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ABSTRACT 

The effects of drivers’ engagement in cognitive tasks (i.e., non-visual, cognitively loading 
activities unrelated to the task of driving) are debated and unclear. Numerous experiments 
show impaired driver behaviors, yet naturalistic studies typically do not find an increased 
crash risk. In the future, autonomous driving (AD) is expected to improve traffic safety while 
allowing safe engagement in cognitive (and other) tasks. Having the opportunity to perform 
non-driving related tasks while traveling may then motivate drivers to use AD, provided they 
can actually engage in the tasks. Unfortunately, research on drivers’ engagement in cognitive 
tasks suffers severe methodological limitations since reliable and unintrusive measures of 
cognitive load are lacking.  

The aim of this thesis is therefore to advance the understanding of task-induced cognitive 
load in the context of traffic safety. This aim is split into two objectives: A) to better 
understand how drivers’ involvement in cognitive tasks can affect safety-relevant driver 
behaviors and decisions and B) to provide methodological guidance about assessing cognitive 
load in drivers using physiological measures. 

To accomplish Objective A, effects of cognitive tasks on driver behaviors were studied 
during routine driving and in a safety-critical event in a driving simulator. Also, drivers’ 
ability to engage in a non-driving related task while using AD in real traffic was explored. In 
line with the cognitive control hypothesis (Engström et al., 2017), it was found that cognitive 
tasks negatively affected driver behaviors in situations where cognitive control was needed, 
for example in intersections—but not in a lead vehicle braking scenario where responses 
were triggered automatically by visual looming. It was also found that although the number 
of off-path glances decreased during cognitive load, the timing of the remaining glances was 
unaffected. Clearly, cognitive load has different effects on different mechanisms. When using 
AD, drivers were indeed capable of engaging in a non-driving related task—suggesting that 
AD will be able to fulfill drivers’ desire to perform such tasks while traveling, which may 
motivate AD usage and thus improve traffic safety (given that AD is truly safer than manual 
driving). Finally, a simulator study addressing Objective B showed that the measurability of 
cognitive load was greatly improved by recognizing that multiple coexisting mental 
responses give rise to different physiological responses. This approach can provide less 
context-dependent measurements and allows for a better, more detailed understanding of the 
effects of cognitive tasks.  

These findings can help improve traffic safety—both by being used in system development, 
and as part of the systems themselves. 

Key words: cognitive load, distraction, physiological measures, driver behavior, traffic 
safety, inattention, psychophysiology, autonomous drive. 
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1 Introduction 

As vehicles’ technical development progresses, great improvements in traffic safety are 
possible. This is indeed needed, since road injuries are one of the ten leading causes of death 
worldwide and the leading cause of death for people aged 5–29 years (World Health 
Organization [WHO], 2018). Consequently, one of the United Nations’ sustainable 
development goals is to halve the number of deaths and injuries from road traffic accidents 
(United Nations [UN], 2015). Today, driver errors are considered the most common reason 
for traffic accidents (Deme, 2019; Singh, 2015). Therefore, knowledge about drivers’ 
abilities, behaviors, priorities, and experiences is needed to develop vehicles and vehicle 
applications which will improve traffic safety by reducing these errors.  

In routine driving (i.e., typical “everyday driving” without critical events), drivers need to 
attend to relevant information in the traffic environment and adapt their behavior accordingly. 
For example, if a bus has stopped at a bus stop, an aware driver would recognize the risk that 
a pedestrian might be hidden by the bus and may be about to appear on the road. The driver 
should thus direct his/her gaze towards that location, slow down if needed, and be ready to 
brake immediately if a pedestrian appears. Also, if drivers fail to adapt to the traffic 
situation—or confront an unpredictable or unavoidable critical event—they need to respond 
quickly and appropriately to avoid a crash (or, if a crash is inevitable, to limit its damage). 

Drivers’ engagement in non-driving-related activities has been frequently studied for its 
potential negative effects on these adaptation and response abilities and thus on traffic safety. 
Various studies have repeatedly and consistently shown that visual distraction (i.e., not 
looking at driving-relevant targets; Ahlström et al., 2012) has detrimental effects on driver 
behaviors and traffic safety (Angell et al., 2006; Caird et al., 2014). Clearly, diverting the 
gaze from the driving task decreases the chance of noticing relevant information in the traffic 
environment and responding promptly in case of an impending threat (Drews et al., 2009; 
Liang & Lee, 2010; Victor et al., 2015), and it increases the risk of crashes and near-crashes 
(Fitch et al., 2013; Klauer et al., 2006). This finding has led many countries to introduce laws 
to reduce visual distraction by, for example, banning handheld mobile phone use while 
driving (WHO, 2018). Technical solutions have also been developed, such as voice-based 
auditory interfaces for in-vehicle and portable devices, which are intended to minimize the 
devices’ negative effects on traffic safety by enabling drivers to handle the devices while 
keeping their eyes on the road. However, strong concerns have been raised regarding 
negative effects also of these non-visual tasks. But unlike the research results for visual 
distraction, the results of the effects of these tasks are ambiguous. I will refer hereafter to 
these non-visual, cognitively loading, non-driving-related tasks as cognitive tasks, to 
differentiate them from tasks such as texting, which include a visual component (thus 
avoiding the specific but awkward acronym NVCLNDRT).  

On one hand, numerous studies have reported negative effects on driver performance of 
engagement in cognitive tasks such as cell phone conversations and working memory loading 
tasks (for reviews, see Collet et al., 2010; Caird et al., 2018; von Janczewski et al., 2021). 
The effects include deteriorated visual scanning (Sawyer et al., 2016), hazard detection (G. 
Wood et al., 2016), and situational adaptation (Baumann et al., 2008; Muttart et al., 2007), 
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and increased response times to various stimuli (e.g., Strayer et al., 2013). These effects, 
found in controlled driving experiments, are assumed to generalize to real-life driving, 
leading to predictions of an increase in safety-critical events due to drivers’ missing relevant 
information in the traffic environment (Recarte & Nunes, 2003), and an increased risk of 
crashes due to slower responses in critical situations (Collet et al., 2010; Strayer et al., 2015; 
Merat & Jamson, 2008).  

On the other hand, contrary to these inferences, naturalistic studies (i.e., studies with 
instrumented vehicles in everyday driving in real traffic) typically haven’t found an increased 
risk of crashes or near-crashes during cognitive tasks such as cell phone conversations or the 
use of CB (Citizens Band) radios (Fitch et al., 2013; Klauer et al., 2006). Instead, several 
studies have even found a decreased risk of crashes and near-crashes during such tasks 
(Hickman et al., 2010; Olson et al., 2009; Victor et al., 2015). These results make some 
researchers question the conclusions drawn from controlled experiments (Engström et al., 
2017; Fisher, 2015; Hancock & Sawyer, 2015; Shinar, 2015). Numerous explanations for the 
seemingly discrepant findings have been suggested (see Wijayaratna et al., 2019, for a 
review). For example, drivers’ engagement in cognitive tasks in real-life driving may help 
them stay alert (Olson et al., 2009) and keep them from engaging in more safety-detrimental 
activities such as texting (Victor et al., 2015). It has also been suggested that drivers adapt 
their behavior to counteract the negative effects of task engagement (Törnros & Bolling, 
2005), and that the differences in the effects of cognitive tasks between controlled 
experiments and real-life driving are due to differences in the driving tasks (Engström et al., 
2017; Shinar, 2015).  

To resolve the many discrepancies between studies and understand how cognitive tasks affect 
traffic safety, knowledge is needed about how, when, and where drivers engage in cognitive 
tasks (see e.g., Tivesten & Dozza, 2014, 2015), as well as how their engagement affects their 
abilities and behaviors in different situations. This thesis focuses on the latter part. Such 
knowledge is important both in the development of vehicle systems and applications, such as 
human-machine interfaces and driver support systems, and in the creation of laws, 
regulations, and vehicle rating systems.  

One of the ways vehicle manufacturers try to improve traffic safety is by developing driver 
support systems and, ultimately, systems for autonomous driving (AD). Importantly, for these 
systems to have the desired effect they must be not only safe, but also appreciated and used. 
It is expected that having the possibility to safely engage in cognitive tasks, such as work, 
while traveling will be a selling point for cars with AD systems in the future (Chuang et al., 
2018). If more people use such systems, traffic safety can improve as more cars on the road 
drive autonomously—provided that AD is indeed safer than manual and assisted driving 
(although far from proven, several studies do indicate that this assertion is likely to be true; 
Bjorvatn et al., 2021; Elvik et al., 2020; M. M. Morando et al., 2018). The role of cognitive 
tasks in traffic safety could thus change from a safety concern to a safety enhancer by 
motivating the use of AD.  

To understand (and counteract, if needed) the negative effects of cognitive tasks in both 
manual driving and AD, it must first be possible to measure and study such effects. A key 
difficulty is that reliable, validated measures for the continuous assessment of cognitive load 
(a mental response to cognitive task demand, described further in Section 3.1) are lacking. 
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Such measures would allow better generalizability of results, testing in less constricted and 
more realistic environments, and timely safety-system interventions based on driver state 
monitoring. There is a great interest in using physiological measures since they can provide 
continuous recordings of driver states without altering or interrupting the driving task 
(Longo, 2018). These measures can be used either together with other measures (such as self-
reports and performance indices) to improve driver state assessments, or alone to assess 
driver states in situations where other measures are not sensitive or suitable (Lohani et al., 
2019). But once again, results from different studies on the effects of cognitive load on 
physiological measures are inconclusive. Different measures respond to cognitive load 
differently in different studies (Tao et al., 2019). For physiological measures to be useful in a 
wide range of applications, the reason for this inconsistency needs to be understood.  

In summary, car drivers’1 engagement in cognitive tasks could affect drivers’ behaviors and 
decisions in various ways in the different stages of a journey leading up to a potential crash 
(conceptually illustrated in Figure 1 below); in the pre-trip stage when decisions are made 
about how to transport oneself, in the routine (i.e., non-critical) driving stage, and in the 
critical event stage where driver (or vehicle) action is needed to prevent a crash. However, 
studies on the effects of cognitive task engagement on driver behaviors report apparently 
contradictory results, and there is a lack of studies on task engagement during AD in real 
traffic. In addition, measures for continuous and non-intrusive assessments of cognitive load 
are lacking, which limits the research and development of driver state-adapted systems.  

In this thesis work, the role of cognitive tasks in traffic safety is therefore studied in the three 
stages mentioned above, and the possibility of measuring cognitive load using physiological 
measures is explored (see Figure 1).  

 

Figure 1. Illustration of how the papers included in this thesis relate to the stages 
of a journey which lead up to a potential crash (adapted from Eugensson et al., 
2011) and to the measurability requirement spanning all stages. 

 

 

1 For the sake of simplicity, I will refer to the person in the driver seat as the driver, even during AD when the 
person is relieved from the task of driving. 
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2 Aim and objectives 

This thesis aims to advance the understanding of task-induced cognitive load in the context of 
traffic safety, by accomplishing two objectives: A) to better understand how drivers’ 
involvement in cognitive tasks can affect safety-relevant driver behaviors and B) to provide 
methodological guidance on how to assess cognitive load in car drivers using physiological 
measures. For this purpose, the cognitive load construct and the contextual influences on its 
effects will be considered.  

The work in this thesis includes a high level of detail, decomposing observed behavioral and 
physiological responses to cognitive task engagement. Doing so provides a high time 
resolution of effects, an improved understanding of interactions between various effects, and 
a more detailed theoretical understanding of the effects of cognitive tasks on drivers’ 
behaviors and physiological responses.  

The main research questions addressed in this thesis are:  

1. How do cognitive tasks affect drivers’ response times in an unexpected safety-critical 
event? (Paper I; Objective A) 

2. How do cognitive tasks affect drivers’ glance behavior in routine driving? (Paper II; 
Objective A) 

3. To what extent are drivers able to engage in non-driving-related tasks while traveling 
in AD mode in real traffic? (Paper III; Objective A)2 

4. How can cognitive load in car drivers be assessed using physiological measures? 
(Paper IV; Objective B) 

 

2 Drivers’ ability to engage in non-driving-related tasks during AD may influence their willingness to invest in 
and use cars with AD systems. In other words, the ability to engage in non-driving-related tasks may influence 
pre-trip decisions (namely, how to transport oneself), which in turn affect traffic safety (presuming AD will 
indeed increase traffic safety).   
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3 Background 

3.1 Defining cognitive load 

Clear definitions are important for comparisons between studies and for generalizations of 
study results. This chapter therefore reviews cognitive load definitions and typical cognitive 
load implementations in traffic research, as well as explains key terms used in this thesis.  

