
 

 

 

AUTHOR(S): 

 
 
TITLE:  

 

 
YEAR:  
 

Publisher citation: 

 

 
 
OpenAIR citation: 

 

 

 

Publisher copyright statement: 

 

 

 

 

 

OpenAIR takedown statement: 

 

 This publication is made 
freely available under 
________ open access. 

 

 

 

 

 

This is the ______________________ version of an article originally published by ____________________________ 
in __________________________________________________________________________________________ 
(ISSN _________; eISSN __________). 

This publication is distributed under a CC ____________ license. 

____________________________________________________

 

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will 
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for 
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of 
the item and the nature of your complaint. 

 



AUTHOR'S PROOF JrnlID 11042 ArtID 4484 Proof#1 - 09/02/2017

UNCORRECTED
PROOF

Multimed Tools Appl
DOI 10.1007/s11042-017-4484-5

A low-complexity and efficient encoder rate control
solution for distributed residual video coding

1

2

Chunyun Hu1,2 · Binjie Hu2 · Wanqing Tu3 ·
Yunhui Xiong4

3

4

Received: 28 July 2016 / Revised: 25 December 2016 / Accepted: 6 February 2017 5
© Springer Science+Business Media New York 2017 61

Abstract Existing encoder rate control (ERC) solutions have two technical limitations that 7

prevent them from being widely used in real-world applications. One is that encoder side 8

information (ESI) is required to be generated which increases the complexity at the encoder. 9

The other is that rate estimation is performed at bit plane level which incurs computation 10

overheads and latency when many bit planes exist. To achieve a low-complexity encoder, 11

we propose a new ERC solution that combines an efficient encoder block mode decision 12

(EBMD) for the distributed residual video coding (DRVC). The main contributions of this 13

paper are as follows: 1) ESI is not required as our ERC is based on the analysis of the 14

statistical characteristics of the decoder side information (DSI); 2) a simple EBMD is intro- 15

duced which only employs the values of residual pixels at the encoder to classify blocks 16

into Intra mode, Skip mode, and WZ mode; 3) an ERC solution using pseudo-random 17

sequence scrambling is proposed to estimate rates for all WZ blocks at frame level instead 18

of at bit plane level, i.e., only one rate is estimated; and 4) a quantization-index estimation 19
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algorithm (QIEA) is proposed to solve the problem of rate underestimation. The simula-20

tion results show that the proposed solution is not only low complex but also efficient in21

both the block mode decision and the rate estimation. Also, as compared to DISCOVER22

system and the state-of-the-art ERC solution, our solution demonstrates a competitive rate-23

distortion(RD)performance. Due to maintain the low-complexity nature of the encoder and24

have good RD performance, we believe that our ERC solution is promising in practice.25

Keywords Distributed residual video coding (DRVC) · Encoder rate control (ERC) ·26

Encoder block mode decision (EBMD) · Low-complexity encoder · Pseudo-random27

sequence scrambling28

1 Introduction29

With the wide deployment of wireless networks and the technical advances in micro-30

electronics, there is a growing number of new video applications, such as wireless31

low-power video surveillance and video sensor networks, becoming popular. The traditional32

joint video encoding paradigms (e.g., H.264/AVC and MPEG-4) which put a significant bur-33

den on the encoder mainly due to the complex motion estimation techniques do not suit for34

the new applications because the encoders (normally sensor devices) are limited in power,35

memory and computational capabilities. The new applications could benefit from a codec36

with a low complexity encoder.Therefore, in the past decade, a coding paradigm called dis-37

tributed video coding (DVC) which is famous for a low complexity encoder coupled with a38

more complex decoder has gained the attention of the scientific community.39

The theoretical foundations of DVC are the SlepianCWolf [22] theory which is about the40

lossless distributed coding and the Wyner-Ziv [27] theory which is about the loss distributed41

coding. These theories suggest that the statistical redundancies in a (video) signal can be42

exploited at the decoder side with only a limited performance loss as compared to a system43

employing redundancies at the encoder. Under this suggestion, the motion-compensated44

prediction in DVC is shifted from the encoder to the decoder that facilitates the design of a45

simple encoder coupled with a complex decoder.The well-known DVC architectures have46

been developed by researchers in Stanford University, mainly including pixel-domain DVC47

(PDDVC) [1], transform-domain DVC (TDDVC) [2] and distributed residual video coding48

(DRVC) [3]. Our study in this paper will focus on DRVC.49

During the past decade, the research hotspots in DVC are focused on improving coding50

efficiency, decreasing system latency, removing feedback channel, and maintaining error51

resilience. In order to improve the coding efficiency, well-known strategies such as side52

information refinement [12, 29], more accurate correlation noise model [24], more effec-53

tive reconstruction [25, 30] and block mode decisions [4, 7, 8, 11, 13, 23, 26, 28] have54

been presented. In order to decrease the latency, low-delay DVC systems based on motion-55

compensated extrapolation [17, 21] and DVC systems using entropy coding without iterative56

channel codes have been presented [18, 19]. In order to remove the feedback channel,57

encoder rate control(ERC) solutions [5, 6, 9, 15, 16, 20] have been proposed. In order to58

maintain error resilience [14], multiple-description coding has been proposed to overcome59

transmission errors in video communications over error-prone networks.60

This paper studies ERC problem without using a feedback channel (FC). In most exist-61

ing DVC systems, FC is expected to allocate a proper bit rate for a certain target quality62

that is called FC-driven rate allocation or decoder rate control (DRC). However, FC is63
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not only unavailable in many video applications but also results in additional latency and 64

increasing decoding complexity due to several feedback-decoding iterations. To overcome 65

these drawbacks, scholars have proposed ERC solutions without FC which however bear 66

two limitations preventing them from being widely used in real-world applications. One 67

is that the generation of encoder side information (ESI) increases the encoder complexity. 68

