30,206 research outputs found

    Deep Adaptive Learning for Writer Identification based on Single Handwritten Word Images

    Get PDF
    There are two types of information in each handwritten word image: explicit information which can be easily read or derived directly, such as lexical content or word length, and implicit attributes such as the author's identity. Whether features learned by a neural network for one task can be used for another task remains an open question. In this paper, we present a deep adaptive learning method for writer identification based on single-word images using multi-task learning. An auxiliary task is added to the training process to enforce the emergence of reusable features. Our proposed method transfers the benefits of the learned features of a convolutional neural network from an auxiliary task such as explicit content recognition to the main task of writer identification in a single procedure. Specifically, we propose a new adaptive convolutional layer to exploit the learned deep features. A multi-task neural network with one or several adaptive convolutional layers is trained end-to-end, to exploit robust generic features for a specific main task, i.e., writer identification. Three auxiliary tasks, corresponding to three explicit attributes of handwritten word images (lexical content, word length and character attributes), are evaluated. Experimental results on two benchmark datasets show that the proposed deep adaptive learning method can improve the performance of writer identification based on single-word images, compared to non-adaptive and simple linear-adaptive approaches.Comment: Under view of Pattern Recognitio

    Handwritten Signature Verification using Deep Learning

    Get PDF
    Every person has his/her own unique signature that is used mainly for the purposes of personal identification and verification of important documents or legal transactions. There are two kinds of signature verification: static and dynamic. Static(off-line) verification is the process of verifying an electronic or document signature after it has been made, while dynamic(on-line) verification takes place as a person creates his/her signature on a digital tablet or a similar device. Offline signature verification is not efficient and slow for a large number of documents. To overcome the drawbacks of offline signature verification, we have seen a growth in online biometric personal verification such as fingerprints, eye scan etc. In this paper we created CNN model using python for offline signature and after training and validating, the accuracy of testing was 99.70%

    Exploiting zoning based on approximating splines in cursive script recognition

    Get PDF
    Because of its complexity, handwriting recognition has to exploit many sources of information to be successful, e.g. the handwriting zones. Variability of zone-lines, however, requires a more flexible representation than traditional horizontal or linear methods. The proposed method therefore employs approximating cubic splines. Using entire lines of text rather than individual words is shown to improve the zoning accuracy, especially for short words. The new method represents an improvement over existing methods in terms of range of applicability, zone-line precision and zoning-classification accuracy. Application to several problems of handwriting recognition is demonstrated and evaluated
    • …
    corecore