Despite being rigorously studied in the last few decades, the concept cognitive load lacks 
both an agreed-upon definition and an agreed-upon name. Mental load, mental workload, and 
cognitive load are common terms that are used synonymously (Gwizdka, 2021). Moreover, 
the concept of load has been used both to describe the demands placed on the human and the 
impact on the human caused by these demands (Mehler, Reimer, & Zec, 2012). In this thesis, 
the two terms cognitive demand and cognitive load will be used to describe the demand itself 
and the impact it has on the human, respectively. Thus, a cognitive demand is something that 
results in cognitive load. 

Van Acker et al. (2018) performed a comprehensive concept analysis on cognitive load, 
concluding that the various definitions all agree that cognitive load is the spending of 
cognitive resources of finite capacity to meet cognitive (task) demands. As an example, an 
early (and still-used) definition from O’Donnell and Eggemeier (1986) states that cognitive 
load “refers to that portion of the operator’s limited [resources] actually required to perform a 
particular task” (p. 42-2). However, neither in their definition nor in many others is it clear 
what these (cognitive) resources are (Cohen, 2017). O’Donnell and Eggemeier (1986) simply 
refer to them as processing facilities that enable task performance. Van Acker et al. (2018) 
state that spending them entails task-directed attention and effort through working memory 
functions. Others describe them as neural mechanisms (Engström, Monk, et al., 2013) or 
attentional resources (M. S. Young et al., 2015) that enable cognitive control. 

Cognitive control is a concept closely related to cognitive load. It can be described as the 
human ability to override habitual and automatic behaviors in favor of goal-directed 
behaviors and is often regarded as synonymous with executive function (Cohen, 2017). When 
subjects exert cognitive control, activity increases in the brain’s frontal cortex (Botvinick & 
Cohen, 2014), as well as in other brain areas (Barkley, 2012). Multiple cognitive functions 
are involved in achieving cognitive control; indeed, more than 30 different functions have 
been suggested (Eslinger, 1996)—including attention, working memory, error monitoring, 
inhibitory control, and planning (Helfrich & Knight, 2016). Further, cortical arousal is a 
prerequisite for (Sadaghiani & Kleinschmidt, 2016) and modulator of (Grueschow et al., 
2020) cognitive control. However, cognitive control, like many of its underlying cognitive 
functions, suffers the same problem as cognitive load does; there is no agreed-upon definition 
(Barkley, 2012). There is also a lot that is not known about the neurocognitive processes that 
enable cognitive control and many other cognitive functions (Barkley, 2012).  

The lack of neurocognitive knowledge and precise definitions make the relationships between 
the different functions unclear (Cohen, 2017), just as it is unclear which functions should be 



Background 
 

6 
 

included in the cognitive control and cognitive load constructs. For example, Van Acker et al. 
(2018) consider functions used for stimuli detection and response execution, such as 
perception and motor control, as cognitive load functions, while Engström, Monk, et al. 
(2013) do not.  

Further, Van Acker et al. (2018) argues that emotional load (i.e., emotional responses to task 
demand) should be differentiated from cognitive load. As they point out, it is implied that 
cognitive load gives rise to a subjective experience, since self-ratings are frequently 
employed in cognitive load assessments (e.g., NASA Task Load Index; Hart & Staveland, 
1988); however, the relations between the subjective experience, emotional response, and 
cognitive load are very ambiguous. They argue that because emotions are not necessary to 
perform cognitive tasks, they should not be considered parts of the cognitive load construct. 
Typically, cognitive load definitions do not specifically mention emotions. However, 
emotions have a significant impact on human behaviors, cognitive processes, and task 
performance (Barkley, 2012; Tyng et al., 2017). For example, stimuli with an emotional 
component capture attention and trigger faster responses than neutral stimuli, emotional 
events augment memory, and decisions are affected by previous emotional responses (Dolan, 
2002). Kluwe-Schiavon et al. (2017) even suggest in their dynamic executive function 
hypothesis that the role of executive function (which they, unlike many others, do not 
consider to be synonymous with cognitive control) is to balance the level of activity in the 
brain’s salient network (related to emotions and involving sub-cortical structures) and the 
executive control network (related to cognitive control and involving frontal-cortical 
structures) for optimal performance. In particular, emotional stress is considered a motivator 
for problem-solving, while cognitive control is necessary to solve the problem; appropriate 
activity in both systems is necessary for situation-appropriate behaviors (Kluwe-Schiavon et 
al., 2017).  

Regardless of exactly which functions are included in the cognitive load construct, it is 
clearly a multidimensional construct that can take many forms (Matthews et al., 2015). That 
is, cognitive load can include different cognitive functions (including emotions) at different 
times.3 The type and amount of cognitive load is determined by the specific task demands and 
by the environmental context in which the task is performed, as well as by the characteristics 
of the human performing the task (M. S. Young et al., 2015).  

Humans self-regulate their cognitive load by modifying their strategies and actions to meet 
task goals (e.g., to drive to a certain location, or to perform a cognitive task when being asked 
to do so) as well as personal goals (e.g., to enjoy the drive, or to make the test leaders happy 
by doing really well in the cognitive task) (Hancock & Matthews, 2019; Kircher & Ahlstrom, 
2017). Their behavior, and the level and type of cognitive load, is thus the result off a 
compromise between many different goals, including the goal of not investing more effort 
than is deemed worth the cost (Cohen, 2017). Further, mental states such as emotions, 
sleepiness, and fatigue also have an impact on both task performance and the type and level 

 

3 The ISO standard for the detection-response task (DRT; International Organization for Standardization [ISO], 
2016) (which use the same definition of cognitive load as Engström, Monk, et al., 2013) does, however, argue 
that cognitive resources can be viewed as a single resource because cognitive tasks of different kinds all activate 
mostly the same areas in the brain’s frontal cortex (in particular the lateral prefrontal cortex and the anterior 
cingulate cortex). This “smallest common denominator approach” to defining cognitive load thus excludes any 
mental responses that are not always (or usually) involved in cognitive control. 
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of cognitive load by affecting brain functioning and, consequently, strategies and actions. For 
example, anxiety tends to lead to greater intolerance of uncertainty and can cause 
perseverative information seeking and impaired decision making (Wever et al., 2015), 
positive emotions unrelated to the task increase distractibility (Goschke & Bolte, 2014), task-
induced fatigue leads to sleep-related brain activity that worsens performance (Chong & 
Baldwin, 2021), psychosocial stress impairs working memory performance (Schoofs et al., 
2008), and negative emotional stress delays and reduces task-related brain responses in the 
prefrontal cortex (Gärtner et al., 2015).  

Interestingly, while large parts of the scientific community seem to agree that human 
cognitive performance is restricted by limited resources, some voices question this 
assumption (e.g., Chong & Baldwin, 2021; Kurzban, 2010). Perhaps the most clear-cut 
objection is that limited resources alone cannot explain human performance degradation. For 
example, while prolonged task execution causes fatigue and performance degradation (Kato 
et al., 2009), performance can be restored with reward manipulations (Hopstaken et al., 
2015), which contradicts the assumption that performance degrades solely due to the 
depletion of resources (as suggested by Baumeister et al., 1998). Also, the concept of limited 
resources alone cannot explain observed performance degradations in non-challenging tasks, 
where plenty of resources should be available. It has been suggested that underload causes 
performance degradations because the pool of cognitive resources shrinks during low task 
demand (M. S. Young & Stanton, 2002). However, Dehais et al. (2020) argue that such high-
level theories are hard to operationalize, and that performance degradations seen when 
cognitive demand is either too high or too low instead need to be understood from a 
neuroergonomic perspective: that is, with respect to the neurobiological mechanisms that 
underlie performance. The development of advanced neuroimaging techniques has enabled 
great progress in this field in the last few decades (Dehais et al., 2020). More is thus 
becoming known about how mental states affect brain functions (and, consequently, 
performance) through changes in, for example, levels of neurochemicals, interactions 
between brain networks, and neuronal firing rates (Chong & Baldwin, 2021; Dehais et al., 
2020; Grueschow et al., 2020; Shine et al., 2016).  

Highly relevant when discussing cognitive load is humans’ poor ability to multitask. C. D. 
Wickens' (2002, 2008) multiple resource theory, developed to predict dual task performance, 
is well known to human factors practitioners. It suggests that humans have multiple types of 
cognitive resources, each with a limited capacity, and that we perform better at simultaneous 
tasks which are different from each other, since they draw on different resources, than at 
those which are similar and thus draw from the same resource pool.  

From a neurological perspective, it has been suggested that humans’ limited ability to 
multitask with similar tasks is not due to depletion of a certain category of resources, but that 
the very purpose of cognitive control could be to prevent inappropriate multitasking 
(Botvinick & Cohen, 2014; Meyer & Kieras, 1997) in order  to prevent errors caused by 
cross-talk (i.e., interference) between closely located and simultaneously active neural 
assemblies (Cohen, 2017). The brain prevents cross-talk and enhances focused attention by 
means of inhibitory mechanisms which dampen neural activities that are task- or stimulus-
irrelevant in order to enhance the signal-to-noise ratio for the task-specific neural activity 
(Levy & Anderson, 2002). These mechanisms involve lateral inhibition, in which active 
neurons dampen the activity of their neighboring neurons (Burke et al., 2017), and inhibitory 
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control, in which unprioritized neural activity is inhibited by higher-level cortical areas (i.e., 
through top-down control; Munakata et al., 2011). While neural inhibition can improve task 
performance, excessive inhibition can also explain some negative effects observed during 
high levels of task demand and stress (Dehais et al., 2019). For example, inhibition can keep 
the brain from considering new information and cause an individual to persist with an 
erroneous strategy (Dehais et al., 2020). An example is seen in overloaded aircraft pilots who, 
at all costs, attempt to land their craft in bad weather conditions, despite having the 
(obviously better) option of landing at another site with better conditions (Dehais et al., 
2010).  

In summary, cognitive load is usually defined as a spending of cognitive resources. These 
resources are considered to underlie various cognitive functions and to be of limited amount 
or capacity, which limits our cognitive abilities. It is, however, not clear what these resources 
actually are. Moreover, the idea of limited resources fails to explain some of the performance 
degradations seen during both high and low levels of cognitive demand. We therefore still 
lack a fully valid, agreed-upon definition of cognitive load.  

For the purpose of this thesis, it is more important to acknowledge that cognitive load is a 
multidimensional construct than to agree on a precise definition of cognitive load. It is 
multidimensional because it consists of multiple mental responses, shaped not only by the 
cognitive task demand, but also by contextual and individual factors. Acknowledging that 
there are multiple, separate mental responses to cognitive task demands is important—both 
for understanding the mechanisms underlying changes in driver behaviors and for assessing 
cognitive load using physiological measures. 

3.1.1 Operationalization of cognitive load in driving research 

While the discussion above clearly shows that task-induced cognitive load is a 
multidimensional construct, driving studies interested in its effects on driver behaviors or 
physiological responses usually treat it as unidimensional. That is, when some cognitive 
demand is varied, the corresponding cognitive load is simply described as either increasing or 
decreasing. While convenient, this simplification has several shortcomings. To better 
understand what these are, this section provides a brief overview of the types of studies that 
are typically conducted. 

To begin with, drivers’ engagement in non-driving-related tasks (NDRTs) is often studied in 
terms of distracted driving (i.e., drivers directing their attention away from activities critical 
for safe driving and towards a competing activity; Streff & Spradlin, 2000). Driver distraction 
is further typically divided into cognitive, visual, and manual distraction, referring to drivers 
taking their mind off the road, their eyes off the road, and their hands off the steering wheel, 
respectively (Ahlström et al., 2012). Although most naturalistic tasks induce some degree of 
cognitive load/cognitive distraction (Engström et al., 2017), the term cognitive distraction is 
most often used to describe the impact from tasks that do not require drivers to take their eyes 
off the road or their hands off the steering wheel, but that require their cognitive 
engagement—that is, the impact from what is refered to as cognitive tasks in this thesis. I do 
not use the term cognitive distraction in this thesis because it typically implies a degraded 
primary task (i.e., driving) performance (Regan et al., 2011); an assumption I do not wish to 
make.  
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In experimental studies, different cognitive tasks are employed to induce cognitive load and 
are systematically varied. It can be, for example, artificial working-memory loading tasks or 
mental arithmetic tasks, or more lifelike tasks such as cell phone conversations or voice-
controlled navigation. Other factors which may influence cognitive load, such as traffic 
density (Di Flumeri et al., 2018) and road geometry (Bruyas & Dumont, 2013), are either 
kept constant or varied systematically and included in the analysis (Faure et al., 2016). In 
contrast, in naturalistic driving studies, cognitive load cannot be experimentally induced. 
Instead, scenarios which include observable engagement in tasks which are assumed to 
induce cognitive load, such as cell phone conversations or conversations with passengers, are 
compared against similar baseline scenarios without the tasks (Dingus et al., 2019; Hickman 
et al., 2010; Victor et al., 2015). From this large variety of tasks and contexts, many different 
mental responses can be expected, with the common denominator that they all require some 
level of cognitive control. Because cognitive load is operationalized this way, it is (implicitly 
or explicitly) assumed that it is the need for cognitive control that affects the behaviors and 
physiological responses.  

