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Abstract

Some compromise on compression is known to be necessary, if the re-
lative positions of the information stored by semi-structured documents
are to remain accessible under queries. With this in view, we com-
pare, on an example, the ‘query-friendliness’ of XML documents, when
compressed into straightline tree grammars which are either regular or
context-free. The queries considered are in a limited fragment of XPath,
corresponding to a type of patterns; each such query defines naturally a
non-deterministic, bottom-up ‘query automaton’ that runs just as well on
a tree as on its compressed dag.

Keywords: Tree automata, Tree Grammars, Dags, XML documents, Queries.

1 Introduction

Structures over dags instead of over trees have been widely used in order to op-
timize algorithms. Tree automata (TA) are among the basic tools employed for
querying XML documents (e.g., [10, 11, 16, 17]); on the other hand, the notion
of a compressed XML document has been introduced in [2, 9, 14], and a possi-
ble advantage of using dag structures for the manipulation of such documents
has been brought out in [14]. It is legitimate then to investigate the possibility
of using automata running directly over dags instead of over trees, for query-
ing compressed XML documents. Unfortunately however, the Dag Automata
(DA), defined as a natural extension of tree automata in [5] as bottom-up tree
automata running on dags, cannot directly serve such a purpose. The reason
is that the class of their languages – defined as the set of dags accepted under
their bottom-up runs – is algebraically ill-behaved ([1]): although a determinis-
tic bottom-up TA runs exactly alike on a dag or on its uncompressed tree, the
set of dags accepted by a non-deterministic DA does not represent, in general,
a regular tree language. Thus – if the notion of acceptance is not ‘adapted
appropriately’ –, the languages of DAs (would) form a strict superclass of the
class of regular tree languages. Note, on the other hand, that the answers to
MSO-definable queries on semi-structured trees are known to be regular tree
languages, cf. [17, 19]. So, for a suitable definition of acceptance. a bottom-up
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run of a non-deterministic TA, on a dag, has to be coupled in general with an
“on the fly determinization” of the TA along the run.

Several observations are in order at this point, before we proceed. First, we
are concerned with queries on XML documents, and the trees modeling such
documents are unranked, i.e., the symbols at the nodes can have arbitrarily
many arguments; so the automata we want to employ for querying should also
be unranked. A second observation is that, fully or partially compressing an
unranked tree into a DAG is not a major issue: suffices to represent it as a
straightline regular tree grammar (SLR), e.g., as in [3]. In the sequel, therefore,
we shall consider the terms ‘document’ and ‘dag’ to be synonymous; and by a
‘tree’, we shall mean a dag with ‘copying fully allowed’, i.e., with no compres-
sion at all. It must be pointed out here that a higher degree of compression of
a ranked tree can be achieved by representing it as a straightline, context-free,
tree grammar (SLCF), cf. e.g., [3, 4]; but it is not clear if the requirement on
the base alphabet to be ranked can be dropped. Now, patterns (cf. [15], and
Section 3 below) are often conveniently used to specify queries on XML docu-
ments; and they can be naturally visualized as bottom-up, non-deterministic,
query automata; the full evaluation of such queries – i.e., access to the informa-
tion stored, along with their respective relative positions – is quite possible on
documents compressed under SLR, without any need for decompression; while
on a document compressed under SLCF, checking for query satisfiability can be
checked efficiently, but full query evaluation appears to be more intricate.

Several mechanisms have been proposed in the literature for querying (com-
pressed, unranked) documents. The one proposed in [2] is a priori for query
satisfiability, and employs ‘tree-like’ automata; it can be either top-down, or
bottom-up, on dags. That of [7] is a mixture of top-down and bottom-up ana-
lysis, based on the SLR vision, suitable for query evaluation on dags, for a
fragment of Core XPath, but it is not hard to extend it a little farther. [17]
proposes a very general query mechanism named query automaton (QA), which
is a 2-way tree automaton with specified selecting states: a selection label ‘1’ is
attributed to some specified states, and ‘0’ or ‘⊥’ to the others; this works only
for trees, however.