Since efficient rate allocation relies on the quality of side information (SI) and SI is not 69

available at the encoder, ESI is always required to be generated. The other limitation is that 70

the rate estimation at the bit plane level causes computational complexity and latency when 71

there are many bit planes. 72

Since the encoder has limited capability, the main objective of this paper is to find an 73

ERC solution which can maintain the low-complexity nature of the encoder and therefore 74

have good practical use. As compared to the existing ERC solutions, our solution presents 75

four advantages. 76

– Our ERC solution does not need to generate ESI which benefits the encoder with low 77

complexity. After the analysis of the side information at the decoder, we derive an 78

assumption that the quantization version of the decoder residual frame is full of 0. 79

Under this assumption, the correlation between the residual frames at the encoder and 80

decoder is simply calculated by (8) which has nothing to do with ESI. 81

– A simple encoder block mode decision (EBMD) is introduced to improve the coding effi- 82

ciency. Our EBMD only employs the values of residual pixels at the encoder to classify 83

blocks into Intra mode, Skip mode, and WZ mode without any considerable computation. 84

– Our ERC solution is proposed to estimate the transmitting rate for all WZ blocks at 85

frame level instead of at bit plane level, i.e., only one rate is estimated. The ERC solu- 86

tion is based on pseudo-random sequence scrambling which is used to scramble the 87

residual pixels in WZ blocks at both the encoder and the decoder. When the residual 88

pixels are scrambled, the error probabilities between the codewords at both the encoder 89

and the decoder become homogeneous. So the transmitting rate can be the same. 90

– A quantization-index estimation algorithm (QIEA) is presented to solve the problem 91

of rate underestimation. After inverse pseudo-random sequence scrambling, the failed 92

decoded quantization indexes will be scattered among the decoded ones which are used 93

to predict the former and then solve the problem of underestimation. 94

This paper is organized as follows. Section 2 introduces the related studies on ERC and 95

EBMD. Section 3 presents our ERC solution in detail. In Section 4, experimental results are 96

demonstrated and discussed. Finally, we conclude the paper in Section 5. 97

2 Related work 98

2.1 Recent work on ERC solutions 99

As it is known, there are two challenges in ERC solutions. One is to estimate the accurate 100

statistical correlation between the source information and the side information. The other is 101

to allocate the proper bit rate for each bit plane since most of the existing ERC solutions 102

are implemented at bit plane level. Both the challenges are related to SI. As SI is not avail- 103

able at the encoder, ESI is always required to be generated. In [15, 16], the ERC technique 104

estimates the rate based on the lookup tables obtained through a training stage. The table- 105

based rate estimations are not dynamic and their efficiency strongly depends on the training 106
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video sequences. In [9], a fast block matching algorithm is used to generate ESI and the rate107

is estimated depending on the current bit plane error probability and the conditional entropy.108

The results show there is a small gap in RD performance when compared to the correspond-109

ing DRC scenario. In [20], ESI is generated by selecting the block among three candidates.110

A block with the minimum summation of the absolute difference (SAD)is selected as the111

block in ESI. The estimated rate is a linear model of the theory-bound rate. The experi-112

mental results indicate the performance of the proposed ERC is close to but still lower than113

that of DRC peer. In [5], Each frame is divided into two sub-frames: a key frame and a114

WZ frame. ESI is generated by taking the average of neighbor pixels in key frames. The115

RD performance is also lower than that of DRC solutions. In [6], the author proposed an116

efficient ERC solution which can be taken as a new benchmark. In the work, ESI is gen-117

erated by a fast motion compensated interpolation and the parity bits for each bit plane is118

estimated by taking the inter bit plane correlation and the probability of errors into consid-119

eration. At the decoder, along with the correlation noise model updating technique and a120

novel soft reconstruction, a weighted overlapped block motion compensation technique is121

proposed to refine the side information. The experiments show that the ERC solution pro-122

vides a promising result which equals to the RD performance of DISCOVER system. Even123

though the ERC in [6] is very powerful and efficient, its outperformance is at the cost of124

increasing the complexity at both the encoder and the decoder.125

In a nutshell, ERC solutions always increase computational complexity and latency at126

the encoder due to the generation of ESI and the repeated rate estimation at bit planes.127