Notably, since cognitive tasks give rise to multiple mental responses, and since the 
definitions of these mental responses are often imprecise, overlapping, and not agreed upon 
(Cohen, 2017; Westbrook & Braver, 2015), the same tasks are sometimes used in different 
studies to explore different constructs. For example, the n-back task is a working memory 
loading task frequently used to study the effects of cognitive load (described further in 
Section 4.2 and employed in, e.g., Heine et al., 2017; Mehler et al., 2009; Medeiros-Ward et 
al., 2014). The n-back task has, however, also been used to study the effects of stress 
(Mathissen et al., 2021; Patel et al., 2018) and mental effort (Brouwer et al., 2014; Luong et 
al., 2019). Effects observed when performing the same cognitive task (effects which should 
consequently be comparable) are thus attributed to different mental responses (different 
constructs) in different studies, and it is not clear which mental response(s) actually gives rise 
to the observed effects.  

A few driving studies have looked not only at the effects of varying levels of cognitive load 
but also at the effects of various types of cognitive load by using different types of cognitive 
tasks (e.g., Y. Wang et al., 2014; Zheng et al., 2005). Recarte and Nunes (2000), for example, 
found that verbal tasks (repeating words) and spatial-imagery tasks (mental rotation of 
imagined letters) had different effects on drivers’ glance behaviors. (Note that there are 
plenty of studies exploring the differences between visually and non-visually demanding 
tasks, but only non-visually demanding tasks are the focus of this thesis.) 

In summary, driving studies investigating the effects of cognitive load on driver behaviors 
and physiological responses either observe, or systematically vary, the level of cognitive 
load, using a variety of tasks requiring cognitive control. Typically, observed effects are 
(implicitly or explicitly) attributed exclusively to the changes in cognitive control. The 
influence of other potential mental responses is thus often overlooked, although it is well-
known that cognitive tasks give rise to multiple mental responses which are shaped not only 
by the task but by the situation as a whole.  
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3.1.2 Nomenclature used in this thesis 

The following section describes relevant terms used in this thesis and their relationships to 
each other (see Figure 2 and Table 1). Others may use the terms in slightly different ways; the 
descriptions provided here are not meant to be universal. The intent is to make it clear to the 
reader what is meant by the terms used. All descriptions build on the key assumption that the 
focus is on human subjects who are engaged in some non-driving-related task while driving. 

To begin with, all tasks occur in a context which affects task performance via mental 
responses and behaviors. The context consists of factors that influence task demand (e.g., task 
difficulty, time pressure, type of perceptual demand), as well as of environmental factors 
(e.g., traffic density, type of vehicle, visibility) and of individual factors (e.g., personality, 
experience, level of arousal). The brain’s mental responses are shaped by these contextual 
factors. The mental responses are both emotional responses and the activation/deactivation of 
cognitive functions and processes, such as attention, cortical arousal, perception, and motor 
control. Perception is the link between the brain and the environment, and motor control is 
the link between the brain and the subject’s behavior. The mental responses that enable or 
facilitate cognitive control are called cognitive load components, and together they constitute 
the cognitive load. Cognitive load is thus an umbrella construct for multiple mental responses 
(or cognitive load components) that together enable or facilitate cognitive control in a 
specific situation. Mental responses that do not enable or facilitate cognitive control in the 
situation at hand are simply referred to as other mental responses. A certain mental response 
can thus be a cognitive load component at one time but not another. Moreover, it is not 
necessarily easy to determine whether a specific mental response is contributing to cognitive 
control and thus should be labelled a cognitive load components. Consider emotional stress, 
for example. Emotional stress may motivate effort investment and thus enhance task 
performance (Kluwe-Schiavon et al., 2017)—in which case it should be considered a 
cognitive load component. But if the stress becomes too high, it has detrimental effects on 
working memory and task performance (Schoofs et al., 2008)—in which case it can no longer 
be considered a cognitive load component, since it inhibits rather than enables cognitive 
control. Therefore, cognitive load components and other mental responses are typically not 
differentiated in this thesis; the overarching term ‘mental responses’ is used instead.  

The mental responses together shape behaviors such as steering wheel movements, task 
responses, and gaze direction, both indirectly through motivation and effort (for example) and 
directly through motor control. These behaviors may affect both the mental responses 
(Leisman et al., 2016) and the context (e.g., a change in time headway, vehicle direction, 
level of fatigue), which in turn gives rise to new mental responses, and so on.  

Of great importance for this thesis is the fact that the context, the mental responses, and the 
behaviors all give rise to physiological responses (e.g., changes in heart rate, pupil diameter, 
and skin conductance). The physiological responses can in turn also affect the mental 
responses and task performance. For example, physiological responses are important 
elements of emotions (Pace-Schott et al., 2019), and physiological arousal improves both 
memory encoding and memory recall (Critchley et al., 2013). The relations between mental 
and physiological responses are reviewed further in Sections 3.5.1 and 3.5.2.  
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Figure 2. Relationships between contextual factors, mental responses, behaviors, 
and physiological responses. Thinner arrows indicate generally smaller effects, of 
less interest in this thesis.  
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Table 1. Compilation of key terms as defined and used in this thesis. 

Term Description 

Mental 
response 

The brain’s response to stimuli or demands. It includes emotional 
responses, thoughts, and activation/deactivation of cognitive functions 
or processes (such as attention, cortical arousal, perception, and motor 
control).  

Cognitive 
control 

The ability to override habitual and automatic behaviors in favor of 
goal-directed behaviors (Cohen, 2017). Cognitive control is achieved 
through multiple cognitive functions (e.g., attention, working memory, 
and inhibitory control).  

Cognitive load 
components 

Mental responses that enable or facilitate cognitive control at a given 
time. This includes cognitive control functions which are needed for the 
task at hand, support functions such as cortical arousal, and emotional 
responses that improve cognitive control. A certain mental response can 
thus be a cognitive load component at one time but not at another. 

Cognitive load A construct used to collectively refer to the cognitive load components: 
the collective mental response that enables or facilitates cognitive 
control. There may also exist mental responses to stimulus or demand 
that do not enable or facilitate cognitive control. These are referred to as 
other mental responses and do not form part of the cognitive load 
construct. 

Cognitive task Non-visual, non-driving-related task which requires cognitive control.*  

Cognitive 
demand 

The demands that a task (in this thesis, primarily cognitive tasks) places 
on cognitive functions for its performance. These demands depend on 
the task’s characteristics (e.g., stimulus discriminability, stimulus 
presentation rate, and task complexity).  

Task demand All the demands a task places on a performer. It can include cognitive 
demand as well as other task demands, such as physical demands. Note 
that the task demands are task-specific, but the effects the task has on 
the performer in terms of mental responses are not; they depend on 
environmental and individual factors as well.  

Driver The person who drives the vehicle—or, during AD, the person in the 
driver’s seat, who is then relieved from the task of driving. 

Driving task The task of controlling or operating the vehicle, including supervising 
vehicle systems and the traffic environment during assisted driving. 
Strategic choices, such as which route to take, are not referred to as 
driving tasks in this thesis. 

*Recall that the term cognitive task is used instead of the acronym NVCLNDRT (Non-Visual, Cognitively 
Loading, Non-Driving-Related Task). That is not to suggest that tasks that are driving-related or visually 
demanding cannot also require cognitive control (indeed, they most often do).  

 
The following sections will review the effects of cognitive tasks on driver behaviors.  
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3.2 Effects of cognitive tasks on response times (critical situations) 

In a safety-critical event, a fast and appropriate driver response is often crucial to avoid a 
crash. However, there is a great concern that cognitive load causes increased response times, 
resulting in an increased risk of crashes in critical situations (Merat & Jamson, 2008; Patten 
et al., 2004; Strayer & Fisher, 2016). The concern stems from the large number of 
experiments that have shown increased response times to different stimuli, such as artificial 
detection tasks (Bruyas & Dumont, 2013; Conti et al., 2012; Engström, Larsson, et al., 2013; 
Mantzke & Keinath, 2015) and braking lead vehicles (Alm & Nilsson, 1995; Engström et al., 
2010; Salvucci & Beltowska, 2008), when drivers were performing cognitive tasks. However, 
naturalistic data has, as previously mentioned, actually shown a decreased risk of rear-end 
collisions during cell phone conversations (e.g., Victor et al., 2015), which looks at first 
glance like a contradictory finding.  

Interestingly, a meta-study by Engström (2010) showed that the experimental design itself 
greatly influences the effect size of cognitive tasks on brake response times in lead vehicle 
braking scenarios: the effect size was found to be dependent on the time headway (THW) to 
the lead vehicle at the moment it started braking—that is, on the scenario criticality. In 
studies where that initial THW was large, cognitive tasks had a large effect on the response 
time, while in studies where the THW was small, cognitive tasks had a much smaller effect 
on the response time. In line with this finding, response times in rear-end crashes and near-
crashes culled from naturalistic data also depend on the scenario criticality (Markkula et al., 
2016).  

A theoretical framework called the cognitive control hypothesis, formulated by Engström et 
al. (2017), seems helpful for reconciling the seemingly inconsistent effects of cognitive tasks 
on response times in different tasks and in scenarios with varying criticality.  

3.2.1 The cognitive control hypothesis 

The cognitive control hypothesis suggests that cognitive load selectively impairs driving 
subtasks that rely on cognitive control but leaves automatic behaviors unaffected (Engstrӧm 
et al., 2017). Automatic behaviors are effortless and don’t require active control or attention 
by the subject, while the opposite is true for cognitively controlled behaviors (Schneider & 
Shiffrin, 1977). Engstrӧm et al. (2017) propose that the Guided Activation Theory (GAT) can 
explain the relationship between controlled and automatic behaviors and how automaticity 
develops. The GAT describes in neurobiological terms how all behaviors lie somewhere on a 
continuum between controlled and automatic; the degree of automaticity is determined by 
neural-pathway strength (Botvinick & Cohen, 2014; Cohen et al., 1990; E. K. Miller & 
Cohen, 2001). Successful employment of neural pathways increases their strength, leading to 
a higher degree of automaticity (Cohen et al., 1990). Consequently, tasks with a consistent 
stimulus-response mapping (i.e., tasks in which a certain stimulus always leads to the same 
response) can become more automatized through extensive practice. 

To successfully deal with novel tasks and tasks in which a certain stimulus can require 
different responses, humans are capable of flexible and non-routine behaviors in which 
stronger pathways (i.e., more automatic responses) are overridden in order to activate weaker 
pathways that are more relevant. This capability is achieved through the employment of 
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cognitive control (Botvinick & Cohen, 2014; E. K. Miller & Cohen, 2001). If a behavior with 
weaker pathway strength is not activated through cognitive control, a behavior with stronger 
pathways will instead activate, resulting in routine, or automatic, behavior. 

In the driving context, this means that when drivers encounter new or complex situations, 
such as when driving through a busy, non-signalized intersection, they need to apply 
cognitive control in order to adapt their behavior to fit the current situation. How much 
cognitive control is needed depends both on the situation’s complexity and the driver’s 
experience in similar situations. However, applying cognitive control requires effort, and 
drivers will only do so to the extent they believe it is worth the cost. That is, their behavior is 
typically satisficing, rather than optimizing (Kircher & Ahlstrom, 2017; Summala, 2007). 
Also, because humans’ ability to multitask is limited (as discussed earlier), when drivers 
engage in cognitive tasks (which require cognitive control) they are less capable of applying 
cognitive control to driving, so the driving comes to depend more on automatized behaviors 
(Engström, Victor, et al., 2013; Engstrӧm et al., 2017). 

