

);

A.1.1.4 path.

CREATE TABLE path

(

entry_key character(20),

itemnum bigint,

"name" character varying(1024),

inode bigint,

dev_maj_min character(5),

permission_mode_oct character varying(15),

obj_uid character(12),

raw_dev_maj_min character(5),

obj_sec_label character varying(15),

obj_sec_id bigint

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

);

A.1.1.5 CWD.

CREATE TABLE CWD

(
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entry_key character(20),

cwd character varying(255)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

);

A.1.1.6 credent acquire.

CREATE TABLE credent_acquire

(

entry_key character(20),

pid bigint,

uid character(12),

audit_uid character(12),

subj character varying,

ssid bigint,

exe_name character varying,

hostname character varying(32),

addr_ip character varying(15),

terminal character(15),

res_succ_fail character(7),

accountname character varying(1024)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)
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WITH (

OIDS=FALSE

);

A.1.1.7 credent dispose.

CREATE TABLE credent_dispose

(

entry_key character(20),

pid bigint,

uid character(12),

audit_uid character(12),

subj character varying,

ssid bigint,

exe_name character varying,

hostname character varying(32),

addr_ip character varying(15),

terminal character(15),

res_succ_fail character(7),

accountname character varying(1024)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

);

A.1.1.8 credent refresh.

CREATE TABLE credent_refresh
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(

entry_key character(20),

pid bigint,

uid character(12),

audit_uid character(12),

subj character varying,

ssid bigint,

exe_name character varying,

hostname character varying(32),

addr_ip character varying(15),

terminal character(15),

res_succ_fail character(7),

accountname character varying(1024)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

);

A.1.1.9 user auth.

CREATE TABLE user_auth

(

entry_key character(20),

pid bigint,

uid character(12),

audit_uid character(12),

subj character varying,
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ssid bigint,

exe_name character varying,

hostname character varying(32),

addr_ip character varying(15),

terminal character(15),

res_succ_fail character(7),

accountname character varying(1024)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

);

A.1.1.10 user acct.

CREATE TABLE user_acct

(

entry_key character(20),

pid bigint,

uid character(12),

audit_uid character(12),

subj character varying,

ssid bigint,

exe_name character varying,

hostname character varying(32),

addr_ip character varying(15),

terminal character(15),

res_succ_fail character(7),
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accountname character varying(1024)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

);

A.1.1.11 user end.

CREATE TABLE user_end

(

entry_key character(20),

pid bigint,

uid character(12),

audit_uid character(12),

subj character varying,

ssid bigint,

exe_name character varying,

hostname character varying(32),

addr_ip character varying(15),

terminal character(15),

res_succ_fail character(7),

accountname character varying(1024)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (
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OIDS=FALSE

);

A.1.1.12 user err.

CREATE TABLE user_err

(

entry_key character(20),

pid bigint,

uid character(12),

audit_uid character(12),

subj character varying,

ssid bigint,

exe_name character varying,

hostname character varying(32),

addr_ip character varying(15),

terminal character(15),

res_succ_fail character(7),

accountname character varying(1024)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

);

A.1.1.13 user login.

CREATE TABLE user_login

(
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entry_key character(20),

pid bigint,

uid character(12),

audit_uid character(12),

subj character varying,

ssid bigint,

exe_name character varying,

hostname character varying(32),

addr_ip character varying(15),

terminal character(15),

res_succ_fail character(7),

accountname character varying(1024)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

);

A.1.1.14 user start.

CREATE TABLE user_start

(

entry_key character(20),

pid bigint,

uid character(12),

audit_uid character(12),

subj character varying,

ssid bigint,
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exe_name character varying,

hostname character varying(32),

addr_ip character varying(15),

terminal character(15),

res_succ_fail character(7),

accountname character varying(1024)

-- CONSTRAINT entry_key_ref FOREIGN KEY (entry_key)

-- REFERENCES entry (entry_key) MATCH SIMPLE

-- ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

OIDS=FALSE

);

A.1.1.15 Indexes.

CREATE INDEX args_entry_key on args (entry_key);

CREATE INDEX args_argnum on args (argnum);

CREATE INDEX args_argvalue on args (argvalue);

CREATE INDEX credent_acquire_res_succ_fail on credent_acquire (res_succ_fail);

CREATE INDEX credent_acquire_entry_key on credent_acquire (entry_key);

CREATE INDEX credent_acquire_addr_ip on credent_acquire (addr_ip);

CREATE INDEX credent_acquire_hostname on credent_acquire (hostname);

CREATE INDEX credent_acquire_accountname on credent_acquire (entry_key);

CREATE INDEX credent_acquire_uid on credent_acquire (uid);

CREATE INDEX credent_acquire_pid on credent_acquire (pid);

CREATE INDEX credent_acquire_audit_uid on credent_acquire (audit_uid);

CREATE INDEX credent_acquire_exe_name on credent_acquire (exe_name);
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CREATE INDEX credent_dispose_entry_key on credent_dispose (entry_key);

CREATE INDEX credent_dispose_res_succ_fail on credent_dispose (res_succ_fail);

CREATE INDEX credent_dispose_addr_ip on credent_dispose (addr_ip);

CREATE INDEX credent_dispose_hostname on credent_dispose (hostname);

CREATE INDEX credent_dispose_accountname on credent_dispose (accountname);

CREATE INDEX credent_dispose_uid on credent_dispose (uid);

CREATE INDEX credent_dispose_pid on credent_dispose (pid);

CREATE INDEX credent_dispose_audit_uid on credent_dispose (audit_uid);

CREATE INDEX credent_dispose_exe_name on credent_dispose (exe_name);