The RD performance of ERC scheme is always lower than that of the corresponding DRC128

scheme.129

2.2 Recent work on ERMD130

Block mode decision is a useful method to improve the coding efficiency. Several EBMD131

algorithms have been presented in DVC literatures. Intra mode and WZ mode are often132

introduced. In literature [7, 11] , the mode selection depends on the SAD between a block133

and its collocated block in the previous frame as an indication of the temporal coherence. If134

SAD is less than a certain threshold, WZ mode is chosen; otherwise, Intra mode is chosen.135

In [23], both spatial and temporal block coherence are taken into account by calculating136

the pixel variance of each block and the SAD, respectively. In [8], a DVC codec with three137

coding modes is presented: Intra, Inter, and WZ. At the encoder, a bit plane motion estima-138

tion (ME) algorithm is carried out and the ME residual error is used to select the coding139

mode for each block. In [13], an iterative algorithm is proposed to dynamically select either140

Intra mode or WZ mode for a DCT block. In order to make more accurate mode decision,141

ESI is required to be generated. In [4, 26], The block mode decision depends on a RD cost142

function which is composed of compression rate and distortion. The coding mode with the143

minimum cost is chosen for each block. In addition to the Intra and WZ mode, skip mode144

used in [28] is also introduced which can save the transmission data and therefore improve145

the RD performance.146

Although the above EBMD algorithms can improve the coding efficiency, they undoubt-147

edly incur computational complexity at the encoder due to the calculation of metrics such as148

SAD, compression rate, distortion function, etc. Furthermore, if there are some thresholds149

which should be pre-defined, the users usually have no clue to set them.150

In this paper, DRVC system is studied and an ERC solution combining with an EBMD151

for DRVC (ERC-EBMD-DRVC) is proposed which maintains a low complexity encoder152

and hence should be promising in practice.153
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3 Proposed ERC-EBMD-DRVC solution 154

Table 1 lists the major symbols used in the paper. DRVC is a video coding architecture 155

developed by Stanford University. Figure 1 illustrates the ERC-EBMD-DRVC architecture 156

proposed in this paper. In the codec, a video sequence is divided into WZ frames (X2k) 157

and Key frames (X2k+1) by setting GOP = 2. Key frames are encoded and decoded by 158

H.264/AVC Intra. Once a past and a future Key frame are decoded, the reference frame 159

(Xre) and the side information(Y2k) for an intermediate WZ frame are generated. Then the 160

residual frames (R at the encoder and R′ at the decoder) are generated. 161

Table 1 The major symbols
t1.1X2k WZ frame

t1.2X2k−1 past Key frame

t1.3X2k+1 future Key frame

t1.4Xre reference frame

t1.5X̂2k−1 decoded past Key frame

t1.6X̂2k+1 decoded future Key frame

t1.7R residual frame at the encoder

t1.8R′ residual frame at the decoder

t1.9Y2k side information for X2k

t1.10R̂ reconstruction of R

t1.11X̂2k reconstruction of X2k

t1.12R′
q quantization index of R′

t1.13Rblock the macro block in R

t1.14R′
block the macro block in R′

t1.15pi the residual pixel in Rblock

t1.16p′
i the residual pixel in R′

block

t1.17Rwz−f the frame composed of all WZ blocks in R

t1.18R′
wz−f the frame composed of all WZ blocks in R′

t1.19S a sequence composed of all the residual pixels in Rwz−f

t1.20S′ a sequence composed of all the residual pixels in R′
wz−f

t1.21Cwz,k the kth codeword at the encoder

t1.22L the code length of LDPC

t1.23C′
wz,k the kth codeword at the decoder

t1.24ρwz,i the error probability between Cwz,k and C′
wz,k

t1.25ρest the estimated error probability

t1.26ρreal the real error probability

t1.27ρ
bef
wz,i the error probability calculated before scrambling

t1.28ρ
af t
wz,i the error probability calculated after scrambling

t1.29ρbef a set consisting of ρ
bef
wz,i

t1.30ρaf t a set consisting of ρ
af t
wz,i

t1.31v the estimated rate

t1.32v′ the ideal rate

t1.33R̂dec
q the decoded quantization index

t1.34R̂notdec
q the failed decoded quantization index

t1.35R′
q−esti the predicted value of R̂notdec

q
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Fig. 1 System diagram of ERC-EBMD-DRVC

Xre, Y2k , R, and R′ are defined as (1), (2), (3), and (4), respectively.162

Xre = (X̂2k−1 + X̂2k+1)
/

2 , (1)
163

Y2k = 1

2
[X̂2k−1(x + mvx, y + mvy) + X̂2k+1(x − mvx, y − mvy)], (2)

164
R = X2k − Xre, (3)

165
R′ = Y2k − Xre, (4)

In formula (1), X̂2k−1 and X̂2k+1 are the decoded Key frames. In formula (2), mv = (mvx,166

mvy) is the motion vector estimated by an algorithm called motion compensated frame167

interpolation (MCFI).168

At the encoder, R is divided into non-overlapping 4×4 macro blocks. For each block the169

coding mode is determined by the EBMD module which support three modes: Intra, Skip,170

and WZ. For Intra blocks an approach similar to H.263+ Intra is used that the Intra blocks171

are transformed by a discrete cosine transform (DCT), scalar quantized and entropy coded.172