The previously mentioned response-time studies can be viewed from the cognitive control 
hypothesis perspective by considering whether the stimulus to which the driver is to respond 
elicits automatized responses. Tasks that are novel to the participants are not expected to 
elicit automatic responses due to insufficient stimulus-response mapping, and the hypothesis 
thus predicts increased response times for cognitive tasks in those cases. One such task which 
is frequently used is the ISO standardized detection-response task, DRT (ISO, 2016), which 
requires participants to press a button as fast as possible upon detection of a visual or tactile 
stimulus presented at irregular intervals of 3–5 s. Although the task is practiced before trials, 
it is not practiced to the extent that full automaticity can be expected (ISO, 2016; Shiffrin & 
Schneider, 1977). In line with the hypothesis’ prediction, numerous studies have shown 
increased response times to the DRT stimulus during cognitive task execution compared to a 
baseline (no task) condition (Bruyas & Dumont, 2013; Conti et al., 2012; Engstrӧm, Larsson 
et al., 2013; Mantzke & Keinath, 2015; Merat & Jamson, 2008; Patten et al., 2004). 

In lead vehicle braking studies, it is necessary to take into account what the drivers are 
responding to (what the stimulus is) in order to assess the degree of automaticity. Potential 
stimuli are brake lights and visual looming of the lead vehicle (the optical expansion of the 
lead vehicle on the driver’s retina). A looming object on a collision course with the subject 
unconsciously captures attention (Lin et al., 2008) and elicits automatic avoidance responses 
(Náñez, 1988). The cognitive control hypothesis thus predicts that engagement in cognitive 
tasks would not interfere with brake responses to a looming lead vehicle. Brake lights, on the 
other hand, are not likely to elicit automatic responses, because they are often encountered in 
situations which do not require an immediate brake response and are thus not consistently 
mapped to a brake response. Therefore, the cognitive control hypothesis predicts that 
cognitive tasks will interfere with responses to brake light onset (causing longer response 
times), provided that visible looming is absent. 

Cognitive control can also be employed to improve response times in studies where lead 
vehicle braking is anticipated—either due to instructions, cues in the traffic environment, or 
scenario repetition. Response times in studies with such designs are hence also expected to be 
affected by cognitive tasks. 
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Results from lead vehicle braking studies are in line with these predictions. The vast majority 
of the studies have employed study designs which allow for or require cognitive control (Alm 
& Nilsson, 1995; Engstrӧm et al., 2010; Lee et al., 2001; Salvucci & Beltowska, 2008; 
Strayer et al., 2013). An exception is the work of Muttart et al. (2007), who studied response 
times in a lead vehicle braking scenario where brake lights were de-activated and the slowing 
of the lead vehicle could either be predicted by downstream traffic events or occurred for no 
apparent reason. In line with the cognitive control hypothesis, the authors found no effect of 
cognitive task execution on the response distance in the un-cued (looming only) condition, 
whereas in the cued condition the cognitive task significantly delayed the response. Similarly, 
Baumann et al. (2008) found that cognitive task execution delayed driver responses when 
there was a looming obstacle after a curve that had been cued by a warning sign, but not 
when the sign was absent and the response was solely triggered by the looming obstacle. 

In sum, the seemingly inconsistent effects of cognitive tasks on response times appears to be 
well explained by the cognitive control hypothesis (Engstrӧm et al., 2017). That is, response 
times are increased in tasks and events in which cognitive control is employed when the 
response is generated, such as those that require anticipation or less practiced behaviors. On 
the other hand, responses which are automatically triggered (e.g., by visual looming) are not 
prolonged. However, because very few studies have employed such study designs, further 
research is needed to confirm these findings. Therefore, the effects of cognitive tasks on 
response times in an unexpected event with visual looming were studied in Paper I.  

3.3 Effects of cognitive tasks on glance behaviors (routine driving) 

Car driving under normal conditions requires continuous adaptation to the traffic 
environment based on visual information. To ensure appropriate behavior and safe driving, it 
is thus necessary that drivers maintain a glance behavior appropriate for the current traffic 
situation, where areas most likely to have important information are appropriately scanned.  

The most common gaze direction for car drivers is towards the future path (Ahlström et al., 
2012; Harbluk et al., 2007; Victor et al., 2005; Y. Wang et al., 2014). Looking at the future 
path is important for lane keeping and path planning (Land, 2006), as well as for noticing 
objects on an immediate collision course (Lehtonen et al., 2012). When drivers perform 
cognitive tasks, they increase the time spent looking towards the future path (Harbluk et al., 
2007; Reimer et al., 2013; Y. Wang et al., 2014) and exhibit a reduced variability in gaze 
direction (Recarte & Nunes, 2000, 2003; Reimer et al., 2012; Reimer, 2009; Victor et al., 
2005; Y. Wang et al., 2014). This altered glance behavior is referred to as the gaze 
concentration effect. It has been suggested that gaze concentration is a compensatory visual 
attention strategy that drivers use to cope with the increased cognitive load by prioritizing the 
most safety-relevant area: the road ahead (Recarte & Nunes, 2000, 2003). Others have, 
however, argued that gaze concentration arises because drivers’ cognitive resources are 
depleted, making the drivers less capable of situationally adapted gaze control such as 
scanning for potential hazards (Biondi et al., 2015). 

Most studies of drivers’ visual behavior are done on highways or main roads where the visual 
behavior is studied over extended periods of time (Recarte & Nunes, 2000, 2003; Reimer et 
al., 2012; Reimer, 2009; Victor et al., 2005; Y. Wang et al., 2014). These settings do not 
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require many off-path glances (i.e., glances to locations other than the future path); increased 
time spent glancing towards the future path could therefore be beneficial for safety. Indeed, 
the gaze concentration effect has been suggested as an explanation for the finding that drivers 
conversing on cell phones have a decreased risk of rear-end collisions (Dingus et al., 2019; 
Victor et al., 2015).  

In contrast, a different visual scanning behavior is needed in more complex traffic 
environments, such as intersections and cities, where there is more safety-relevant 
information in off-path locations. Glances to specific off-path locations are then more 
important for threat detection and situation awareness. However, even studies in such 
environments have found increased gaze concentration during cognitive task engagement, 
with fewer glances towards situationally relevant places other than the future path. For 
example, when drivers are engaged in cognitive tasks, they are less likely to look in rear-view 
mirrors before lane changes (Muttart et al., 2007) and to glance towards traffic lights 
(Harbluk et al., 2007) and the right and left at intersections and crosswalks (Biondi et al., 
2015; Strayer et al., 2015). This deteriorated scanning of safety-relevant areas in complex 
traffic environments is likely to be detrimental to traffic safety (Harbluk et al., 2007).  

In summary, car drivers’ engagement in cognitive tasks induces gaze concentration: the 
drivers look more towards the road ahead and have fewer glances towards off-path locations. 
The effect seems to be independent of the traffic environment and the amount of relevant 
information in off-path locations. But because most studies to date have only analyzed these 
effects in aggregated data (i.e., over larger driving segments), there is a lack of knowledge 
about the gaze concentration effect’s relation to environmental and cognitive demands. Paper 
II addresses this knowledge gap by exploring drivers’ gaze behavior in relation to variations 
in cognitive demand and situationally relevant objects in off-path locations.  

3.4 Cognitive task engagement in assisted and autonomous driving  

Driver assistance systems are being developed to improve traffic safety by reducing the 
number of accidents caused by driver errors (Cabrall et al., 2019). An increasing number of 
vehicles on the market are equipped with systems that can warn the driver of safety-relevant 
events, such as forward collision warning systems and blind spot warning systems (Highway 
Loss Data Institute [HLDI], 2020). Some systems can also act if the driver fails to take 
action—for example, automatic emergency braking (HLDI, 2020). Many vehicles also have 
systems for assisted driving which can alleviate the driving task demand by providing 
longitudinal and/or lateral regulation support (Cabrall et al., 2019). Importantly, these 
systems cannot handle all traffic situations and continuous regulation is neither guaranteed 
nor intended. The driver therefore always remains responsible for overall vehicle control 
when using these systems and must intervene if the systems’ actions do not suit the traffic 
situation (Cabrall et al., 2019).  

At the same time, systems for AD are also being developed (M. Wood et al., 2019). The main 
difference from a user perspective is that when AD is engaged, the driver is no longer 
responsible for overall vehicle control and does not need to supervise the driving (United 
Nations Economic Commission for Europe [UNECE], 2020). Descriptions of AD systems 
typically refer to the set of conditions in which they can operate (the Operational Design 



Background 
 

17 
 

Domain; ODD) and whether a human in the vehicle might be requested to take over manual 
driving control at some point. Several nomenclatures for describing different types of AD 
systems and their capabilities exist. For example, SAE International has in their SAE J3016 
automation taxonomy (SAE International, 2021) classified six levels of automation from 
Level 0 (manual driving) to Level 5 (full automation). For the purposes of this thesis, such a 
detailed nomenclature is not necessary. Here, it is sufficient to have one key distinction: 
systems for AD do not require a driver to supervise the driving while the system is activated, 
while systems for assisted driving do.  

It follows that the way drivers engage in NDRTs, as well as the effects of their task 
engagement on traffic safety, are likely to differ between manual driving, assisted driving, 
and AD. It has been shown in naturalistic studies that drivers who are experienced with 
assisted driving systems increase the amount of time they engage in NDRTs when the system 
is activated compared to during manual driving (Dunn et al., 2019; Malta et al., 2012). This 
propensity may make them less prepared to take over control if the assistance stops regulating 
(Dunn et al., 2019), as indicated by increased response times to unexpected critical events in 
simulator studies (de Winter et al., 2014). Interestingly in naturalistic data, it has been 
observed that when using systems for assisted driving, drivers direct their gaze towards the 
future path before the system starts braking, indicating that they anticipated the critical 
situations (Tivesten et al., 2015). Monotonous tasks, such as supervising automation, may 
also lead to drowsiness (Matthews et al., 2019), which in turn can degrade driver 
performance and traffic safety (Dingus et al., 2016). In such cases, cognitive tasks, such as 
cell phone conversations, may mitigate driver drowsiness and actually improve traffic safety 
(Wijayaratna et al., 2019). 

When using AD systems, drivers’ engagement in NDRTs should not pose any problem since 
the drivers are not required to supervise. Instead, the AD system shall perform the driving 
task and manage all situations (including system failures) without exposing the vehicle 
occupants or other road users to any unreasonable risks (UNECE, 2020, paragraph 5.1.1). 
The assumption is thus that the system provides more safety than a human driver would (M. 
Wood et al., 2019). However, drivers’ activities and mental states could impact their ability to 
take over control when the vehicle exits its ODD (Weaver & DeLucia, 2020; Sato et al., 
2020). When drivers no longer supervise or participate in the driving, their situation 
awareness could deteriorate and make them unprepared to take over control in the case of a 
take-over request (TOR; de Winter et al., 2014). Engagement in NDRTs could potentially 
further impair their situation awareness as attention is focused on the NDRT (Marti et al., 
2022). In addition, when a TOR is issued while the driver is engaged in an NDRT, task-
switching in terms of re-directing attention from the NDRT to the driving task is necessary—
which may also lead to more errors and slower responses (Monsell, 2003). Indeed, studies 
have found deteriorated take-over performance during engagement in NDRTs, especially 
when the NDRTs impose a visual or motoric demand (see Weaver & DeLucia, 2020, for a 
review). Moreover, as with assisted driving (but potentially even more critically), driver 
drowsiness might increase when the driver is relieved from driving (Jarosch et al., 2019; Sato 
et al., 2020) and may also impair take-over performance (Vogelpohl et al., 2019). In that 
case, engagement in NDRTs could help keep the driver alert, limiting the impairment in take-
over performance (D. Miller et al., 2015; Schömig et al., 2015).  



Background 
 

18 
 

Since drivers’ mental state may impact their ability to take over control after AD, it is crucial 
for traffic safety that vehicles hand over control to the driver in a safe manner, with respect to 
the driver’s mental state. Also, should the driver become unavailable when the vehicle is 
approaching the end of its ODD (e.g., because the driver is sleeping), the vehicle must be able 
to handle this and make a safe stop (UNECE, 2020). Therefore, monitoring of drivers’ mental 
state during AD is of utmost importance. This capability, together with the overall expected 
improvement of safety with AD (Elvik et al., 2020; M. Wood et al., 2019), suggests that 
society indeed would benefit from a shift from manual driving to AD. Provided that this is 
the case, the utilization rate of the systems becomes decisive for their effect on traffic safety; 
naturally, a system that is not used provides no safety benefit. Here, NDRTs could play an 
important role since having the possibility to safely engage in NDRTs while traveling could 
be a key reason for using AD systems.  