CREATE INDEX CWD_entry_key on CWD (entry_key);

CREATE INDEX generic_entries_entry_key on entry (entry_key);

CREATE INDEX generic_entries_timestamp on entry (timestamp);

CREATE INDEX login_entry_key on login (entry_key);

CREATE INDEX login_addr_ip on login (addr_ip);

CREATE INDEX login_hostname on login (hostname);

CREATE INDEX login_accountname on login (entry_key);

CREATE INDEX login_uid on login (uid);

CREATE INDEX login_pid on login (pid);

CREATE INDEX login_audit_uid on login (audit_uid);

CREATE INDEX login_exe_name on login (exe_name);

67



CREATE INDEX path_entry_key on path (entry_key);

CREATE INDEX path_itemnum on path (itemnum);

CREATE INDEX path_name on path (name);

CREATE INDEX path_inode on path (inode);

CREATE INDEX path_permission_mode_oct on path (permission_mode_oct);

CREATE INDEX syscall_entry_key on syscall (entry_key);

CREATE INDEX syscall_syscall on syscall (syscall);

CREATE INDEX syscall_exit on syscall (exit);

CREATE INDEX syscall_ppid on syscall (ppid);

CREATE INDEX syscall_pid on syscall (pid);

CREATE INDEX syscall_audit_uid on syscall (audit_uid);

CREATE INDEX syscall_uid on syscall (uid);

CREATE INDEX syscall_gid on syscall (gid);

CREATE INDEX syscall_com_name on syscall (com_name);

CREATE INDEX syscall_exe_name on syscall (exe_name);

CREATE INDEX syscall_filter_key on syscall (filter_key);

--CREATE INDEX syscall_entry_key on syscall (entry_key);

--CREATE INDEX syscall_entry_key on syscall (entry_key);

--CREATE INDEX syscall_entry_key on syscall (entry_key);

CREATE INDEX user_acct_entry_key on user_acct (entry_key);
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CREATE INDEX user_acct_res_succ_fail on user_acct (res_succ_fail);

CREATE INDEX user_acct_addr_ip on user_acct (addr_ip);

CREATE INDEX user_acct_hostname on user_acct (hostname);

CREATE INDEX user_acct_accountname on user_acct (accountname);

CREATE INDEX user_acct_uid on user_acct (uid);

CREATE INDEX user_acct_pid on user_acct (pid);

CREATE INDEX user_acct_audit_uid on user_acct (audit_uid);

CREATE INDEX user_acct_exe_name on user_acct (exe_name);

CREATE INDEX user_auth_entry_key on user_auth (entry_key);

CREATE INDEX user_auth_res_succ_fail on user_auth (res_succ_fail);

CREATE INDEX user_auth_addr_ip on user_auth (addr_ip);

CREATE INDEX user_auth_hostname on user_auth (hostname);

CREATE INDEX user_auth_accountname on user_auth (accountname);

CREATE INDEX user_auth_uid on user_auth (uid);

CREATE INDEX user_auth_pid on user_auth (pid);

CREATE INDEX user_auth_audit_uid on user_auth (audit_uid);

CREATE INDEX user_auth_exe_name on user_auth (exe_name);

CREATE INDEX user_end_entry_key on user_end (entry_key);

CREATE INDEX user_end_res_succ_fail on user_end (res_succ_fail);

CREATE INDEX user_end_addr_ip on user_end (addr_ip);

CREATE INDEX user_end_hostname on user_end (hostname);

CREATE INDEX user_end_accountname on user_end (accountname);

CREATE INDEX user_end_uid on user_end (uid);

CREATE INDEX user_end_pid on user_end (pid);

CREATE INDEX user_end_audit_uid on user_end (audit_uid);

CREATE INDEX user_end_exe_name on user_end (exe_name);
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CREATE INDEX user_err_entry_key on user_err (entry_key);

CREATE INDEX user_err_res_succ_fail on user_err (res_succ_fail);

CREATE INDEX user_err_addr_ip on user_err (addr_ip);

CREATE INDEX user_err_hostname on user_err (hostname);

CREATE INDEX user_err_accountname on user_err (accountname);

CREATE INDEX user_err_uid on user_err (uid);

CREATE INDEX user_err_pid on user_err (pid);

CREATE INDEX user_err_audit_uid on user_err (audit_uid);

CREATE INDEX user_err_exe_name on user_err (exe_name);

CREATE INDEX user_login_entry_key on user_login (entry_key);

CREATE INDEX user_login_res_succ_fail on user_login (res_succ_fail);

CREATE INDEX user_login_addr_ip on user_login (addr_ip);

CREATE INDEX user_login_hostname on user_login (hostname);

CREATE INDEX user_login_accountname on user_login (accountname);

CREATE INDEX user_login_uid on user_login (uid);

CREATE INDEX user_login_pid on user_login (pid);

CREATE INDEX user_login_audit_uid on user_login (audit_uid);

CREATE INDEX user_login_exe_name on user_login (exe_name);

CREATE INDEX user_start_entry_key on user_start (entry_key);

CREATE INDEX user_start_res_succ_fail on user_start (res_succ_fail);

CREATE INDEX user_start_addr_ip on user_start (addr_ip);

CREATE INDEX user_start_hostname on user_start (hostname);

CREATE INDEX user_start_accountname on user_start (accountname);
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CREATE INDEX user_start_uid on user_start (uid);

CREATE INDEX user_start_pid on user_start (pid);

CREATE INDEX user_start_audit_uid on user_start (audit_uid);

CREATE INDEX user_start_exe_name on user_start (exe_name);
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