59 research outputs found

    Distributed Video Coding: Iterative Improvements

    Get PDF

    Decoder-driven mode decision in a block-based distributed video codec

    Get PDF
    Distributed Video Coding (DVC) is a video coding paradigm in which the computational complexity is shifted from the encoder to the decoder. DVC is based on information theoretic results suggesting that, under ideal conditions, the same rate-distortion performance can be achieved as for traditional video codecs. In practice however, there is still a significant performance gap between the two coding architectures. One of the main reasons for this gap is the lack of multiple coding modes in current DVC solutions. In this paper, we propose a block-based distributed video codec that supports three coding modes: Wyner-Ziv, skip, and intra. The mode decision process is entirely decoder-driven. Skip blocks are selected based on the estimated accuracy of the side information. The choice between intra and Wyner-Ziv coding modes is made on a rate-distortion basis, by selecting the coding mode with the lowest rate while assuring equal distortion for both modes. Experimental results illustrate that the proposed block-based architecture has some advantages over classical bitplane-based approaches. Introducing skip and intra coded blocks yields average bitrate gains of up to 33.7% over our basic configuration supporting Wyner-Ziv mode only, and up to 29.7% over the reference bitplane-based DISCOVER codec

    A low-complexity and efficient encoder rate control solution for distributed residual video coding.

    Get PDF
    Existing encoder rate control (ERC) solutions have two technical limitations that prevent them from being widely used in real-world applications. One is that encoder side information (ESI) is required to be generated which increases the complexity at the encoder. The other is that rate estimation is performed at bit plane level which incurs computation overheads and latency when many bit planes exist. To achieve a low-complexity encoder, we propose a new ERC solution that combines an efficient encoder block mode decision (EBMD) for the distributed residual video coding (DRVC). The main contributions of this paper are as follows: 1) ESI is not required as our ERC is based on the analysis of the statistical characteristics of the decoder side information (DSI); 2) a simple EBMD is introduced which only employs the values of residual pixels at the encoder to classify blocks into Intra mode, Skip mode, and WZ mode; 3) an ERC solution using pseudo-random sequence scrambling is proposed to estimate rates for all WZ blocks at frame level instead of at bit plane level, i.e., only one rate is estimated; and 4) a quantization-index estimation algorithm (QIEA) is proposed to solve the problem of rate underestimation. The simulation results show that the proposed solution is not only low complex but also efficient in both the block mode decision and the rate estimation. Also, as compared to DISCOVER system and the state-of-the-art ERC solution, our solution demonstrates a competitive rate-distortion(RD)performance. Due to maintain the low-complexity nature of the encoder and have good RD performance, we believe that our ERC solution is promising in practice

    REGION-BASED ADAPTIVE DISTRIBUTED VIDEO CODING CODEC

    Get PDF
    The recently developed Distributed Video Coding (DVC) is typically suitable for the applications where the conventional video coding is not feasible because of its inherent high-complexity encoding. Examples include video surveillance usmg wireless/wired video sensor network and applications using mobile cameras etc. With DVC, the complexity is shifted from the encoder to the decoder. The practical application of DVC is referred to as Wyner-Ziv video coding (WZ) where an estimate of the original frame called "side information" is generated using motion compensation at the decoder. The compression is achieved by sending only that extra information that is needed to correct this estimation. An error-correcting code is used with the assumption that the estimate is a noisy version of the original frame and the rate needed is certain amount of the parity bits. The side information is assumed to have become available at the decoder through a virtual channel. Due to the limitation of compensation method, the predicted frame, or the side information, is expected to have varying degrees of success. These limitations stem from locationspecific non-stationary estimation noise. In order to avoid these, the conventional video coders, like MPEG, make use of frame partitioning to allocate optimum coder for each partition and hence achieve better rate-distortion performance. The same, however, has not been used in DVC as it increases the encoder complexity. This work proposes partitioning the considered frame into many coding units (region) where each unit is encoded differently. This partitioning is, however, done at the decoder while generating the side-information and the region map is sent over to encoder at very little rate penalty. The partitioning allows allocation of appropriate DVC coding parameters (virtual channel, rate, and quantizer) to each region. The resulting regions map is compressed by employing quadtree algorithm and communicated to the encoder via the feedback channel. The rate control in DVC is performed by channel coding techniques (turbo codes, LDPC, etc.). The performance of the channel code depends heavily on the accuracy of virtual channel model that models estimation error for each region. In this work, a turbo code has been used and an adaptive WZ DVC is designed both in transform domain and in pixel domain. The transform domain WZ video coding (TDWZ) has distinct superior performance as compared to the normal Pixel Domain Wyner-Ziv (PDWZ), since it exploits the ' spatial redundancy during the encoding. The performance evaluations show that the proposed system is superior to the existing distributed video coding solutions. Although the, proposed system requires extra bits representing the "regions map" to be transmitted, fuut still the rate gain is noticeable and it outperforms the state-of-the-art frame based DVC by 0.6-1.9 dB. The feedback channel (FC) has the role to adapt the bit rate to the changing ' statistics between the side infonmation and the frame to be encoded. In the unidirectional scenario, the encoder must perform the rate control. To correctly estimate the rate, the encoder must calculate typical side information. However, the rate cannot be exactly calculated at the encoder, instead it can only be estimated. This work also prbposes a feedback-free region-based adaptive DVC solution in pixel domain based on machine learning approach to estimate the side information. Although the performance evaluations show rate-penalty but it is acceptable considering the simplicity of the proposed algorithm. vii

