3 research outputs found

    Modelling and control of a two-link flexible manipulator using finite element modal analysis

    Get PDF
    This thesis focuses on Finite Element (FE) modeling and robust control of a two-link flexible manipulator based on a high resolution FE model and the system vibration modes. A new FE model is derived using Euler-Bernoulli beam elements, and the model is validated using commercial software Abaqus CAE. The frequency and time domain analysis reveal that the response of the FE model substantially varies with changing the number of elements, unless a high number of elements (100 elements in this work) is used. The gap between the complexity of the high order FE model capable of predicting dynamics of the multibody system, and suitability of the model for controller design is bridged by designing control schemes based on the reduced order models obtained using modal truncation/H8 techniques. Two reduced order multi-input multi-output modal control algorithms composed of a robust feedback controller along with a feed-forward compensator are designed. The first controller, Inversion-based Two Mode Controller (ITMC), is designed using a mixed-sensitivity H8 synthesis and a modal inversion-based compensator. The second controller, Shaping Two-Mode Controller (STMC), is designed with H8 loopshaping using the modal characteristics of the system. Stability robustness against unmodelled dynamics due to the model reduction is shown using the small gain theorem. Performance of the feedback controllers are compared with Linear Quadratic Gaussian designs and are shown to have better tracking characteristics. Effectiveness of the control schemes is shown by simulation of rest-to-rest maneuver of the manipulator to a set of desired points in the joint space. The ITMC is shown to have more precise tracking performance, while STMC has higher control over vibration of the tip, at the expense of more tracking errors

    Fusion of low-cost and light-weight sensor system for mobile flexible manipulator

    Get PDF
    There is a need for non-industrial robots such as in homecare and eldercare. Light-weight mobile robots preferred as compared to conventional fixed based robots as the former is safe, portable, convenient and economical to implement. Sensor system for light-weight mobile flexible manipulator is studied in this research. A mobile flexible link manipulator (MFLM) contributes to high amount of vibrations at the tip, giving rise to inaccurate position estimations. In a control system, there inevitably exists a lag between the sensor feedback and the controller. Consequently, it contributed to instable control of the MFLM. Hence, there it is a need to predict the tip trajectory of the MFLM. Fusion of low cost sensors is studied to enhance prediction accuracy at the MFLM’s tip. A digital camera and an accelerometer are used predict tip of the MFLM. The main disadvantage of camera is the delayed feedback due to the slow data rate and long processing time, while accelerometer composes cumulative errors. Wheel encoder and webcam are used for position estimation of the mobile platform. The strengths and limitations of each sensor were compared. To solve the above problem, model based predictive sensor systems have been investigated for used on the mobile flexible link manipulator using the selected sensors. Mathematical models were being developed for modeling the reaction of the mobile platform and flexible manipulator when subjected to a series of input voltages and loads. The model-based Kalman filter fusion prediction algorithm was developed, which gave reasonability good predictions of the vibrations of the tip of flexible manipulator on the mobile platform. To facilitate evaluation of the novel predictive system, a mobile platform was fabricated, where the flexible manipulator and the sensors are mounted onto the platform. Straight path motions were performed for the experimental tests. The results showed that predictive algorithm with modelled input to the Extended Kalman filter have best prediction to the tip vibration of the MFLM
    corecore