7,702 research outputs found
An extended finite element method with smooth nodal stress
The enrichment formulation of double-interpolation finite element method
(DFEM) is developed in this paper. DFEM is first proposed by Zheng \emph{et al}
(2011) and it requires two stages of interpolation to construct the trial
function. The first stage of interpolation is the same as the standard finite
element interpolation. Then the interpolation is reproduced by an additional
procedure using the nodal values and nodal gradients which are derived from the
first stage as interpolants. The re-constructed trial functions are now able to
produce continuous nodal gradients, smooth nodal stress without post-processing
and higher order basis without increasing the total degrees of freedom. Several
benchmark numerical examples are performed to investigate accuracy and
efficiency of DFEM and enriched DFEM. When compared with standard FEM,
super-convergence rate and better accuracy are obtained by DFEM. For the
numerical simulation of crack propagation, better accuracy is obtained in the
evaluation of displacement norm, energy norm and the stress intensity factor
A numerical approach for modelling thin cracked plates with XFEM
The modelization of bending plates with through the thickness cracks is investigated. We consider the Kirchhoff-Love plate model which is valid for very thin plates. We apply the eXtended Finite Element Method (XFEM) strategy: enrichment of the finite element space with the asymptotic bending and with the discontinuity across the crack. We present two variants and their numerical validations and also a numerical computation of the stress intensity factors
An embedded formulation with conforming
Use of strong discontinuities with satisfaction of compatibilit
Finite Element Analysis of FRP Debonding Failure at the Tip of Flexural/Shear Crack in Concrete Beam
One of the most common failure modes of strengthened RC beams with externally bonded FRP is intermediate crack (IC) debonding of FRP initiated at the tip of flexural/shear cracks. This study presents a method, using extended finite element method (XFEM), to model IC debonding in an FRP-strengthened concrete beam. In XFEM, as soon as a damage initiation criterion is reached in an element, additional degrees of element freedom are added to model crack initiation. Crack propagation is then modeled using fracture energy criterion. This method can be used to simulate debonding failure along an arbitrary, solution-dependent path without the requirement of remeshing. The numerical results are validated against experimental data and good agreement is found. A sensitivity analysis is conducted to study the effects of damage band properties and geometry on FRP debonding failure. This verifies that shear strength and critical mode II fracture energy are the parameters most affecting the FRP debonding model when the crack tip is subjected to mode II loading
- …