For Skip blocks they take no further part in the encoding process and are skipped without173

transmission. For WZ blocks, the encoder groups all of them into one frame in which the174

pixels are randomly scrambled, non-uniform quantized, and Gray encoded. Then codewords175

are fed to a LDPC coder and the amount of the parity bits transmitted to the decoder is176

estimated by the ERC module. Meanwhile, A binary mode decision map employing run-177

length coding is sent to the decoder.178

At the decoder, according to the decoded mode decision map, the coding mode for each179

block in R′ is the same as the coding mode for the co-located block in R. The former is180

called the side information block for the latter. Intra blocks are decoded by intra decoder.181

WZ blocks are decoded by correcting errors in their side information blocks using the182

received parity bits. If the parity bits are not enough to decode WZ blocks successfully,183

QIEA module is used to solve the problem of rate underestimation. The side information184

blocks marked as WZ mode are also randomly scrambled, non-uniform quantized,Gray185

encoded and then fed to a LDPC decoder. The decoded codewords are Gray decoded,186

inversely scrambled, and inversely quantized. Skip blocks are replaced by their side infor-187

mation blocks. If the quality of the side information blocks is not good enough, the decoder188
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Fig. 2 Probability distribution of a the 13th residual frame of Hall Monitor, b the 32th residual frame of
Foreman, c the 4th residual frame of Coastguard, and d the 19th residual frame of Soccer

can check and improve it. Finally, all decoded blocks are combined to form a decoded 189

residual frame R̂. Then a decoded WZ frame is obtained X̂2k = R̂ + Xre. 190

3.1 Analysis of R′ and the quantization index R′
q 191

In DRVC system, R′ is the side information for R. The probability distribution curves of 192

residual pixels in any R′ in Hall Monitor, Foreman, Coastguard, and Soccer videos are 193

illustrated in Fig. 2. It shows that each curve is sharp near 0, meaning that the pixel values 194

are centered at 0. By comparing (1), (2), and (4), we find that R′ can be regarded as motion- 195

compensated errors for a past and a future decoded Key frame. Since most background and 196

foreground in a frame and its motion-compensated frame change a little information, the 197

motion-compensated errors are very small, resulting in the case R′ = Y2k − Xre ≈ 0 being 198

in the majority. 199

Specific to the nonuniform distribution of R′, nonuniform quantization is employed. Let 200

the quantization intervals be [−255, −31], [−30, 30], and [31, 255] where the threshold 30 201

Table 2 The percentage of R′
q

t2.1quantization interval [−255, −31] [−30, 30] [31,255]

t2.2quantization index R′
q −1 0 1

t2.3Hall Monitor

t2.4(the 13th residual frame) 0.295928 % 99.45155 % 0.252525 %

t2.5Foreman

t2.6(the 32th residual frame) 0.323548 % 99.08854 % 0.58791 %

t2.7Coastguard

t2.8(the 4th residual frame) 0.591856 % 98.78078 % 0.627367 %

t2.9Soccer

t2.10(the 19th residual frame) 0.994318 % 97.16304 % 1.842645 %
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is empirically obtained and let the corresponding quantization indexes (R′
q ) be -1, 0, or 1.202

Table 2 gives the quantization results of the frames which are shown in Fig. 2. It is not hard203

to find out that since the case R′ = Y2k − Xre ≈ 0 is in the majority, the residual pixels204

falling in the interval [−30, 30] are up to 99 %. So, it can be assumed that R′
q = 0 is a205

100 % case.206

Here the statistic characteristic of R′ can be summarized as follows. The values of the207

residual pixels concentrate near 0. After implementing nonuniform quantization, we can208

assume that R′
q = 0 accounts for 100 %.209

3.2 Proposed encoder block mode decision210

Based on the hypothesis that R′
q = 0 accounts for 100 %, a simple and efficient EBMD211

is proposed to classify each block in R into one of the three modes. The definitions and212

decision criteria are:213

– The size of macro block is 4 × 4, totally 16 residual pixels.214

– Let Rblock and R′
block be the macro block in R and R′ respectively. PSNR(Rblock,215

R′
block) is defined as the peak signal to noise ratio (PSNR) of the macro block.216

– Let pi and p′
i be the residual pixel in Rblock and R′

block respectively, where pi, p
′
i ∈217

[−255, 255], i = 1, 2, 3, ..., 16.218

– Intra block: It refers to the block whose correlation with the co-located side information219

block is weak. For Intra block, Intra codec is more effective than Wyner-Ziv codec.220

Given the specific hypothesis of R′
q = 0, the case

∣∣Rq

∣∣ = 1 means that the correlation221

is weak. Therefore, a block with at least six pi satisfying |pi | > 30 is classified as an222

Intra block.223

– Skip block: It refers to the block whose correlation with the co-located side information224

block is strong. It can be replaced by its side information block. Given the specific225

hypothesis of R′
q = 0, the case Rq = 0 means the correlation is strong. In order to226

obtain higher PSNR(Rblock, R
′
block), a block with all the pi satisfying |pi | ≤ 10 is227

classified as a Skip block.228

– WZ block: A block which is neither an Intra block nor a Skip block is classified as a229