Because AD permit drivers to engage in tasks that are otherwise not allowed or possible to 
perform while driving, it is assumed that AD systems will allow drivers to be more 
productive (Chuang et al., 2018). That is, AD is expected to free up time for working or 
engaging in other NDRTs during time spent in, for example, traffic jams and on motorways. 
Supporting this expectation, surveys have found that drivers feel positively about engaging in 
NDRTs while using AD systems (Hecht et al., 2020; Pfleging et al., 2016), and that most are 
looking forward to the arrival of such systems (Winkeler et al., 2019). In contrast, other 
surveys have found that many drivers fear, or are hesitant to use, AD (Americal Automobile 
Association [AAA], 2019; König & Neumayr, 2017; Tennant et al., 2019). In fact, it has been 
argued that psychological issues, rather than technical ones, are likely to constitute the 
greatest obstacles to the wide-spread use of AD in the future (Shariff et al., 2017).  

Studies in simulators and on test tracks show that drivers do indeed engage in NDRTs during 
AD (Broström et al., 2019; de Winter et al., 2014; Wandtner et al., 2018). However, there is a 
lack of empirical studies that investigate to what extent people are able to engage, and 
maintain engagement, in NDRTs while using AD systems in real traffic; letting go of the 
driving task in an environment where there is no physical risk is not the same as doing so in 
real traffic. Behaviors observed in simulators and on test tracks may thus not generalize to 
real life situations (de Winter et al., 2012). Also, peoples’ expectations about systems with 
which they have no practical experience may not accurately predict future real-life usage 
(Lindgren et al., 2021). Thus, results from surveys of expected AD usage should be 
interpreted with some caution. Therefore, studies are needed to find out if drivers can engage 
in NDRTs during AD even in real traffic, or if they need some additional support to do so—
so that systems and vehicles can be designed so that they will be appreciated and used once 
on the market.  

3.5 Measures of cognitive load 

A key challenge for research on the effects of cognitive tasks is the lack of reliable and 
validated measures for continuous assessments of cognitive load. Such measures are 
important for several reasons (which will be discussed further in Section 6.6), such as for 
supporting generalizations about study results and comparisons between studies, for 
exploring the effects of cognitive tasks in less constricted and more realistic environments, 
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and for enabling timely safety system interventions based on driver state monitoring. This 
section gives a brief overview of the available methods for measuring cognitive load, and the 
following section focuses more deeply on physiological measures.   

Measures of cognitive load are typically divided into three categories: self-report measures, 
performance measures, and physiological measures (O’Donnell & Eggemeier, 1986). In self-
report measures, participants report their perceived load on one (e.g., Rating Scale Mental 
Effort [RMSE]; Zijlstra, 1993) or multiple (e.g., NASA task load index; Hart & Staveland, 
1988) scales. Self-reports are typically easy to administer and analyze and are popular among 
many researchers because they reflect the participants’ experienced cognitive load (Longo, 
2018). The human consciousness is, however, limited and variations in cognitive load may 
not always be perceived (Annett, 2002). Self-ratings also suffer from peak-end effects, 
meaning that participants’ ratings are biased toward the most intense (peak) experience and 
the end of the experience (Hsu et al., 2018). This limitation can be problematic, since ratings 
are often assumed to reflect the average experience over a certain period of time—typically a 
few minutes (Hertzum, 2021).  

Interviews, although not quantitative measurements, are related to self-ratings since they are 
also based on users’ experiences and self-assessments. Interviews as qualitative tools for 
cognitive load assessments deserve mention, since they can be used to explore and 
understand research subjects’ opinions, behaviors, and experiences (Rowley, 2012). They are 
especially useful in novel fields of research when researchers do not quite know what to 
expect, or when they aim to get a deeper understanding of a certain phenomenon (Jamshed, 
2014). Interviews are frequently used in driver studies to explore user experiences 
concerning, for example, human-machine interface design (Rukonic et al., 2021) or trust in 
AD (Wintersberger et al., 2021). Although studies on the effects of cognitive task 
engagement during driving use interviews extremely rarely to assess or understand cognitive 
load (see Wiberg et al., 2015, for an exception), interviews—if used together with 
quantitative measures—can offer a more detailed understanding of the still-underexplored 
multidimensionality of cognitive load (Schoonenboom & Johnson, 2017). However, it is very 
time-consuming to prepare, conduct, and analyze interviews, and the risk of bias is large (Qu 
& Dumay, 2011).  

Performance measures of cognitive load are based on the assumption that performance 
degrades when cognitive resources are depleted (ISO, 2016). Performance is measured either 
in the primary or the secondary (or tertiary) task of a dual (or triple) task design (M. S. Young 
et al., 2015). Primary-task measures in driving studies are directly related to vehicle handling, 
such as steering wheel reversal rate (SWRR), standard deviation of lateral position (SDLP), 
and standard deviation of velocity. Advantages of these measures are that they can be 
collected in real time during natural driving without interrupting or otherwise altering the task 
of driving (Solovey et al., 2014). Disadvantages include that they are also affected by factors 
such as road geometry and traffic environment (Kountouriotis & Merat, 2016), and that the 
possibility of using them is limited or absent in assisted driving and AD. In addition to being 
used for cognitive load classification (Kountouriotis et al., 2016; Loeches De La Fuente et al., 
2019; Rahman et al., 2020), primary task performance measures taken during drivers’ 
cognitive task engagement are often used to research the cognitive tasks’ effects on driver 
behaviors and traffic safety (Abd Rahman et al., 2020; Collet et al., 2010; Desmet & 
Diependaele, 2019). 
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Primary-task performance measures can also be derived from less naturalistic driving, such as 
in studies where lane keeping is observed after participants are instructed to do their best to 
stay in the middle of the lane (Chan & Singhal, 2015; Salvucci & Beltowska, 2008), thus 
making lane keeping a performance-optimizing task, rather than a performance-satisficing 
task, as it normally is (Summala, 2007). One ISO-standardized primary-task performance 
measure for assessment of cognitive demand is the lane change test (LCT; ISO, 2010). In the 
LCT, the demand of a secondary task is assessed by measuring drivers’ performance in a 
simulated driving task requiring lane changes following unpredictable signs. This type of 
unnatural primary-task performance measure may be useful when comparing levels of 
cognitive load from different cognitive tasks (Bruyas et al., 2008; K. L. Young et al., 2011); 
however, because of restrictions imposed by the driving task, their usefulness is otherwise 
quite limited. Also, since the driving task has been altered, primary task performance 
measures from these type of studies should not be assumed to reflect performance in real-life 
driving (Engström et al, 2017).  

Secondary- (or tertiary-) task performance measures instead assess performance in the 
secondary (or tertiary) task, assuming that the performance in that task depends on the 
participant’s spare cognitive capacity (the cognitive resources not occupied by the other 
task(s)) (de Waard, 1996; M. S. Young et al., 2015). A popular task used for cognitive load 
assessment is the DRT, described in Section 3.2.1. The DRT is used to measure cognitive 
load by assessing the effects of cognitive demand on driver attention (ISO, 2016). It has been 
extensively tested and found sensitive to variations in cognitive demand in various settings 
(Bruyas & Dumont, 2013; Merat et al., 2015; Merat & Jamson, 2008). However, its 
usefulness is limited, because it makes the driving situation as a whole less realistic and alters 
the driver’s mental state by increasing the overall cognitive load (Biondi et al., 2021). 

A problem with performance measures (or at least measures of satisficing behaviors) is that 
performance can be kept relatively constant during small or moderate increases in cognitive 
demand by increased effort (Hertzum, 2021), making such measures insensitive to smaller 
variations in cognitive load (Chen et al., 2016; de Waard, 1996; Mehler et al., 2009).   

The third type of measurement, physiological measures, reflects bodily responses to cognitive 
demand. Many of the ways the body prepares to deal with, and then actually deals with, 
challenges are observable through physiological changes. Advantages of physiological 
measures are that many of them can be taken continuously, they do not alter or interrupt the 
driving task, and they are arguably not sensitive to bias since they mostly occur 
unconsciously. In addition, unlike primary task performance measures which are dependent 
on the act of driving, they can still be recorded during AD (Collet & Musicant, 2019). 
However, they are influenced by many different factors, such as emotions (Balters & Steinert, 
2015), fatigue (Hu & Lodewijks, 2020), environmental conditions (Dawson et al., 2016), 
nicotine usage (Quintana & Heathers, 2014), and food digestion (Sauder et al., 2012). Also, 
not all measures can (to date) be recorded non-intrusively (i.e., without measurement 
equipment mounted on the body), and the precision of non-invasive recording techniques is 
still not as good as the more intrusive techniques (Arakawa, 2021; Cori et al., 2019; Wusk & 
Gabler, 2018). Physiological measures are the measurement category in focus in this thesis, 
and they will be reviewed further in the section below.  
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In assessments of cognitive load, it is of great importance to remember that cognitive load is 
a multidimensional construct, even though it often is assessed as if it is unidimensional (as 
discussed in Section 3.1.1 and Paper IV). In fact, analyses show that different measures 
affected by cognitive load do not necessarily correlate with each other (Matthews et al., 
2015), whether they are from the same measurement category or not (Hancock & Matthews, 
2019). The different measures thus appear to reflect different mental responses to cognitive 
demand. Consequently, it is possible to get a more detailed assessment of the 
multidimensional cognitive load using multiple measures, preferably from different 
measurement categories (de Waard, 1996; Hancock & Matthews, 2019).  

3.5.1 Physiological responses to cognitive demand 

This section provides an overview of physiological measures that can be used for cognitive 
load assessments as well as an understanding of why the different measures correlate with 
changes in cognitive demand. Such an understanding is important in order to recognize the 
usefulness of physiological measures for multidimensional cognitive load assessments (i.e., 
assessments of multiple mental responses to cognitive demand). Also, understanding the 
mechanisms underlying physiological responses makes it possible to use the measures to 
learn more about how cognitive tasks affect drivers’ mental responses and behaviors. (For 
further reading, see Paper IV.) In the next section (3.5.2), some of the greatest challenges 
with physiological recordings and analyses (namely issues with signal artifacts and multiple 
relationships between physiological measures and mental states) are briefly presented.   

To begin with, increased cognitive demand causes increased activity in the pre-frontal cortex 
and other areas of the brain that enable cognitive control and other task-specific functions 
(such as perception and motor control) (Duncan & Owen, 2000; Tomasi et al., 2007). These 
changes in brain activity can be observed with various methods, all with their pros and cons. 
Functional magnetic resonance imaging (fMRI) is a useful measurement technique for 
studying where in the brain changes in activity occur, thanks to its high spatial resolution and 
full-brain coverage (Scarapicchia et al., 2017). Participants are placed in a large scanner 
where changes in blood oxygenation in response to changes in neural activity are measured 
during task execution (Scarapicchia et al., 2017). fMRI studies are, however, very restricted 
because the participants must be completely still, most often lying down, during 
measurements. 

Functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) are 
methods for studying changes in brain activity in less restricted environments, such as in 
more realistic driving simulators and real cars (Baker et al., 2017). Similar to fMRI, fNIRS 
measures blood oxygen levels—but with a wearable device that allows more movement 
(Scarapicchia et al., 2017). The spatial resolution is lower than fMRI, and unlike fMRI, 
fNIRS can only measure activity in the brain’s outer layer (the cortex). Also, although fNIRS 
allows for some motion, it is still prone to artifacts during motion, and the neural signals are 
contaminated with superficial scalp signals (Scarapicchia et al., 2017).  

