7 research outputs found

    The Engineering of Software-Defined Quantum Key Distribution Networks

    Full text link
    Quantum computers will change the cryptographic panorama. A technology once believed to lay far away into the future is increasingly closer to real world applications. Quantum computers will break the algorithms used in our public key infrastructure and in our key exchange protocols, forcing a complete retooling of the cryptography as we know it. Quantum Key distribution is a physical layer technology immune to quantum or classical computational threats. However, it requires a physical substrate, and optical fiber has been the usual choice. Most of the time used just as a point to point link for the exclusive transport of the delicate quantum signals. Its integration in a real-world shared network has not been attempted so far. Here we show how the new programmable software network architectures, together with specially designed quantum systems can be used to produce a network that integrates classical and quantum communications, including management, in a single, production-level infrastructure. The network can also incorporate new quantum-safe algorithms and use the existing security protocols, thus bridging the gap between today's network security and the quantum-safe network of the future. This can be done in an evolutionary way, without zero-day migrations and the corresponding upfront costs. We also present how the technologies have been deployed in practice using a production network.Comment: 7 pages, 4 figures, Accepted for publication in the IEEE Communications Magazine, Future Internet: Architectures and Protocols issu

    Quantum key distribution with hacking countermeasures and long term field trial

    Get PDF
    Quantum key distribution's (QKD's) central and unique claim is information theoretic security. However there is an increasing understanding that the security of a QKD system relies not only on theoretical security proofs, but also on how closely the physical system matches the theoretical models and prevents attacks due to discrepancies. These side channel or hacking attacks exploit physical devices which do not necessarily behave precisely as the theory expects. As such there is a need for QKD systems to be demonstrated to provide security both in the theoretical and physical implementation. We report here a QKD system designed with this goal in mind, providing a more resilient target against possible hacking attacks including Trojan horse, detector blinding, phase randomisation and photon number splitting attacks. The QKD system was installed into a 45 km link of a metropolitan telecom network for a 2.5 month period, during which time the system operated continuously and distributed 1.33 Tbits of secure key data with a stable secure key rate over 200 kbit/s. In addition security is demonstrated against coherent attacks that are more general than the collective class of attacks usually considered

    Quantum Technologies: Implications for European Policy: Issues for debate

    Get PDF
    New technologies for communications, computing, sensing and timing, which exploit quantum physics more deeply than heretofore, are expected to have high impact and to require a European policy response. This paper raises key discussion points, as a contribution to a wider EC initiative.JRC.G.5-Security technology assessmen

    Quantum Computing and IS - Harnessing the Opportunities of Emerging Technologies

    Get PDF
    Emerging technologies have high potential for impact and are worthy of attention by the Information Systems (IS) community. To date, IS has not been able to lead the research and teaching of emerging technologies in their early stages, arguably because: (1) IS researchers often lack knowledge of the foundational principles of such emerging technologies, and (2) during the emerging phase, there is insufficient data on adoption, use, and impact of these technologies. To overcome these challenges, the IS discipline must be willing to break its own disciplinary research boundaries to go beyond software applications and their related management issues and start studying emerging technologies before they are massively adopted by industry. In this paper, we use quantum computing as an exemplar emerging technology and outline a research and education agenda for IS to harness its opportunities. We propose that IS researchers may conduct rigorous research in emergent technologies through collaboration with researchers from other disciplines. We also see a role for IS researchers in the scholarship of emerging technologies that is of introducing emerging technology in IS curricula

    Quantum dots for photonic quantum information technology

    Full text link
    The generation, manipulation, storage, and detection of single photons play a central role in emerging photonic quantum information technology. Individual photons serve as flying qubits and transmit the quantum information at high speed and with low losses, for example between individual nodes of quantum networks. Due to the laws of quantum mechanics, quantum communication is fundamentally tap-proof, which explains the enormous interest in this modern information technology. On the other hand, stationary qubits or photonic states in quantum computers can potentially lead to enormous increases in performance through parallel data processing, to outperform classical computers in specific tasks when quantum advantage is achieved. Here, we discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology. In this context, QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers because they can generate single photons on-demand. Moreover, QDs are compatible with the mature semiconductor technology, so that they can be integrated comparatively easily into nanophotonic structures, which form the basis for quantum light sources and integrated photonic quantum circuits. After a thematic introduction, we present modern numerical methods and theoretical approaches to device design and the physical description of quantum dot devices. We then present modern methods and technical solutions for the epitaxial growth and for the deterministic nanoprocessing of quantum devices based on QDs. Furthermore, we present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements and discuss applications of these novel devices in photonic quantum information technology. We close with an overview of open issues and an outlook on future developments.Comment: Copyright 2023 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibite
    corecore