WZ block.230

The proposed EBMD is simple, only depending on the values of the residual pixels at231

the encoder without computing metrics such as SAD, compression rate, distortion function,232

etc. Figure 3a and b show the first residual frame of Foreman and the three kinds of blocks233

in it, respectively.234

Our EBMD is based on the hypothesis that R′
q = 0 accounts for 100 %. However, this is235

not always true. In practice, when the occasional case R′
q �= 0 occurs, it may result in wrong236

decisions. If Rblock is wrongly classified as an Intra block, it will be reconstructed correctly237

by Intra decoding. If Rblock is wrongly classified as a Skip block, it is unable to be replaced238

by the side information block. Because in this case, R′
q = 0 while R′

q �= 0, the correlation239

of Rblock and R′
block is not good enough. To solve this problem, (5) is used to check and240

improve the quality of R′
block . The improved R′

block satisfies that all the p′
i in R′

block are less241

than or equals to 10 that is consistent with the decision criterion for Skip blocks.242

p′
i =

⎧
⎨

⎩

10 p′
i > 10

−10 p′
i < −10

p′
i

∣∣p′
i

∣∣ ≤ 10
p′

i ∈ R′
block (5)
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Fig. 3 Display of a the first residual frame of Foreman, b three kinds of blocks which use white, black, and
gray to represent Skip blocks, Intra blocks, and WZ blocks respectively, c the residual frame with WZ blocks
scrambled by pseudo-random sequence
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3.3 Proposed encoder rate control based on pseudo-random sequence scrambling243

For each residual frame R, the encoder groups all the WZ blocks into one frame called244

Rwz−f . In a similar way, the decoder groups all the side information blocks marked as WZ245

mode into another frame called R′
wz−f which is regarded as the SI for Rwz−f . The proposed246

ERC is used to estimate the rate for Rwz−f at the frame level, i.e., only one rate is estimated.247

3.3.1 Pseudo-random sequence scrambling248

Pseudo-random sequence is used to scramble the residual pixels in both Rwz−f and R′
wz−f .249

Figure 4 shows the process of scrambling that is assumed there are sixteen pixels in Rwz−f .250

The process is as follows. Firstly, the residual pixels in Rwz−f form a sequence S in column251

by column order. Secondly, a rand function generates a pseudo-random sequence S′ with252

the same length of S. Then the random numbers in S′ are sorted in ascending order and the253

corresponding index sequence is obtained. Finally, the pixels in S are sorted in the obtained254

index order and then a scrambled Rwz−f is achieved. Figure 3c shows the first residual255

frame in Foreman with the scrambled WZ blocks, i.e., the gray blocks are scrambled by256

pseudo-random sequence.257

After scrambling, the differences between Rwz−f and R′
wz−f become homogeneous258

which can be testified by calculating the error probabilities between the codewords at both259

the encoder and the decoder. At the encoder, based on the LDPC codeword length L, the260

transmitted data are divided into k codewords. If the length of the last codeword is less261

than L, 0 is added. Let Cwz,1 Cwz,2 ... Cwz,k be the k codewords at the encoder and let262

C′
wz,1 C′

wz,2 ... C′
wz,k be the k codewords at the decoder. The error probability between the263

corresponding codewords at both the encoder and the decoder is calculated by (6)264

ρwz,i =
∑

(Cwz,i ⊕ C′
wz,i)

/
L , i = 1, 2 · · · k, (6)

Fig. 4 Scrambled by pseudo-random sequence
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where the symbol ⊕ denotes the binary XOR operator. 265

Let ρ
bef
wz,i and ρ

af t
wz,i be the error probability calculated before and after scrambling, respec- 266

tively. Let ρbef be a set consisting of ρ
bef
wz,i and ρaf t be a set consisting of ρ

af t
wz,i , i = 1, 2, ..., k. 267

Figure 5 shows the comparison between ρbef and ρaf t for any one frame in the test 268

videos. It can be seen that the error probabilities changes from inhomogeneous to approx- 269

imately homogeneous. Furthermore, we calculate the variance of each set. The bigger the 270

variance is, the more inhomogeneous the error probabilities in the set are, and vice verse. 271

Figure 6 depicts the variance of set ρbef and the variance of set ρaf t for each Rwz−f in 272

the test videos. It shows that the variance of set ρbef is larger than the one of set ρaf t . 273

The latter is approximately equal to 0 which means the error probabilities in set ρaf t are 274

approximately homogeneous. Figures 5 and 6 demonstrate that the scrambling is effective. 275

According to (7) (see Section 3.3.2), we know that the error probability is proportional to 276

the parity bit rate. When the error probabilities are approximately homogeneous, the parity 277

bit rates can be the same, i.e., only one rate is estimated for the k codewords. 278

3.3.2 Rate estimation 279

As mentioned above, the error probabilities of k codewords are approximately homogeneous 280

after pseudo-random sequence scrambling. We assume that ρ = ρwz,1 = ρwz,2 · · · = ρwz,i 281

