5 research outputs found

    Drivers\u27 Ability to Engage in a Non-Driving Related Task While in Automated Driving Mode in Real Traffic

    Get PDF
    Engaging in non-driving related tasks (NDRTs) while driving can be considered distracting and safety detrimental. However, with the introduction of highly automated driving systems that relieve drivers from driving, more NDRTs will be feasible. In fact, many car manufacturers emphasize that one of the main advantages with automated cars is that it "frees up time" for other activities while on the move. This paper investigates how well drivers are able to engage in an NDRT while in automated driving mode (i.e., SAE Level 4) in real traffic, via a Wizard of Oz platform. The NDRT was designed to be visually and cognitively demanding and require manual interaction. The results show that the drivers\u27 attention to a great extent shifted from the road ahead towards the NDRT. Participants could perform the NDRT equally well as when in an office (e.g. correct answers, time to completion), showing that the performance did not deteriorate when in the automated vehicle. Yet, many participants indicated that they noted and reacted to environmental changes and sudden changes in vehicle motion. Participants were also surprised by their own ability to, with ease, disconnect from driving. The presented study extends previous research by identifying that drivers to a high extent are able to engage in a NDRT while in automated mode in real traffic. This is promising for future of automated cars ability to "free up time" and enable drivers to engage in non-driving related activities

    Effects of cognitive tasks on car drivers’ behaviors and physiological responses

    Get PDF
    The effects of drivers’ engagement in cognitive tasks (i.e., non-visual, cognitively loading activities unrelated to the task of driving) are debated and unclear. Numerous experiments show impaired driver behaviors, yet naturalistic studies typically do not find an increased crash risk. In the future, autonomous driving (AD) is expected to improve traffic safety while allowing safe engagement in cognitive (and other) tasks. Having the opportunity to perform non-driving related tasks while traveling may then motivate drivers to use AD, provided they can actually engage in the tasks. Unfortunately, research on drivers’ engagement in cognitive tasks suffers severe methodological limitations since reliable and unintrusive measures of cognitive load are lacking.The aim of this thesis is therefore to advance the understanding of task-induced cognitive load in the context of traffic safety. This aim is split into two objectives: A) to better understand how drivers’ involvement in cognitive tasks can affect safety-relevant driver behaviors and decisions and B) to provide methodological guidance about assessing cognitive load in drivers using physiological measures.To accomplish Objective A, effects of cognitive tasks on driver behaviors were studied during routine driving and in a safety-critical event in a driving simulator. Also, drivers’ ability to engage in a non-driving related task while using AD in real traffic was explored. In line with the cognitive control hypothesis (Engstr\uf6m et al., 2017), it was found that cognitive tasks negatively affected driver behaviors in situations where cognitive control was needed, for example in intersections—but not in a lead vehicle braking scenario where responses were triggered automatically by visual looming. It was also found that although the number of off-path glances decreased during cognitive load, the timing of the remaining glances was unaffected. Clearly, cognitive load has different effects on different mechanisms. When using AD, drivers were indeed capable of engaging in a non-driving related task—suggesting that AD will be able to fulfill drivers’ desire to perform such tasks while traveling, which may motivate AD usage and thus improve traffic safety (given that AD is truly safer than manual driving). Finally, a simulator study addressing Objective B showed that the measurability of cognitive load was greatly improved by recognizing that multiple coexisting mental responses give rise to different physiological responses. This approach can provide less context-dependent measurements and allows for a better, more detailed understanding of the effects of cognitive tasks.These findings can help improve traffic safety—both by being used in system development, and as part of the systems themselves

    Workshop on The Mobile Office

    No full text
    This workshop discusses the balance between safety and productivity as automated vehicles turn into 'mobile offices': spaces where non-driving activities are performed during one’s daily commute. Technological developments reduce the active role of the human driver that might, nonetheless, require occasional intervention. To what extent are drivers allowed to dedicate resources to non-driving work-related activities? To address this critical question, the workshop brings together a diverse community of researchers and practitioners that are interested in questions as follows: what non-driving activities are likely to be performed on one’s way to work and back; what is a useful taxonomy of these tasks; how can various tasks be studied in experimental settings; and, what are the criteria to assess human performance in automated vehicles. To foster further dialogue, the outcome of the workshop will be an online blog where attendees can contribute their own thoughts: https://medium.com/the-mobile-office

    Workshop on The Mobile Office

    No full text
    This workshop discusses the balance between safety and productivity as automated vehicles turn into 'mobile offices': spaces where non-driving activities are performed during one’s daily commute. Technological developments reduce the active role of the human driver that might, nonetheless, require occasional intervention. To what extent are drivers allowed to dedicate resources to non-driving work-related activities? To address this critical question, the workshop brings together a diverse community of researchers and practitioners that are interested in questions as follows: what non-driving activities are likely to be performed on one’s way to work and back; what is a useful taxonomy of these tasks; how can various tasks be studied in experimental settings; and, what are the criteria to assess human performance in automated vehicles. To foster further dialogue, the outcome of the workshop will be an online blog where attendees can contribute their own thoughts: https://medium.com/the-mobile-office

    Workshop on The Mobile Office

    No full text
    This workshop discusses the balance between safety and productivity as automated vehicles turn into 'mobile offices': spaces where non-driving activities are performed during one's daily commute. Technological developments reduce the active role of the human driver that might, nonetheless, require occasional intervention. To what extent are drivers allowed to dedicate resources to non-driving work-related activities? To address this critical question, the workshop brings together a diverse community of researchers and practitioners that are interested in questions as follows: what non-driving activities are likely to be performed on one's way to work and back; what is a useful taxonomy of these tasks; how can various tasks be studied in experimental settings; and, what are the criteria to assess human performance in automated vehicles. To foster further dialogue, the outcome of the workshop will be an online blog where attendees can contribute their own thoughts: https://medium.com/the-mobile-office
    corecore