EEG is measured with electrodes on the scalp that record the electrical activity in the brain’s 
outer cortex which derives from neuronal communication. EEG recordings have very high 
temporal resolution (at the ms level; Burle et al., 2015), but low spatial resolution in 
comparison to fMRI (although it can be improved with signal processing methods that 
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incorporate activity from multiple electrodes; Burle et al., 2015). Because the electrical 
signals from the brain are very weak (mostly below 50 microvolt; Daly et al., 2012), EEG 
recordings are very sensitive to artifacts, both from the environment and the body itself (e.g., 
eye and muscle activity; Tatum, 2014). Studies using EEG most commonly perform spectral 
analyses or look at oscillatory responses to discrete events by computing event-related 
potentials (ERPs). In spectral analyses, the signals’ oscillatory waveforms are split into a 
number of frequency bands (typically delta: 1-4 Hz, theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-
22 Hz, gamma: 22-80 Hz) and the power in the different bands is studied (Choi & Kim, 
2018). Although it is still not fully understood why the brain exhibits activity in these 
frequency bands, more is known about how different mental states affect the activity in the 
different bands (particularly in laboratory environments). During increased cognitive 
demand, theta power generally increases over the frontal cortex (Ismail & Karwowski, 2020), 
which is suggested to reflect a need for cognitive control (Cavanagh & Frank, 2014; 
Cavanagh & Shackman, 2015). Further, alpha power generally increases in task-irrelevant 
sensory areas and decreases in task-relevant sensory areas (Sadaghiani & Kleinschmidt, 
2016). Alpha activity was previously thought to represent an “idling” of the brain 
(Pfurtscheller et al., 1996), but theories today suggest it is an active functional mechanism 
that supports information processing and cognition. For example, Sadaghiani and 
Kleinschmidt (2016) hypothesize that alpha oscillations support purging of accumulated 
neural noise and task-irrelevant information in the brain at ~10 Hz in order to prepare the 
brain for incoming (e.g., sensory) signals. This hypothesis provides an explanation for some 
of the observed effects of different mental states on alpha power, both on a local and a global 
scale. Namely, global alpha power increases during sustained alertness because the brain 
needs to remain susceptible to sensory input. Local alpha power, on the other hand, decreases 
in task-specific areas during task engagement to improve selective attention and information 
processing by permitting prolonged accumulation of activity in these areas.  

ERPs, in turn, can provide insight into cognitive operations related to sensory stimulus and 
behaviors (Woodman, 2010). Because single responses are small and easily masked in 
simultaneous, non-stimulus-related, brain activity, ERPs are typically derived by averaging 
many EEG signal segments centered around a repeated stimulus, such as an auditory tone or 
blinking light (Choi & Kim, 2018). Many times these stimuli are artificial elements that make 
the experiments quite unnatural and risk altering the driver’s mental state and/or interfering 
with the driving task (Ahlström et al., 2020). One ERP measure that does not require an 
artificial stimulus and thus allows for a more ecologically valid study designs is the eye 
fixation-related potential (EFRP). As the name implies, the EFRP is time-locked to eye 
fixation onsets, occurring when a gaze shift ends and the inflow of new visual information 
starts (Takeda et al., 2012). Typically measured over occipital areas, The EFRP is thought to 
reflect the depth of visual information processing (Itoh et al., 2006).  

As mentioned in Section 3.1, one of the fundamental mental responses to cognitive demand is 
cortical arousal, which is necessary for cognitive control (Sadaghiani & Kleinschmidt, 2016). 
One measure that is sensitive to variations in cortical arousal is pupil diameter (Eckstein et 
al., 2017), due to the fact that the locus coeruleus, one of the brain areas that controls pupil 
diameter, also controls the distribution of the arousal-promoting hormone norepinephrine in 
the brain (Joshi & Gold, 2020). Numerous studies have demonstrated increased pupil 
diameters during increased cognitive demand (see van der Wel & van Steenbergen, 2018, for 
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a review). Although most driving studies on pupil diameter are simulator studies (e.g., 
Hammel et al., 2002; Niezgoda et al., 2015), some have also been conducted with real driving 
(Recarte & Nunes, 2000; Nunes & Recarte, 2002). Car drivers’ pupil diameters can be 
measured using camera-based eye trackers (mounted either on the head or inside the vehicle). 
However, it is difficult to achieve reliable, useful measurements in real-world driving due to, 
for example, tracking problems during glances to peripheral locations (Khan & Lee, 2019) 
and the large impact on pupil diameter of luminance changes (Watson & Yellott, 2012).  

Another fundamental mental response to cognitive demand is attention (Van Acker et al., 
2018). The pupil diameter is also sensitive to changes in the level of attention, probably due 
to the close relation between attention and cortical arousal (Petersen & Posner, 2012), and 
also because the pupil has a close correlation to activity in the basal forebrain-acetylcholine 
system, which is associated with attention and other cognitive functions (Joshi & Gold, 
2020).  

In driving, not only is the level of attention important, but also where the attention is directed. 
Eyeblinks can be used to differentiate between visual and non-visual attention (Recarte et al., 
2008). During increased visual attention, the eyeblink rate decreases (Cardona et al., 2011;  
Faure et al., 2016), which is assumed to occur in order to reduce the risk of missing visual 
information since the eyes are closed less (Recarte et al., 2008). In contrast, during increased 
non-visual attention (such as increased cognitive demand), eyeblink rate typically increases 
(Niezgoda et al., 2015; Magliacano et al., 2020), possibly to provide the brain with brief 
pauses from external stimuli to enhance internal processing (Nakano et al., 2013). Eyeblinks 
can be measured using either camera-based eye trackers or electrooculography (EOG), a 
technique that assesses eye movements and eyeblinks based on differences in electrical 
potentials in the eyes, recorded with pairs of electrodes mounted around the eyes (Schmidt et 
al., 2018).  

In addition, more peripheral physiological functions, such as cardiovascular activity, 
breathing, and perspiration, are also affected by cognitive demand—although results from 
different studies are sometimes contradictory (for a review, see Tao et al., 2019). These 
functions serve to maintain the body's homeostasis and facilitate cognitive functions and 
behavioral responses to deal with the challenges, physical as well as mental, facing the 
human (Benarroch, 2011). The functions are in large part regulated by the autonomic nervous 
system, consisting of sympathetic and parasympathetic branches. In general, sympathetic 
activity facilitates emergency reactions (“fight or flight”) by, for example, increasing the 
heart rate, directing more blood to the brain and skeletal muscles, increasing the breathing 
rate, and increasing perspiration in palms and feet (assumed to improve grasping; Dawson et 
al., 2016) (Tortora & Derrickson, 2007). Parasympathetic activity promotes “rest and digest” 
activities by lowering the heart rate, directing more blood to the intestines, and stimulating 
digestion (Tortora & Derrickson, 2007). The regulation of the autonomic nervous system is 
complex: the two branches can be activated separately or simultaneously to either reinforce 
or counteract each other (Billman, 2013), and different parts can be activated separately 
(Benarroch, 2011)—which means that there is great flexibility for dealing with challenges 
(Shaffer & Ginsberg, 2017).  

The physiological responses during cognitive demand can thus have several causes. It has 
been suggested that the brain’s increased energy and oxygen consumption in the task-



Background 
 

24 
 

activated areas requires an increased heart rate (Fairclough & Mulder, 2012). This could 
explain why most studies on cognitive load report an increase in heart rate during increased 
cognitive demand (Hughes et al., 2019). However, the changes in neuronal activity during 
cognitive tasks compared to a resting state are small, and the increased demands can many 
times be met by redistributing resources within the brain (Shulman et al., 2004). Indeed, there 
are also studies that do not see an increased heart rate during increased cognitive demand 
(e.g., Dussault et al., 2005; Foy & Chapman, 2018). 

In many situations, physiological arousal due to emotional stress has a greater impact on 
peripheral physiological functions than the increased energy and oxygen consumption does 
(Conway et al., 2013). Emotional stress can occur, for example, in situations when one 
experiences loss of control or failure at a task, or when test participants are being evaluated 
by others (Conway et al., 2013). The latter is of particular importance here, as this situation 
can be assumed to frequently occur in demanding experimental studies. Stress increases 
sympathetic nervous system activity, which is reflected in the peripheral physiological 
measures (Dampney, 2019).  

Most peripheral physiological signals can be recorded using a few different measurement 
techniques. Only some of the measures and recording techniques most commonly used in 
experimental studies will be brought up here. Heart activity (heart rate and heart rate 
variability) is most commonly studied using electrocardiography (ECG), recordings of the 
heart’s electrical activity from electrodes mounted on the upper body (Lohani et al., 2019). 
Perspiration is typically assessed via skin conductance, measured with electrodes mounted on 
the fingers, palms, or soles of the feet (Dawson et al., 2016). Breathing rate can be measured 
using respiratory inductance plethysmography (RIP), a technique that records chest 
expansions using an elastic strap around the chest (Grassmann et al., 2016). Work is ongoing 
to develop or refine unobtrusive recording techniques for these measures for use in driving 
research and vehicle applications (for reviews, see Arakawa, 2021; Leonhardt et al., 2018; 
Sidikova et al., 2020; J. Wang et al., 2020). 

3.5.2 Other influencing factors on physiological recordings 

As described above, several physiological measures respond to changes in cognitive demand 
and may thus be considered measures of cognitive load. However, as pointed out by Richter 
and Slade (2017), their use is limited by the fact that they respond not only to cognitive load 
but also to other mental and physical states. That is, the fact that there are multiple 
relationships between physiological measures and mental (and physical) states has to be 
acknowledged when making inferences from physiological measures (Richter & Slade, 
2017).   

One reason for these multiple relationships is that different mental states may rely on the 
same underlying mechanisms. For example, given the theory that frontal theta power reflects 
a need for cognitive control, the fact that increased theta power is found not only during 
cognitive tasks but also during sleepiness can be explained by an increased need for cognitive 
control to compensate for performance degradations due to sleepiness (Clayton et al., 2015). 
Another example is that arousal either increases or decreases in most mental states, including 
attention, stress, fatigue, and most emotions (Lohani et al., 2019; Pace-Schott et al., 2019). 
Measures that are sensitive to arousal may thus respond to changes in any of these mental 
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states (independent of cognitive load). Understanding and interpreting mental states in terms 
of their constituents or underlying mechanisms can thus reduce the number of relationships—
and reduce the risk of misinterpreting responses.  

Another reason for the multiple relationships is that physiological measures reflect many 
different functions, both related and unrelated to cognitive load. Physiological responses 
enable behaviors, mental and bodily functions, and adaption to environment demands. For 
example, breathing enables speaking, the heart rate increase during emotions that typically 
trigger actions (likely to prepare for physical activity; Kreibig, 2010) the pupil diameter 
regulates the amount of light that enters the eye for optimal vision (C. A. Wang & Munoz, 
2015), perspiration helps regulate body temperature (Dawson et al., 2016), and brain activity 
changes with time spent awake to achieve cognitive restoration (Chong & Baldwin, 2021). 
Consequently, physiological responses can be expected during external (environmental), 
internal (bodily or mentally), and behavioral changes.  

It should also be noted that some physiological responses can directly influence each other 
(Bari et al., 2018; Knapen et al., 2016; Quintana & Heathers, 2014), and that the size of 
physiological responses can depend on baseline levels (Knapen et al., 2016; Quintana & 
Heathers, 2014; Vetrugno et al., 2003), in addition to varying greatly between individuals 
(Barzegaran et al., 2017; Dawson et al., 2016; Grassmann et al., 2017; Klimesch, 1999; 
Mehler, Reimer, & Coughlin, 2012). For example, breathing has a direct influence on the 
heart rate, causing it to increase during inhalation and decrease during exhalation (Billman, 
2011), and age has an influence on most physiological responses (Mehler, Reimer, & 
Coughlin, 2012; Umetani et al., 1998; Winn et al., 1994).  

While it is important to understand the causes behind physiological responses in order to 
make reliable inferences about driver mental states, proper artifact handling is also a 
prerequisite for reliable analyses. Some artifacts come from external sources, such as cable 
movements or loose electrodes (Boucsein et al., 2012; Islam et al., 2016), or, in the case of 
camera-based eye-tracking, from lost tracking during some head, eye, or eyelid movements 
(Hollander & Huette, 2022). Other artifacts arise from internal, physiological sources, such as 
spontaneous heart rate arrhythmias (e.g., the heart skips a beat), which can cause inaccurate 
heart rate and heart rate variability values (Mulder, 1992). As another example, eye 
movements and eye blinks cause large artifacts in frontal EEG signals (Tatum, 2014). These 
artifacts have greatest power in low frequencies (the delta and theta frequency range) , but 
increase power also in the alpha and beta frequency range (Hagemann & Naumann, 2001). 
Changes in gaze behavior or eye blinks can thus be misinterpreted as changes in frontal EEG 
activity if the artifacts are not properly handled. 

In summary, several physiological measures are, for various reasons, sensitive to variations in 
cognitive demand. The same measures are, however, also sensitive to many other things, 
including several other mental states as well as other internal and external factors. This 
complexity must be recognized when physiological measures are implemented and 
interpreted.
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4 Methods  

To accomplish the aims of this thesis, several experimental studies were conducted. The 
sections below will present and explain three key aspects of the studies’ designs: the choice 
of test environment, the choice of cognitive task, and the choice of a within- or between-
subjects design.  

