2,895 research outputs found

    SPH-EXA: Enhancing the Scalability of SPH codes Via an Exascale-Ready SPH Mini-App

    Full text link
    Numerical simulations of fluids in astrophysics and computational fluid dynamics (CFD) are among the most computationally-demanding calculations, in terms of sustained floating-point operations per second, or FLOP/s. It is expected that these numerical simulations will significantly benefit from the future Exascale computing infrastructures, that will perform 10^18 FLOP/s. The performance of the SPH codes is, in general, adversely impacted by several factors, such as multiple time-stepping, long-range interactions, and/or boundary conditions. In this work an extensive study of three SPH implementations SPHYNX, ChaNGa, and XXX is performed, to gain insights and to expose any limitations and characteristics of the codes. These codes are the starting point of an interdisciplinary co-design project, SPH-EXA, for the development of an Exascale-ready SPH mini-app. We implemented a rotating square patch as a joint test simulation for the three SPH codes and analyzed their performance on a modern HPC system, Piz Daint. The performance profiling and scalability analysis conducted on the three parent codes allowed to expose their performance issues, such as load imbalance, both in MPI and OpenMP. Two-level load balancing has been successfully applied to SPHYNX to overcome its load imbalance. The performance analysis shapes and drives the design of the SPH-EXA mini-app towards the use of efficient parallelization methods, fault-tolerance mechanisms, and load balancing approaches.Comment: arXiv admin note: substantial text overlap with arXiv:1809.0801

    Learning from the Success of MPI

    Full text link
    The Message Passing Interface (MPI) has been extremely successful as a portable way to program high-performance parallel computers. This success has occurred in spite of the view of many that message passing is difficult and that other approaches, including automatic parallelization and directive-based parallelism, are easier to use. This paper argues that MPI has succeeded because it addresses all of the important issues in providing a parallel programming model.Comment: 12 pages, 1 figur

    DART-MPI: An MPI-based Implementation of a PGAS Runtime System

    Full text link
    A Partitioned Global Address Space (PGAS) approach treats a distributed system as if the memory were shared on a global level. Given such a global view on memory, the user may program applications very much like shared memory systems. This greatly simplifies the tasks of developing parallel applications, because no explicit communication has to be specified in the program for data exchange between different computing nodes. In this paper we present DART, a runtime environment, which implements the PGAS paradigm on large-scale high-performance computing clusters. A specific feature of our implementation is the use of one-sided communication of the Message Passing Interface (MPI) version 3 (i.e. MPI-3) as the underlying communication substrate. We evaluated the performance of the implementation with several low-level kernels in order to determine overheads and limitations in comparison to the underlying MPI-3.Comment: 11 pages, International Conference on Partitioned Global Address Space Programming Models (PGAS14

    Reproducible and User-Controlled Software Environments in HPC with Guix

    Get PDF
    Support teams of high-performance computing (HPC) systems often find themselves between a rock and a hard place: on one hand, they understandably administrate these large systems in a conservative way, but on the other hand, they try to satisfy their users by deploying up-to-date tool chains as well as libraries and scientific software. HPC system users often have no guarantee that they will be able to reproduce results at a later point in time, even on the same system-software may have been upgraded, removed, or recompiled under their feet, and they have little hope of being able to reproduce the same software environment elsewhere. We present GNU Guix and the functional package management paradigm and show how it can improve reproducibility and sharing among researchers with representative use cases.Comment: 2nd International Workshop on Reproducibility in Parallel Computing (RepPar), Aug 2015, Vienne, Austria. http://reppar.org
    • …
    corecore