    Bitplane intra coding with decoder-side mode decision in distributed video coding

    Get PDF
    While distributed video coding (DVC) has emerged as a new video coding paradigm, the compression performance of current systems is still low compared to conventional solutions such as H.264/AVC. While the latter uses many coding modes and an efficient mode decision strategy for choosing the best mode, in DVC, only a limited number of modes has been developed so far. Since encoder-side mode decision in DVC increases encoder's complexity, in this paper, we introduce decoder-side mode decision choosing between bitplane WZ coding and bitplane intra coding. This strategy proves to be efficient, delivering rate gains up to 22% over DISCOVER, without increasing the complexity at the encoder

    A simple encoder scheme for distributed residual video coding.

    Get PDF
    Rate-Distortion (RD) performance of Distributed Video Coding (DVC) is considerably less than that of conventional predictive video coding. In order to reduce the performance gap, many methods and techniques have been proposed to improve the coding efficiency of DVC with increased system complexity, especially techniques employed at the encoder such as encoder mode decisions, optimal quantization, hash methods etc., no doubt increase the complexity of the encoder. However, low complexity encoder is a widely desired feature of DVC. In order to improve the coding efficiency while maintaining low complexity encoder, this paper focuses on Distributed Residual Video Coding (DRVC) architecture and proposes a simple encoder scheme. The main contributions of this paper are as follows: 1) propose a bit plane block based method combined with bit plane re-arrangement to improve the dependency between source and Side Information (SI), and meanwhile, to reduce the amount of data to be channel encoded 2) present a simple iterative dead-zone quantizer with 3 levels in order to adjust quantization from coarse to fine. The simulation results show that the proposed scheme outperforms DISCOVER scheme for low to medium motion video sequences in terms of RD performance, and maintains a low complexity encoder at the same time

    Adaptive mode decision with residual motion compensation for distributed video coding

    Get PDF
    Distributed video coding (DVC) is a coding paradigm that entails low complexity encoding by exploiting the source statistics at the decoder. To improve the DVC coding efficiency, this paper presents a novel adaptive technique for mode decision to control and take advantage of skip mode and intra mode in DVC initially proposed by Luong et al. in 2013. The adaptive mode decision (AMD) is not only based on quality of key frames but also the rate of Wyner-Ziv (WZ) frames. To improve noise distribution estimation for a more accurate mode decision, a residual motion compensation is proposed to estimate a current noise residue based on a previously decoded frame. The experimental results, integrating AMD in two efficient DVC codecs, show that the proposed AMD DVC significantly improves the rate distortion performance without increasing the encoding complexity. For a GOP size of 2 on the set of six test sequences, the average (Bjontegaard) bitrate saving of the proposed codec is 35.5. on WZ frames compared with the DISCOVER codec. This saving is mainly achieved by AMD

    Improved compression performance for distributed video coding

    Get PDF

    Distributed video coding with feedback channel constraints

    Get PDF
    Many of the distributed video coding (DVC) systems described in the literature make use of a feedback channel from the decoder to the encoder to determine the rate. However, the number of requests through the feedback channel is often high, and as a result the overall delay of the system could be unacceptable in practical applications. As a solution, feedback-free DVC systems have been proposed, but the problem with these solutions is that they incorporate a difficult trade-off between encoder complexity and compression performance. Recognizing that a limited form of feedback may be supported in many video-streaming scenarios, in this paper we propose a method for constraining the number of feedback requests to a fixed maximum number of N requests for an entire Wyner-Ziv (WZ) frame. The proposed technique estimates the WZ rate at the decoder using information obtained from previously decoded WZ frames and defines the N requests by minimizing the expected rate overhead. Tests on eight sequences show that the rate penalty is less than 5% when only five requests are allowed per WZ frame (for a group of pictures of size four). Furthermore, due to improvements from previous work, the system is able to perform better than or similar to DISCOVER even when up to two requests per WZ frame are allowed. The practical usefulness of the proposed approach is studied by estimating end-to-end delay and encoder buffer requirements, indicating that DVC with constrained feedback can be an important solution in the context of video-streaming scenarios
    corecore