For the view presented below, our concern will be limited to a class of queries
that are expressible inside a restricted XPath format; they correspond to the
patterns using the / and // of XPath, as defined in [15], possibly with some filters
(or ‘branches’, as was called there). Besides being simple, this limitation will
also have the advantage that such queries can be visualized as usual, bottom-
up, non-deterministic tree automata with specified selecting states (Note: this,
incidentally, will also allow us to consider n-ary queries).

This paper is structured as follows. The notation and the preliminaries are
given in Section 2. In Section 3, we define the notion of patterns (as in [15]), and
show how to visualize them, naturally, as bottom-up query automata (QA); we
also show, on an example, how to evaluate the query corresponding to a given
pattern p on a given document t, via a bottom-up run on t of the QA associated
with p, if the document is compressed under SLR; on the same example, we will

2



also show that, if the document gets compressed as SLCF, the query is not that
easy to evaluate (although it can be tested for satisfiability).

A final remark before closing this section: although we noted above that
bottom-up runs of non-deterministic TA on dags can be ‘problematic’, no such
complication arises actually for the QAs defined by the patterns we consider
here; so, we do not need to determinize the QA on the fly, along its evaluating
runs. Moreover, it can be shown that the answer to the query defined by any
given pattern on a given SLR-compressed document t, will be the ‘same’ as
when the query is evaluated on the uncompressed tree equivalent of t.

2 Notation and Preliminaries

We assume given an unranked base alphabet Σ. Trees and dags over Σ are
defined as usual, each of their nodes baring a name that is a symbol from Σ.
(Formal definitions do not seem needed.) A first example to show what we mean
by fully or partially compressed dags is the following:

   Compressed 

 

   Tree 
Compressed 
  Partially 

f

a a b a

f

a a abb

f

       Fully 

The most elegant and efficient way to distinguish between these 3 formats
of the ‘same document’ (same information, but stored with more or less opti-
mization) is to associate to each format t, canonically, a straightline regular tree
grammar (SLR) Gt: canonical in the sense that Gt recognizes exactly t, and
nothing else. The three respective SLR for the above 3 formats are as follows:

X0 → f(X1, X2, X3, X4)
X1 → a
X2 → a
X3 → b
X4 → a

X0 → f(Y1, Y1, Y2, Y1)
Y1 → a
Y2 → b

X0 → f(Z1, Z1, Z2, Z3)
Z1 → a
Z2 → b
Z3 → a

The notions of child, parent, descendent, ancestor are all defined, in a natural
manner, on the set of nodes of any given dag. A node is a root (resp. leaf) for
a dag, iff it has no parent (resp. child). All our dags will be assumed rooted,
i.e., to have a unique root node. It is then easy to associate a set of positions
to any given node on any given dag, such that the following holds: A dag is a
tree iff the set of positions of any of its nodes is singleton. (Note: a node on a
dag can have more than one parents.)
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We also need the the notion of a bottom-up tree automaton over an unranked
alphabet; to facilitate understanding, we first recall the notion over a ranked
alphabet; the definition is easily extended to the unranked case.

Definition 1 A bottom-up tree automaton (TA) over a ranked alphabet Σ is a
tuple (Σ, Q, F, Δ), where Q is a finite non-empty set of states, F ⊆ Q is the
set of final (or accepting) states, and Δ is a set of transition rules of the form:
f(q1, ..., qk) → q, where f ∈ Σ is of rank k, and q1, . . . , qk, q ∈ Q.

Now, a transition f(q1, . . . , qk) → q can also be written as f(q1 . . . qk) → q,
where q1 . . . qk is seen as a word in Q∗, that has to be of length = rank(f)
in the ranked case. So the extension is easy to the unranked case: suffices to
define the transitions to be of the form f(ω) → q, where ω ∈ Q∗, and f ∈ Σ. A
TA is said to be bottom-up deterministic iff whenever there are two transition
rules of the form f(ω) → q, f(ω′) → q′, with q �= q′, we have necessarily
ω∩ω′ = ∅; otherwise it is said to be non-deterministic. We also agree to denote
the transitions of the form f(∅) → q simply as f → q, and refer to them as
initial transitions.
Example. We come now to our second example: to the right of the figure below
is the tree format of a document, of which the fully compressed dag format is to
the left. Over the unranked signature {a, f, g} we consider the bottom-up TA
A, with the following transitions:

a → p, b → p, b → q,
a(p) → q, a(q) → p,
g(q Q∗) → q, g(p q) → p,
f(q p q) → qfin, f(p Q∗) → qfin,

with Q = {p, q, qfin}, qfin being the unique accepting state.