(i = 1, 2 · · · k). If we know the value of error probability ρ , the parity bit rate can be 282

calculated by (7) 283

v = H(ρ) + 0.03 = −ρlog2(ρ) − (1 − ρ)log2(1 − ρ) + 0.03 (7)

H(ρ) is the theory bound. In fact, the parity bit rate is always more than H(ρ). Thus, we 284

modify the rate formula into (7) where 0.03 is the empirical value. 285

Fig. 5 Comparison of ρ before and after a the 6th residual frame of Hall Monitor, b the 14th residual frame
of Foreman, c the 18th residual frame of Coastguard, and d the 54th residual frame of Soccer scrambled by
pseudo-random sequence
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Fig. 6 Variance of set ρbef and variance of set ρaf t for each Rwz−f in a Hall Monitor, b Foreman, c
Coastguard, and d Soccer

How to compute ρ? From the analysis of the quantization version of R′ in Section 3.1 ,286

we can infer that the codewords at the decoder is full of 0s under the hypothesis that R′
q = 0287

accounts for 100 %. Let num(i) be the number of 1 in Cwz,i , e.g., if Cwz,i = 0101001, then288

num(i) = 3 . Therefore, ρ is estimated by (8) and denoted as ρest .289

ρest =

k∑

i=1
num(i)

k ∗ L
(8)
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As we can see that (8) has nothing to do with ESI. It just depends on the number of 1 in 290

k codewords, so the encoder does not generate any ESI that maintains the low-complexity 291

at the encoder. 292

3.4 Quantization index estimation algorithm (QIEA) based on pseudo-random 293

sequence scrambling 294

As mentioned in Section 3.3.1, all the codewords are transmitted at the same rate v. If v is 295

overestimated or well estimated, the codewords are decoded successfully which are used to 296

obtain the decoded quantization indexes. Otherwise, the failed decoded codewords and the 297

failed quantization indexes are obtained. Let R̂dec
q and R̂notdec

q be the decoded and failed 298

decoded quantization index, respectively. After inverse scrambling, R̂notdec
q will be scattered 299

among R̂dec
q . So the adjacent R̂dec

q can be used to predict R̂notdec
q . Let R′

q−esti be the pre- 300

dicted value of R̂notdec
q . If we use R′

q−esti to decode the failed codewords again, we can solve 301

the problem of underestimation. Figure 7 shows how R̂notdec
q scattered among R̂dec

q after 302

inverse scrambling (‘
√

’ represents R̂dec
q and ‘×’ represents R̂notdec

q ). More specifically, QIEA 303

works as follows. 304

1. Obtain R′
q which is corresponding to R̂notdec

q and all R̂dec
q which are adjacent (referring 305

to up, down, left, and right neighborhoods ) to R̂notdec
q . 306

2. Calculate the absolute difference (AD) between R′
q and each R̂dec

q . 307

3. Assign R̂dec
q with the minimum AD to R′

q−esti . 308

4. Use R′
q−esti instead of R′

q to decode the failed codeword again. 309

5. If the number of R̂notdec
q is reduced, then go to step 1; otherwise, end the algorithm. 310

4 Experimental results and discussion 311

To evaluate the performance of the proposed ERC solution, we perform extensive sim- 312

ulations. In the simulations, four test video sequences, namely Hall Monitor, Foreman, 313

Coastguard with QCIF resolution at 15Hz and Soccer with QCIF resolution at 30Hz are 314

employed. The GOP is 2. Odd frame is Key frame encoded by H.264/AVC Intra for QP 315

parameter equal to 16, 18, 20, 24, 27, 30, 32, and 34, respectively. Even frame is WZ frame. 316

The reference frame and residual frame are the same as those described in the introduc- 317

tion section of the ERC-EBMD-DRVC architecture in 3. For WZ blocks, the non-uniform 318

quantization mentioned in Section 3.1 is used and the codeword length of LDPC is 396. 319

Fig. 7 Inversely scrambled by pseudo-random sequence

xyh
附注
“xyh”设置的“Unmarked”
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“xyh”设置的“Cancelled”
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Fig. 8 The percentages of each mode in test videos

4.1 Efficiency of EBMD320

Figure 8 shows the percentage of each mode in the test sequences where the QP is 24. It321

shows Skip blocks in Hall Monitor account for the largest proportion, reaching 93.66 %.322

Intra blocks in Soccer accounting for 12.73 % are more than those in other three videos.323

That means the lower the motion is, the more percentage the skip blocks account for and the324

higher the motion is, the more percentage the Intra blocks account for. Figure 9 shows the325

average PSNR (APSNR) for each kind of block which is shown in Fig. 8. It can be seen that326

for Intra blocks, the APSNR is mainly 14dB-17dB that means the correlations between Intra327

blocks and their side information blocks are weak and the Intra codec is appropriate. For328

WZ blocks, the APSNR is mainly 29 dB that means the qualities of their side information329

blocks are medium and WZ codec is appropriate. For Skip blocks, the APSNR is as high as330

