180 research outputs found

    Wreath Products of Forest Algebras, with Applications to Tree Logics

    Full text link
    We use the recently developed theory of forest algebras to find algebraic characterizations of the languages of unranked trees and forests definable in various logics. These include the temporal logics CTL and EF, and first-order logic over the ancestor relation. While the characterizations are in general non-effective, we are able to use them to formulate necessary conditions for definability and provide new proofs that a number of languages are not definable in these logics

    A Groupoid Approach to Discrete Inverse Semigroup Algebras

    Get PDF
    Let KK be a commutative ring with unit and SS an inverse semigroup. We show that the semigroup algebra KSKS can be described as a convolution algebra of functions on the universal \'etale groupoid associated to SS by Paterson. This result is a simultaneous generalization of the author's earlier work on finite inverse semigroups and Paterson's theorem for the universal CC^*-algebra. It provides a convenient topological framework for understanding the structure of KSKS, including the center and when it has a unit. In this theory, the role of Gelfand duality is replaced by Stone duality. Using this approach we are able to construct the finite dimensional irreducible representations of an inverse semigroup over an arbitrary field as induced representations from associated groups, generalizing the well-studied case of an inverse semigroup with finitely many idempotents. More generally, we describe the irreducible representations of an inverse semigroup SS that can be induced from associated groups as precisely those satisfying a certain "finiteness condition". This "finiteness condition" is satisfied, for instance, by all representations of an inverse semigroup whose image contains a primitive idempotent

    M\"obius Functions and Semigroup Representation Theory II: Character formulas and multiplicities

    Full text link
    We generalize the character formulas for multiplicities of irreducible constituents from group theory to semigroup theory using Rota's theory of M\"obius inversion. The technique works for a large class of semigroups including: inverse semigroups, semigroups with commuting idempotents, idempotent semigroups and semigroups with basic algebras. Using these tools we are able to give a complete description of the spectra of random walks on finite semigroups admitting a faithful representation by upper triangular matrices over the complex numbers. These include the random walks on chambers of hyperplane arrangements studied by Bidigare, Hanlon, Rockmere, Brown and Diaconis. Applications are also given to decomposing tensor powers and exterior products of rook matrix representations of inverse semigroups, generalizing and simplifying earlier results of Solomon for the rook monoid.Comment: Some minor typos corrected and references update

    Intermediate problems in modular circuits satisfiability

    Full text link
    In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite algebras had been introduced and applied to sketch P versus NP-complete borderline for circuits satisfiability over algebras from congruence modular varieties. However the problem for nilpotent (which had not been shown to be NP-hard) but not supernilpotent algebras (which had been shown to be polynomial time) remained open. In this paper we provide a broad class of examples, lying in this grey area, and show that, under the Exponential Time Hypothesis and Strong Exponential Size Hypothesis (saying that Boolean circuits need exponentially many modular counting gates to produce boolean conjunctions of any arity), satisfiability over these algebras have intermediate complexity between Ω(2clogh1n)\Omega(2^{c\log^{h-1} n}) and O(2cloghn)O(2^{c\log^h n}), where hh measures how much a nilpotent algebra fails to be supernilpotent. We also sketch how these examples could be used as paradigms to fill the nilpotent versus supernilpotent gap in general. Our examples are striking in view of the natural strong connections between circuits satisfiability and Constraint Satisfaction Problem for which the dichotomy had been shown by Bulatov and Zhuk
    corecore