297 research outputs found

    XML Compression via DAGs

    Full text link
    Unranked trees can be represented using their minimal dag (directed acyclic graph). For XML this achieves high compression ratios due to their repetitive mark up. Unranked trees are often represented through first child/next sibling (fcns) encoded binary trees. We study the difference in size (= number of edges) of minimal dag versus minimal dag of the fcns encoded binary tree. One main finding is that the size of the dag of the binary tree can never be smaller than the square root of the size of the minimal dag, and that there are examples that match this bound. We introduce a new combined structure, the hybrid dag, which is guaranteed to be smaller than (or equal in size to) both dags. Interestingly, we find through experiments that last child/previous sibling encodings are much better for XML compression via dags, than fcns encodings. We determine the average sizes of unranked and binary dags over a given set of labels (under uniform distribution) in terms of their exact generating functions, and in terms of their asymptotical behavior.Comment: A short version of this paper appeared in the Proceedings of ICDT 201

    Fast and Tiny Structural Self-Indexes for XML

    Full text link
    XML document markup is highly repetitive and therefore well compressible using dictionary-based methods such as DAGs or grammars. In the context of selectivity estimation, grammar-compressed trees were used before as synopsis for structural XPath queries. Here a fully-fledged index over such grammars is presented. The index allows to execute arbitrary tree algorithms with a slow-down that is comparable to the space improvement. More interestingly, certain algorithms execute much faster over the index (because no decompression occurs). E.g., for structural XPath count queries, evaluating over the index is faster than previous XPath implementations, often by two orders of magnitude. The index also allows to serialize XML results (including texts) faster than previous systems, by a factor of ca. 2-3. This is due to efficient copy handling of grammar repetitions, and because materialization is totally avoided. In order to compare with twig join implementations, we implemented a materializer which writes out pre-order numbers of result nodes, and show its competitiveness.Comment: 13 page

    Compression vs Queryability - A Case Study

    Get PDF
    International audienceSome compromise on compression is known to be necessary, if the relative positions of the information stored by semi-structured documents are to remain accessible under queries. With this in view, we compare, on an example, the `query-friendliness' of XML documents, when compressed into straightline tree grammars which are either regular or context-free. The queries considered are in a limited fragment of XPath, corresponding to a type of patterns; each such query defines naturally a non-deterministic, bottom-up `query automaton' that runs just as well on a tree as on its compressed dag

    PReaCH: A Fast Lightweight Reachability Index using Pruning and Contraction Hierarchies

    Full text link
    We develop the data structure PReaCH (for Pruned Reachability Contraction Hierarchies) which supports reachability queries in a directed graph, i.e., it supports queries that ask whether two nodes in the graph are connected by a directed path. PReaCH adapts the contraction hierarchy speedup techniques for shortest path queries to the reachability setting. The resulting approach is surprisingly simple and guarantees linear space and near linear preprocessing time. Orthogonally to that, we improve existing pruning techniques for the search by gathering more information from a single DFS-traversal of the graph. PReaCH-indices significantly outperform previous data structures with comparable preprocessing cost. Methods with faster queries need significantly more preprocessing time in particular for the most difficult instances

    XML Compression via Directed Acyclic Graphs

    Get PDF
    A short version of this paper appeared in the Proceedings of ICDT 2013International audienceUnranked trees can be represented using their minimal dag (directed acyclic graph). For XML this achieves high compression ratios due to their repetitive mark up. Unranked trees are often represented through first child/next sibling (fcns) encoded binary trees. We study the difference in size (= number of edges) of minimal dag versus minimal dag of the fcns encoded binary tree. One main finding is that the size of the dag of the binary tree can never be smaller than the square root of the size of the minimal dag, and that there are examples that match this bound. We introduce a new combined structure, the hybrid dag, which is guaranteed to be smaller than (or equal in size to) both dags. Interestingly, we find through experiments that last child/previous sibling encodings are much better for XML compression via dags, than fcns encodings. We determine the average sizes of unranked and binary dags over a given set of labels (under uniform distribution) in terms of their exact generating functions, and in terms of their asymptotical behavior

    08261 Abstracts Collection -- Structure-Based Compression of Complex Massive Data

    Get PDF
    From June 22, 2008 to June 27, 2008 the Dagstuhl Seminar 08261 ``Structure-Based Compression of Complex Massive Data\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Compression of Probabilistic XML documents

    Get PDF
    Probabilistic XML (PXML) files resulting from data integration can become extremely large, which is undesired. For XML there are several techniques available to compress the document and since probabilistic XML is in fact (a special form of) XML, it might benefit from these methods even more. In this research we search for compression mechanisms that are available for XML and implement one of them to customize it with respect to the properties of probabilistic XML. Experiments show that there is no significant improvement for combinations of traditional mechanisms with techniques that are specially designed for probabilistic XML
    • …
    corecore