43.19 dB, usually over 39 dB, which means the correlations between Skip blocks and their331

side information blocks are strong. So Skip blocks can be replaced by their side information332

blocks. There is an exceptional case for Intra blocks and WZ blocks in Coastguard. As333

we can see, the APSNR of the two mode blocks in Coastguard are higher than those in334

other videos. It is because Coastguard is a video with well behaved motion. The quality of335

the side information generated by MCFI for Coastguard is good. We know that the quality336

and quantity of Skip blocks, WZ blocks, and Intra blocks are all contribute to the quality337

of SI. Figure 8 shows Skip blocks in Coastguard accounting for 33.69 % is the lowest338

percentage when compared with Skip blocks in other videos. So,in Coastguard, Skip blocks339

Fig. 9 The APSNR of each kind of block in our test videos
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make relatively less contributions to the good quality of SI and therefore it results in Intra 340

blocks and WZ blocks having relatively better SI blocks when compared with other videos. 341

Figure 10 shows the APSNR comparison before and after using (5) for the blocks which 342

are wrongly classified as Skip mode. It can be seen that the gains are up to about 2.8dB, 2.1 343

dB, 1.2dB, and 1.4dB in Hall Monitor, Foreman, Coastguard, and Soccer, respectively. The 344

results show (5) is simple and helpful. 345

In short, as we can see from the results of Figs. 8–10, the proposed EBMD is very simple 346

and effective in mode decision for any degree motion video. Since the proposed EBMD is 347

based on the hypothesis that R′
q = 0 accounts for 100 %, the satisfactory results also justify 348

the hypothesis. 349

4.2 Efficiency of ERC 350

To testify the efficiency of our rate estimation method, we can compare the estimated error 351

probability ρest with the real error probability ρreal and then compare the estimated rate v 352

with the ideal rate v′ which is obtained in DRC scenario. Figure 11 shows the former com- 353

parison. It can be seen that the estimated ρest calculated by (8) are mostly close to ρreal in 354

Hall Monitor, Foreman and Soccer. But in Coastguard ρest is mostly higher than ρreal . It is 355

because that the quality of WZ blocks in Coastguard (about 34dB) is higher than the ones 356

(about 29dB) in other three videos from Fig. 9, If (8) is effective to estimate the error proba- 357

bilities for WZ blocks with lower APSRN, it is certainly overestimated for WZ blocks with 358

higher APSRN. Figure 12 shows the latter comparison. There are three scenarios, namely, 359

v higher than v′ , v lower than v′ and v equal to v′ , which represent overestimation, under- 360

estimation, and well-estimation. Overestimation cannot reduce the distortion, but it causes 361

unnecessary bit-rate expansion. Underestimation can induce errors and result in severe dis- 362

tortion. Figure 12 shows the comparison of v and v′ for each frame in the tested videos. 363

It can be seen that most of the points are closer to line v = v′ which means the differ- 364

ence between v and y is little. In the four videos, the overestimation in Coastguard is in the 365

majority that because ρest is overestimated and so the rate. 366

4.3 Efficiency of QIEA 367

Figure 13 shows the successful decoding ratios (SDR) before and after adopting QIEA. The 368

SDR refers to the number of the successful decoded codewords divided by the number of 369

Fig. 10 APSNR comparison before and after using (5) for the blocks which are wrongly classified as Skip
mode
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Fig. 11 Comparison of ρest and ρreal in a Hall Monitor, b Foreman, c Coastguard, and d Soccer

all the codewords in a video. As seen from Fig. 13, for Coastguard, the SDR before using370

QIEA is up to 84 % which is the highest ratio in the four videos. The explanation is that371

the overestimation in Coastguard is in the majority which helps to improve the SDR. The372

SDRs for Hall Monitor, Foreman, and Soccer before using QIEA are 58.54 %, 51.06 %, and373
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Fig. 12 Estimated v versus idea rate v′ for a Hall Monitor video, b Foreman video, c Coastguard video, and
d Soccer video

47.6 %, respectively. It means the higher the motion, the more difficult is to estimate the 374

rate and the lower the SDR. After using QIEA, SDR is increased for all videos. Especially 375

for Soccer, the SDR reaches 94.46 %. The results show our QIEA is efficient. There are 376

two reasons. One is that after inverse scrambling, the failed decoded quantization indexes 377

R̂notdec
q are scattered among the successful decoded quantization indexes R̂dec

q which can 378

be used to predict R̂notdec
q . The other is the prediction is always accurate duo to the range 379

of the quantization indexes is narrow and only three values, namely -1,0,1, are defined 380

after non-uniform quantization. The SDR for Hall Monitor changes from 58.54 to 59.76 % 381

which seems our QIEA is inefficient. As we know the efficiency of QIEA depends on it that 382

Fig. 13 Comparison of SDR of our test videos before and after adopting QIEA
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R̂notdec
q must be scattered among R̂dec

q which indicates that the more the number of R̂dec
q ,383

the better the performance of QIEA is. But in Hall Monitor, the percentage of WZ blocks is384

only 6.11 % in Fig. 8. Hence, the number of R̂dec
q must be less than 6.11 %, so the effect385

is inconspicuous. Figure 14 shows the example for the improvement of the image quality386

before and after adopting QIEA. As we can seen there are some failed decoded blocks387

especially in the face in (a) which are successfully become decoded in (b) and the PSNR is388

improved by 5.1dB.389

4.4 Analysis of the complexity390

ERC-EBMD-DRVC is a simple video framework which is the basic residual video framework391

adding EBMD module, scrambling module, ERC module, and QIEA module. Although392

EBMD module, scrambling module, and ERC module are added at the encoder, they are all393

simple. EBMD only depends on the values of residual pixels to determine the block mode.394