ff

g

b

a a

b

g g

a

b

b

b

b

It is not hard to check that there is an accepting run of the TA on the tree
to the right. And if we want to run the TA directly on the dag to the left,
we may have to determinize the run on the fly, as and when we move up, in
general. This can be done more elegantly, and more naturally, by seeing the
dag as its SLR, and by seeing its productions as well as the transitions of the
TA as rewrite rules, and using innermost rewriting. For instance, the SLR for
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the dag to the left above is as follows:
X0 → f(X1, X1, X2)
X1 → g(X3, X2)
X3 → a(X2), X2 → b

We get by innermost rewriting:
X2 = b → {p, q}, X3 = a(X2) → {p, q}, X1 → g({p, q}{p, q}),
and finally: X0 → f({p, q}{p, q}{p, q}).

And we end up by checking that qfin is in the set f({p, q}{p, q}{p, q}). �
This is how one would proceed, in general, for deciding acceptance under

the bottom-up runs of non-deterministic TAs on dags. However, to any query
defined by a pattern of a limited format that we shall be considering below,
we shall naturally associate a bottom-up non-deterministic TA, called its query
automaton (QA); for such QA, the selecting runs can be computed more directly
(without on the fly determinizations).

3 Query Automata for Patterns

We henceforth assume known the usual notions and terminology of XML, and
of XPath which is a language generally employed for querying XML documents.
For simplicity, we only consider unary queries, i.e., a queries that return a set
of nodes and/or the data attached to these nodes. We are interested here in
a limited sub-class of XPath expressions which can also be seen naturally as
a non-deterministic bottom-up QA. These expressions are all representable as
‘patterns with selection labels’ with the help of the symbols /, //, ∗ of XPath,
along with those from the (unranked) base alphabet Σ, and the filter expressions
of XPath. For instance, the XPath expression a//∗[b//d][c] is represented as the
following pattern, where a, b, c, d are in the base alphabet, ‘∗’ is the wildcard,
and s is the selection symbol:

d

b

*

a

c

s

A node u on any given document t is an answer to the query of this pattern, iff:
- the root node of t bears the name a, and u is a descendant of the root,
- and u has two children nodes b and c, the child named b itself having a

descendant d.
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The XPath expressions that we are interested in here, can be defined formally
in terms of simple grammars; for instance, as in [15], one can define them by:

P ::= σ | ∗ | . | P/P | P//P | P [P ]

where σ ∈ Σ, ‘∗’ is the wildcard of XPath, and ‘.’ stands for the current node
position. To each such expression, one can associate a pattern tree (pattern, for
short), as in the above example (cf. [15] for details). A pattern is essentially
a (rooted) tree with usual edges, plus some distinguished “double-edges” (as in
the above example), referred to as descendant-edges; the nodes are named from
Σ∪ {∗}; in addition, to exactly one of the nodes is assigned a selection symbol:
1 or s. (Note: we are only concerned here with unary queries.) An essential
difference between the usual trees and patterns is that the “set of outgoing
nodes” from a node, on a pattern, are not ordered. (Thus, in the above pattern
example, it is not required that the b-child, of the node u to be selected, be to
the left of its c-child.)

A point we want to drive in now, is that to any pattern can be associated a
QA in a natural manner. We shall do that only on an example, with which we
will continue in the next section. Consider, for instance, the following pattern:

c

c

d s

a

∗

This pattern represents the following XPath expression: //c[c]//d[.//a], which
is short for: //c[child : c]//d[decendant : a]. The QA associated with this
pattern is the bottom-up non-deterministic TA over the alphabet {a, c, d, ∗},
with Q = {qin, q0, q1, q2, q3qacc} as its set of states, qacc as the accepting state,
q1 as the selecting state, and the following transitions:

∗ → qin

∗(Q∗qinQ∗) → qin

a → q0

a(Q∗qinQ∗) → q0

∗(Q∗q0Q
∗) → q0

d(Q∗q0Q
∗) → q1

∗(Q∗q1Q
∗) → q1

c(Q∗qinQ∗) → q2

c(Q∗q1Q
∗q2Q

∗) → q3

c(Q∗q2Q
∗q1Q

∗) → q3

∗(Q∗q3Q
∗) → q3

∗(Q∗q3Q
∗) → qacc

∗(Q∗qaccQ
∗) → qacc

(The Q∗ stands for any string over the set Q.) The semantics of the transitions
are as follows: at any leaf node other than a-named we would be in state qin;
when we reach an a-node we would be in state q0; when we reach a d-node above
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a we would be in state q1; at a c-node, ‘in general’ we would be in q2, but if it is
above a d-node, we would be in q3; finally, at any node strictly above a “c-node
reached at state q3”, we would be in the accepting state qacc. (Note: a query
automaton returns a selected node only on an accepted document.)

4 Querying under SLR or under SLCF

We show here, briefly, how the query //c[child : c]//d[decendant : a] can be
evaluated on the following ‘document’:

t = c(c(a, a), d(c(a, a), c(c(a, a), d(c(a, a), c(a, a))))),

under the runs of the QA defined in the previous section. The example has been
borrowed from [3]; as was shown there, the following SLCF – with S, A, B(y), C
as non-terminals, S being the axiom – gives a ‘nice’ compression of this tree:

S → B(B(C))
B(y) → c(C, d(C, y))
C → c(A, A)
A → a

Observe first that our QA, if run on the tree t, would select the subterm
d(c(a, a), c(a, a)), the position of which (on t) can be deduced by following the
path from the d-node to which is assigned the selecting state q1, to the root.

a

c

d

d

c

c

a

c

d

d

c

c

Now, the dag to the left of the figure above is the fully compressed dag
format for t; and it is not hard to check that our QA can run bottom-up just
as well on this dag (without needing any determinization on the fly), as on the
tree t; the dag will be accepted, and the d-node to the bottom-right will be
assigned the selecting state q1; the set of positions on a dag being well-defined,
one deduces easily the position(s) of the selected node: it corresponds here to
the path formed of the full arrows in the dag to the right. It is easy then to
‘output’ the sub-dag at that position (or its SLR), as the answer to our query.

On the other hand, our QA can also ‘run’ on the SLCF compressed format
given above for the document t; we will then get the following:
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- there is an innermost rewrite derivation from the axiom S to the state qacc;
- and one of the intermediary terms thus derived gets selected.

In other words, we can conclude that the query defined by the pattern does have
an answer, ‘somewhere’. It could also be possible to say ‘exactly where’, using
some additional and more intricate syntax, based on the BPLEX algorithm of
[3, 4]. But, although BPLEX is ‘bottom-up multiplex’, it is not clear if it can
output the exact SLCF grammar corresponding to the answer of the query; more
precisely, it does not seem simple to relate the SLCF grammar of the answer to
the SLCF of the given document.

Before we close this section, a few observations are perhaps in order:
i) Several of the usual XPath based queries on XML documents – or their

skeletons – can be visualized as pattern trees.
ii) Bottom-up unranked query automata can be derived naturally, from such

patterns.
iii) These unranked query automata are (not easy to determinize, but they)

run bottom-up on compressed dags, just as easily as on their corresponding
uncompressed trees; and the answer sets obtained correspond.

iv) Compression based on SLR, and the bottom-up evaluation technique des-
cribed above for queries defined by our patterns, can both continue to function –
without any major modifications – on documents that are subject to rule-based
access control policies (RBAC). It is not clear if the same holds for SLCF-based
compression.

5 Conclusion

We have tried to show that although compression under SLR ensures at best only
a single exponential space optimization, it has a more query-friendly behavior on
several fronts, than compression based on SLCF. We have also shown that non-
deterministic, bottom-up, tree automata are natural and intuitive candidates for
fully evaluating a certain class of queries in the XPath format, visualizable as
patterns, even on documents compressed as DAGs (it is actually the formulation
as a pattern that gives the clue for deriving an automaton corresponding to the
query). The pattern-based view for queries seems to have other advantages as
well: for instance, n-ary queries can be handled quite naturally in that set up.
Moreover, the patterns of the format studied here can also be directly defined
in terms of a suitable grammar; this is of help in handling other problems, such
as that of pattern containment, via rewrite techniques (cf. e.g., [8]).
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