1 research outputs found

    Workspace analysis for haptic feedback manipulator in virtual cockpit system

    No full text
    To obtain natural space experience of haptic interaction for users in virtual cockpit systems (VCS), a haptic feedback system and a workspace analysis framework for haptic feedback manipulator (HFM) are presented in this paper. Firstly, improving the classical three-dimensional workspace obtained by the Monte Carlo method, a novel workspace representation method, oriented workspace, is presented, which can indicate both the position and the orientation of the end-effector. Then, aimed at the characters of HFMs, the oriented workspace is divided into the effective workspace and the prohibited area by extracting the control panel area. At last, the effective workspace volume and the control panel area are calculated by the double-directed extremum method, with the accuracy improved by repeatedly adding and extracting boundary points. By simulation, the area in which interactions between the manipulator and users hand performed is determined and accordingly the effective workspace along with its boundary and volume are obtained in a relative high precision, which lay a basis for haptic interaction in VCS
    corecore