Scrambling module generates a pseudo-random sequence and sorts it in order. ERC module395

without ESI estimates the rate at frame level. None of them brings heavy calculation and396

latency at the encoder. Although QIEA module is added at the decoder, it is also simple.397

Figure 15 shows the average iteration for QIEA with all QP values for the test videos. We398

can see the number of iteration does not exceed 3 that means the latency and complexity399

increased at the decoder are not severe.400

4.5 RD performance of ERC-EBMD-DRVC401

Figure 16 shows the RD performance of the proposed ERC-EBMD-DRVC solution for402

all the test videos, compared with that of DISCOVER [10] and TDDVC-ERC [6]. Only403

luminance component is taken into account.404

1. Compared with DISCOVER, DISCOVER is currently considered as one of the best405

performing TDDVC system which is regarded as the benchmark for DRC scenario. The406

simulation results of DISCOVER come from [10]. Figure 16 shows that ERC-EBMD-407

DRVC performs better (the gain up to 1.5dB on average) for Hall Monitor video, the408

reason of which is that Skip blocks are in the majority and help to improve the RD409

performance. For Coastguard, ERC-EBMD-DRVC achieves RD performance similar410

to the one obtained by DISCOVER codec which is explained that WZ codec works411

well in Coastguard. As we can see from Figs. 8 and 9 that the percentage and APSNR412

Fig. 14 Comparison of the image quality for the 148th frame of Soccer before and after adopting QIEA, a
PSNR = 27.254 dB before adopting QIEA, b PSNR = 32.31 dB after adopting QIEA
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Fig. 15 Comparison of SDR of our test videos before and after adopting QIEA

of WZ blocks in Coastguard are 64.75 % and 34.17 dB respectively which means WZ 413

blocks are not only in the majority but also with satisfied SI, so the parity bits needed 414

to correct the errors in SI are not much which help to achieve good performance. For 415

video sequences characterized by moderate to high motion such as Foreman and Soc- 416

cer, the proposed ERC-EBMD-DRVC are close to DISCOVER at low bit rates and 417

presents a very small RD performance gap at high rates. Because the rate estimation is 418

a little difficult for such videos with unsatisfied SI. In a word, the proposed solution is 419

very efficient especially for the videos with low and well behaved motion such as Hall 420

Monitor and Coastguard. 421

2. Compared with TDDVC-ERC [6], TDDVC-ERC [6] is a very powerful and efficient 422

ERC solution and becomes a new benchmark for other ERC solutions as it was men- 423

tioned in [6]. The simulation results of TDDVC-ERC come from [6] in which it 424

Fig. 16 RD performance of ERC-EBMD-DRVC solution and benchmarks
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provides a RD performance quite close to the target RD performance obtained by DIS-425

COVER. As we can see from Fig. 16, ERC-EBMD-DRVC outperforms TDDVC-ERC426

for the videos with low motion and achieves similar RD performance for other videos427

at low rates and presents a very small gap at high rates. The results indicate that the pro-428

posed ERC solution is competitive due to its good RD performance. TDDVC-ERC has429

a complex framework in which many improved techniques such as a novel weighted430

overlapped block motion compensation technique, a correlation noise model updating431

technique, and a novel soft reconstruction technique are used to improve the RD per-432

formance. Furthermore, in TDDVC-ERC, ESI is required to be generated and the rates433

are estimated at bit plane level which increase the complexity and incur computation434

overheads at the encoder. While in ERC-EBMD-DRVC, ESI is not required and the435

rates are estimated at frame level. Due to the competitive RD performance and simple436

framework, ERC-EBMD-DRVC is more practical than TDDVC-ERC solution.437

5 Conclusion438

This paper proposes an efficient ERC solution called ERC-EBMD-DRVC which maintains439

a low-complexity encoder. In order to improve the RD performance, the proposed ERC solu-440

tion combines a simple yet efficient EBMD which only employs the values of residual pixels441

to decide the block coding mode. Based on the hypothesis that R′
q = 0 accounts for 100 %,442

the correlation between the residual frames at the encoder and decoder is simply estimated443

by (8) which has nothing to do with ESI. So the encoder does not need to generate ESI that444

greatly decreases the complexity at the encoder. Moreover, our rate estimation is at frame445

level that brings fewer computational load and latency than the ones brought by the rate esti-446

mation at bit plane level. The problem of rate underestimation is also solved using QIEA in447

this paper. The simulation result shows that ERC-EBMD-DRVC outperforms DISCOVER448

and the state-of-the-art ERC solution in the videos with low motion and has competitive RD449

performance for other videos with moderate or high motion. Furthermore, our scheme has450

simple framework. Although EBMD module, scrambling module, ERC module, and QIEA451

module are added, they are all simple. So ERC-EBMD-DRVC is a promising scheme.452
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