The design choices represent an effort to strike a balance between experimental control 
(isolating phenomena and effects of interest so they can be studied) on one hand and 
ecological validity (the extent to which test performance in an experiment generalizes to 
behaviors in real-world settings; Kihlstrom, 2021) on the other. While experimental control is 
important, ecological validity is crucial for ensuring that study findings are relevant to real-
life applications. Any study design represents a compromise between these two. An overview 
of the experimental designs employed in the four papers is presented in Table 2. The way that 
cognitive load is assessed (or not assessed) in each paper is largely related to the choice of 
cognitive task and described in Section 4.2.  

 

Table 2. Overview of research approach 

 Test 
environment 

Type of 
cognitive task 

Within/between- 
subjects design 

Paper I Simulator n-back Between 

Paper II Simulator n-back Within 

Paper III Real road Mental rotation Within 

Paper IV Simulator n-back Within 

 

Paper III differs from the other papers both in test environment and type of cognitive task 
because research question III (addressed in this paper) poses other requirements, as will be 
described further in the following sections.  

4.1 Test environment 

4.1.1 Laboratory  

The highest level of experimental control (and typically also the lowest level of ecological 
validity) is obtained in lab experiments, mostly because a lab offers the opportunity to largely 
isolate the application of independent variables and minimize impact from confounding 
factors. The drawback of this approach is, of course, that the results may not be generalizable 
to more realistic and complex environments where the number of potential confounders is 
larger (Shinar, 2017).  
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4.1.2 Driving simulator 

A driving simulator represents an intermediate step between a highly controlled lab setup and 
driving a real vehicle. The ecological validity can be improved since the subject is 
performing an actual driving task. However, the introduction of a driving task also means that 
the number of influencing factors increases, since the environment becomes more complex. 
Still, the level of experimental control is high, since the traffic scenarios to be studied can be 
designed with high precision and repeatability. Driving simulators thus are a great tool for 
studying driver behaviors or physiological responses in well-defined situations, where the 
goal is to explore or understand specific mechanisms (as in Papers I, II, and IV). Further, 
driving simulator studies make it possible to study behaviors and reactions in situations that 
are nearly impossible to achieve in real driving (such as the crosswind scenario in Paper IV), 
or that involve a safety risk (such as the critical event in Paper I) (Shinar, 2017). For Papers I, 
II, and IV, the choice to collect data in driving simulators was made to achieve a high level of 
experimental control over the traffic scenarios to be studied.  

However, one must acknowledge that driving a simulator is not the same as driving a real 
vehicle; therefore, just as for in-lab experiments, it is not certain that effects seen in 
simulators can be generalized to real life (de Winter et al., 2012). In a review of validation 
studies comparing different measures (primarily behavioral) taken during simulated and real 
road driving, Wynne et al. (2019) concluded that there were large differences in simulator 
validity between studies. The differences depended on the simulators tested (it is noteworthy 
that simulators with higher fidelity, such as a large field of view and a moving base, did not 
always show higher validity than lower-fidelity simulators) as well as on the dependent 
variables used in the validation. Subjective ratings (Diels et al., 2011; Fors et al., 2013; 
Lobjois et al., 2021), response task performance (Lobjois et al., 2021), and eye blink 
frequency (Lobjois et al., 2021) suggest that driving a simulator is more cognitively 
demanding than driving a real car. HR levels have, in turn, been found to be lower in 
simulated compared to real driving (Johnson et al., 2011; Reimer & Mehler, 2011), a result 
though to reflect lower levels of perceived risk in the simulators. Other studies have, 
however, not found a significant difference in HR between simulated and real driving 
(Milleville-Pennel & Charron, 2015; Mueller, 2015).  

As discussed in Section 3.2.1, the cognitive control hypothesis (Engström et al., 2017) 
emphasizes the need for realistic driving tasks when behavioral effects of cognitive load are 
to be studied (as in Papers I and II). Since the hypothesis suggests that the effects of cognitive 
load depend on whether the (driving) behavior in question requires cognitive control, it is 
important that the driving tasks resemble real-life driving and require the same amount of 
control. Therefore, a great deal of effort was put into making the driving tasks in Papers I and 
II as realistic as possible. An advanced moving-base simulator was used for the experiments, 
and the driving environment largely mimicked a real road in Sweden. Importantly, the 
experimental drives were conducted as continuous drives of approximately 40 minutes, 
during which the drivers were not interrupted except when asked to perform cognitive tasks. 
Also, self-ratings and secondary task performance measures were not used to assess cognitive 
load, since they can alter or interrupt the driving task (as described in Section 3.5).  
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4.1.3 Test track 

Having participants drive real vehicles rather than simulators improves the ecological validity 
of a study further. Moreover, experiments conducted on closed test tracks rather than in real 
traffic can still achieve a high level of experimental control. It is, however, expensive and 
difficult to create scenarios that involve other road users or complex traffic environments 
which are both realistic and safe. To guarantee safety, balloon vehicles and pedestrian or 
bicyclist dolls are typically used to represent other road users (e.g., Boda et al., 2018; Victor 
et al., 2018). Unfortunately, the artificiality of these elements may influence driver behaviors 
and responses, limiting the generalizability of the results. 

4.1.4 Real traffic 

Moving from the test track to real traffic increases the ecological validity further, but with a 
considerable loss of experimental control. For example, participants cannot be exposed to 
safety-critical events for safety reasons, and the control over the behavior of other road users 
is extremely limited, making it difficult to study behaviors and responses in specific 
scenarios. Yet, for the research question posed in Paper III to be answered accurately, it was 
necessary that the participants’ perceived risk levels corresponded to those in real life. It was 
therefore decided to conduct the experiment in real traffic. It is important to bear in mind that, 
although the environmental context is fully natural, test participants in studies on real roads 
are still often being explicitly observed, so the situation may not actually be very naturalistic. 
In Paper III, for example, there were test leaders in the vehicle, the participants wore test 
equipment, and they were given a specific task to perform. Thus, participants’ behavior and 
responses even in studies on real roads may still differ from those in everyday driving.  

Full ecological validity can probably only be achieved in observational or naturalistic driving 
studies which collect data unobtrusively with vehicles that are being used in everyday driving 
in real traffic. Since the experimental control in these types of studies is close to zero, very 
large amounts of data must be collected to achieve a sufficient sample of, for example, 
safety-relevant events for statistical analyses (Dingus et al., 2016). Further, specific situations 
will rarely repeat (since they are driven by chance, not design), and knowledge about drivers’ 
mental state in any particular situation is usually lacking. These limitations make naturalistic 
driving data unsuitable for the aims of this thesis. 

4.2 Cognitive tasks 

Understanding how cognitive tasks affect driver behaviors and traffic safety requires utilizing 
different types of tasks for different purposes, just as different test environments need to be 
used. In most cognitive tasks that drivers engage in during everyday driving, such as cell 
phone conversations and controlling the infotainment system using voice control, the 
variation in cognitive load can be large. This variation is partly explained by the large variety 
in task content—and also by the fact that, in most tasks, drivers can adapt their engagement 
and effort, and thereby their cognitive load, to fit the situation as a whole (Lee, 2014). Drivers 
may also adapt how (Tivesten & Dozza, 2014) and when (Tivesten & Dozza, 2015) to engage 
in a specific task, and employ risk-compensating strategies, such as lowering their speed and 
increasing their time headway during task execution (Wijayaratna et al., 2019). To 
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understand the effects that cognitive tasks have on traffic safety it is thus necessary to allow 
for drivers' adaptation to the situation as a whole, and high ecological validity is consequently 
required in both the task and the context. 

In reductionistic studies that investigate specific effects of cognitive task engagement (rather 
than task engagement as a whole), there may be a need to control the level of cognitive load 
more closely, making naturalistic tasks unsuitable. This is also the case in studies that search 
for reliable measures of cognitive load (measures which, once determined, can enable less 
controlled studies). For these reasons, artificial tasks with a high degree of experimental 
control were the choice in all studies in this thesis work.  

In Paper III, task engagement had to continuously generate not only cognitive load, but also 
visual and motoric load, and task performance had to be measured in order to study the 
participants’ ability to disengage from traffic and perform a demanding task while traveling 
in AD mode. Thus, a task on a handheld tablet was created that had participants perform 
mental rotations of complex geometric shapes. That the task was indeed cognitively loading 
was confirmed with self-reports. Although this was not a task that drivers regularly encounter 
in real life, it enabled the research question to be answered. 

For the studies in Papers I, II and IV, requirements on demand continuity and level of 
cognitive load were much higher than in Paper III’s study, since the specific behavioral and 
physiological effects of cognitive load were studied with high temporal resolution. Also, self-
reports and secondary task performance measures could not be used, as they might have 
altered or interrupted the driving task (as discussed above). Thus, to ensure that a continuous 
cognitive load was applied to the drivers and that the level of load could be systematically 
varied, a task frequently used in research studies with a well-established effect on cognitive 
load (Jaeggi et al., 2010) was employed: the n-back task. Employing this task thus made it 
reasonable to presume the existence of cognitive load during task performance without 
having to actually measure it.  

In the n-back task, the participants are presented with a stream of stimuli at a fixed pace and 
asked to determine whether each stimulus matches the one presented n stimuli ago (Mehler et 
al., 2011). The level of difficulty is increased by increasing n. Because the participants are 
asked to answer as fast as they can (in our case by pressing a button when a match was 
detected), the task is performance maximizing, meaning there is less room for variation in 
task engagement and effort compared to more naturalistic tasks. The n-back task thus allows 
for high experimental control, which in turn enables detailed analyses of behavioral 
mechanisms and physiological responses.  

4.3 Within- or between-subjects design 

Another important choice in experimental studies is between a within- or between-subjects 
design. In a within-subjects design, the participants are exposed to all the different 
experimental conditions, such as the different levels of cognitive load (Shinar, 2017). In a 
between-subjects design, different groups of participants are instead exposed to different 
experimental conditions, so that each participant is only exposed to a single condition, such 
as a single level of cognitive load (Shinar, 2017).  
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Within-subject designs require fewer test participants and the statistical power is often larger, 
since individual differences have less impact on the results (Keren, 2014). However, a major 
concern in within-subjects designs is the risk of order effects (Shinar, 2017). In driving 
studies looking at the effects of cognitive tasks, participants may, for example, exhibit a 
learning effect over time both in the cognitive task (Wheatley et al., 2018) and in the driving 
task (Ronen & Yair, 2013; Rosey & Auberlet, 2014), so that the tasks become less 
challenging over time. Other examples of order effects include increased fatigue and/or less 
stress over time (Belyusar et al., 2015). As a result of these effects, the cognitive load may 
thus both decrease and change in composition during the course of the experiment. While 
many order effects can be reduced or removed by practice (Haith & Krakauer, 2018), all 
order effects cannot be fully removed (Keren, 2014). Instead, the order of experimental 
conditions is typically balanced across participants so that the order effects are (hopefully) 
equally spread across conditions (Keren, 2014).  

Another related issue with within-subjects designs is that, based on what has happened 
previously, participants may form hypotheses about what will happen next and adapt their 
behaviors accordingly (Keren, 2014). Consequently, if scenarios are repeated, participants are 
likely to anticipate events. Recall that the cognitive control hypothesis (Engström et al., 2017, 
see Section 3.2.1) suggests that the effect of cognitive load will differ in an unexpected event 
in which some stimulus (e.g., visual looming) automatically triggers a response compared to 
in an event where a response is either initiated or enhanced by cognitive control (such as 
when an event is anticipated due to repetition). In Paper I, the research question required that 
participants responded to an unexpected lead vehicle braking event. Therefore, this event 
could not be repeated and thus a between-subjects design was necessary.  

In Papers III and IV, the effects of task repetition were explicitly tested, making a within-
subjects design the natural choice. A within-subjects design was also employed in Paper II, in 
that case to improve the statistical power. The task and scenario repetitions may have led to 
learning effects with concomitant changes in drivers’ gaze behavior, but this possibility was 
not explored. 
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5 Summary of papers 

Paper I – Effects of Cognitive Load on Response Time in an Unexpected Lead Vehicle 
Braking Scenario and the Detection Response Task (DRT) 

Introduction. Many experimental studies have demonstrated increased response times to 
various stimuli during cognitive activities. This has led to concerns that cognitive activities 
will also increase response times in critical situations in real-life driving. A commonly used 
response time task which consistently shows increased response times during cognitive 
activities is the ISO standardized Detection Response Task (DRT). However, a few studies 
have been performed in which the driver’s responses were triggered solely by visual looming, 
and no effect of cognitive activities on response times was found. 

Aim. The aim of this paper was to see if the same cognitive task had similar effects on 
response times in the DRT as in an unexpected lead vehicle braking scenario with strong 
visual looming.  

Method. The study consisted of two experiments. In Experiment 1, 16 participants drove a 
fixed-base driving simulator on a four-lane highway at approximately 90 km/h. In addition to 
simply driving (baseline), they performed an audio version of the cognitively loading n-back 
task at two levels of difficulty, 1-back and 2-back. The tasks were performed with and 
without concurrent execution of the tactile DRT. 

In Experiment 2, 24 participants drove a moving-base driving simulator on a two-lane rural 
road at approximately 80 km/h. After approximately 40 minutes of driving, the participant’s 
vehicle was overtaken by another car, which suddenly braked in front of the participant. The 
scenario was designed so that visual looming appeared as soon as the overtaking car started 
braking. The participants were either just driving, or involved in the 1-back or 2-back task 
when the overtaking car started braking. 

Results. In Experiment 1, DRT response times increased significantly during cognitive task 
engagement; being on average 0.33 s in the baseline condition, 0.47 s in the 1-back condition, 
and 0.50 s in the 2-back condition, F(2,45)=16.24, p<.0001. In Experiment 2, there was no 
effect of the same cognitive tasks on brake response times; being on average 1.00 s in the 
baseline condition, 0.97 s in the 1-back condition, and 0.98 s in the 2-back condition, 
differences which were not statistically significant. 

Discussion. The same cognitive tasks had different effects on the response times in the DRT 
and in the unexpected lead vehicle braking scenario. This finding can potentially be explained 
by the cognitive control hypothesis (Engstrӧm et al., 2017), which says that cognitive load 
selectively impairs driving subtasks that rely on cognitive control but leaves automatic 
performance unaffected. According to the hypothesis, since the DRT was a relatively novel 
task for the participants, it required cognitive control; hence its performance was negatively 
affected by cognitive tasks. Responses to visual looming are, however, innate and automatic 
and thus, according to the hypothesis, should not be affected by cognitive tasks. The results 
suggest that it is inappropriate to generalize the effects of cognitive tasks seen in cognitively 
controlled response tasks (such as the DRT) to critical events where drivers can respond to 
visual looming. 
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Paper II – On-to-off-path gaze shift cancellations lead to gaze concentration in 
cognitively loaded car drivers: A simulator study exploring gaze patterns in relation to 
cognitive task and the traffic environment 

Introduction. Visual information from the traffic environment is necessary for safe driving. 
Numerous studies have found a gaze concentration effect with more on-road glances during 
cognitive task execution. It is, however, not clear why this effect occurs, or how the timing of 
glances towards relevant information in off-path locations is affected by cognitive tasks.  

Aim. The aim of this paper was to better understand the gaze concentration effect by studying 
the relation between gaze direction, cognitive task engagement, and the traffic environment 
on a high-resolution time scale in two traffic scenarios with potential threats in off-path 
locations.  

Method. Thirty-six participants drove on a rural road in a moving-base driving simulator. 
The two scenarios, a four-way intersection scenario and a hidden exit scenario, were repeated 
four times each during the 40-minute drive. The scenarios were designed to contain potential 
threats in off-path locations. When encountering the scenarios, the participants were either 
engaged in a cognitive task (the 1-back or 2-back task) or they were just driving. The drivers’ 
glance behavior was recorded using an eye-tracker.  

Results. The drivers adapted their visual behavior to the traffic scenarios by decreasing the 
number of on-path fixations and directing their gaze towards relevant information in off-path 
locations. When the drivers were cognitively loaded, the percentage of the total time that they 
looked on-path increased from 49.7% (intersection) and 64.7% (hidden exit) in the baseline 
condition to 56.6% and 72.1% in the 1-back condition and 66.4% and 76.5% in the 2-back 
condition. More detailed analyses revealed that gaze shifts from an on-path to an off-path 
location were inhibited by cognitive load, while gaze shifts in the other direction remained 
unaffected. Consequently, on-path glances increased in duration, while off-path glances 
decreased in number. The timing of the remaining glances towards the off-path locations was, 
however, unaffected by cognitive load.  

Discussion. The observed gaze concentration effect could be explained by the selective 
inhibition of gaze shifts from on-path to off-path locations. Assuming that looking on-path is 
an automatized behavior (since it is, by far, car drivers’ most frequent gaze direction), this 
finding can potentially be explained by the cognitive control hypothesis (Engström et al., 
2017). Furthermore, given that cognitive load seems to have inhibited rather than delayed 
gaze shifts (unlike response times in many response tasks), and that gaze direction control 
itself seems unaffected by cognitive load, it appears that cognitive load has different effects 
on different mechanisms.  
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Paper III – Drivers’ ability to engage in a non-driving related task while in automated 
driving mode in real traffic  

Introduction. With the introduction of systems for AD, drivers will be free to disengage 
from driving and engage in non-driving-related tasks (NDRTs), such as working, while on 
the move. Having this possibility is considered one of the main advantages with AD. 
However, while the interest in engaging in NDRTs while traveling is confirmed, there is a 
lack of empirical studies investigating to what extent people are in fact able to engage, and 
maintain engagement, in NDRTs while traveling in AD mode in real traffic. 

Aim. The aim of this paper was to investigate how well drivers are able to engage in an 
NDRT while traveling in AD mode in real traffic.  

Method. Ten participants traveled in AD mode in real traffic via a Wizard of Oz platform. 
They were informed that Volvo Cars were responsible for the safety once they had activated 
the AD function. While traveling in AD mode, the participants performed an NDRT which 
was designed to be visually and cognitively demanding and to require manual interaction: it 
consisted of performing mental rotations of polygons on a tablet. The drivers’ task 
engagement was assessed by their shifting of gaze direction from the road ahead to the 
NDRT, by their performance in the NDRT (number of correct answers and response times) 
while traveling compared to while in an office environment, and from their self-reported 
experience (from questionnaires and interviews) of engaging in the NDRT.  

Results. The results show that when the drivers performed the NDRT while in AD mode, 
their gaze direction shifted from the road ahead towards the NDRT to a great extent; gaze 
was directed towards the road ahead for less than 20% of the time in all drives, and for less 
than 2% of the time in 50% of the drives. There were no significant differences in their 
performance in the NDRT when in the car compared to in the office, nor in their rated 
experiences (although there was a tendency for perceived task demand to be rated higher and 
engagement lower in the car). Yet, many participants reported in the interviews that they 
noted and reacted to changes in the environment and to sudden vehicle motions. Some 
participants were surprised by their own ability to easily disconnect from driving. 

Discussion. This study extends previous research by demonstrating that drivers are able to 
engage in an NDRT to a great extent while in AD mode in real traffic. This finding supports 
the promise that future cars with systems for AD will be able to ”free up time” that drivers 
can use to engage in non-driving-related activities while traveling. 
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Paper IV – Let complexity bring clarity: A multidimensional assessment of cognitive 
load using physiological measures  

Introduction. Despite plenty of studies on the topic, the effects of secondary task induced 
cognitive load on driver behavior and traffic safety are unclear and in need of further 
investigation. For this purpose, reliable measures of cognitive load are needed. Physiological 
measures appear useful for this purpose since they can provide continuous recordings of 
drivers’ mental state without interfering with the driving task. There are, however, a few 
issues related to their use in this context which are typically overlooked and which may cause 
inaccurate inferences and generalization. First, cognitive load consists of multiple mental 
responses (cognitive load components) to cognitive task demands and can therefore take 
many different forms—yet, researchers treat it as if it is unidimensional. Second, task-
induced cognitive load does not occur in isolation; rather, it is part of a complex mental 
response to the situation as a whole. Third, physiological measures are affected by multiple 
mental and physical states, limiting the inferences that can be made from them individually. 

Aim. The aim was to demonstrate how the measurability of cognitive load can be greatly 
improved if  the above-mentioned issues are acknowledged. This aim was accomplished by 
studying multiple mental responses using multiple physiological measures and independent 
variables. 

Method. 70 participants drove on a rural road in a moving-base driving simulator for 
approximately 40 minutes. Three different traffic scenarios were repeated four times each. 
When encountering the scenarios, the participants were either engaged in a cognitive task (the 
1-back or 2-back task) or they were just driving. The physiological measures heart rate, heart 
rate variability, breathing rate, skin conductance, pupil diameter, eye blink rate, eye blink 
duration, EEG alpha power, and EEG theta power were taken and analyzed in relation to 
cognitive task demand, scenario repetition, and type of traffic scenario. Cognitive load 
components and other coinciding mental responses were assessed by considering the 
response patterns of multiple physiological measures. 

Results. The cognitive tasks had a significant effect on heart rate, heart rate variability, 
breathing rate, skin conductance, pupil diameter, and eye blink rate, but not on eye blink 
duration, EEG alpha power, or EEG theta power. Several of the measures were also sensitive 
to scenario repetition and/or type of traffic scenario, but, importantly, the effects were not the 
same for all measures.    

Discussion. Several comparisons have been made between uni- and multi-dimensional 
interpretations of physiological responses. This way, it was demonstrated how the construct 
validity of cognitive load was improved by acknowledging the fact that multiple mental 
responses occurred during the course of the experiment. Also, the concurrent analysis of 
multiple measures made the measurements more diagnostic—that is, better able to distinguish 
between different mental responses. This improvement increases the measurements’ overall 
external validity, as the risk of making incorrect inferences is reduced. As more diagnostic 
and valid measures of cognitive load components become available, the effects of cognitive 
task demands on traffic safety can be better understood, and possibly mitigated. 
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6 Discussion 

This chapter addresses the main findings from the papers in this thesis with respect to the 
thesis aim and research questions (stated in Chapter 2). The first three sections will discuss 
the observed effects of cognitive tasks on driver behaviors and the implications of these 
effects for traffic safety in safety-critical events (Section 6.1), in routine driving (Section 6.2), 
and in the pre-trip phase when decisions about how to travel are being made (Section 6.3). 
Section 6.4 will discuss why changing the way we look at cognitive load from a 
unidimensional to a multidimensional view (acknowledging the fact that multiple mental 
responses occur during task engagement) is of key importance for making physiological 
measures truly useful in mental state assessments. Section 6.5 will then discuss what 
acknowledging multiple mental responses to task engagement means for studies on driver 
behavior and traffic safety. Section 6.6 will discuss different areas of application for 
physiological measures in traffic safety. Lastly, suggestions for future work in this area will 
be discussed in Section 6.7. 

The intent of this work is to contribute to a more detailed understanding of the complicated 
relationships between cognitive task involvement and driver’s mental responses, behaviors, 
and physiological responses. The desired result is contribution to a nuanced discussion, rather 
than absolute answers in terms of specific safety consequences or measurement guidelines. 

6.1 Response times in critical events 

The results from Paper I (Research Question 1: How do cognitive tasks affect drivers’ 
response times in an unexpected safety-critical scenario?) suggest that cognitive tasks will not 
slow down driver responses in critical scenarios, as long as automated responses are 
sufficient to resolve the situation. Only in situations where cognitive control is required for an 
appropriate response are cognitive tasks expected to increase risk. Specifically, it was found 
that the same cognitive task had different effects on response times depending on the stimulus 
to which the driver was to respond. Response times in the DRT were increased during 
cognitive demand, in line with previous findings (e.g., Bruyas & Dumont, 2013; Conti et al., 
2012; Engström, Larsson, et al., 2013), while response times in a critical and unexpected lead 
vehicle braking scenario were unaffected by the same cognitive tasks. Importantly, the lead 
vehicle braking scenario was designed so that visible looming of the lead vehicle appeared as 
soon as it started braking, so the drivers presumably responded automatically to the looming 
cues. According to the cognitive control hypothesis (Engström et al., 2017), this is why 
cognitive load did not have an effect on response times. 

These results clearly demonstrate that the effects of cognitive tasks seen in cognitively 
controlled response tasks, such as the DRT, should not be generalized to critical situations in 
which drivers can respond to visual looming, as has been done previously (e.g., Strayer & 
Fisher, 2016; Merat & Jamson, 2008). Since the results support the cognitive control 
hypothesis, it seems instead that cognitive tasks should only increase the risk of accidents in 
situations where drivers do not have a suitable automatized behavior to fall back on 
(Engström et al., 2017). The effect on traffic safety hence depends both on the driver’s 
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experience (what behaviors s/he has automatized) and the specific situation. In situations 
where cognitive control is involved, response times are likely to increase, just as the DRT 
response times did. Such a situation could, for example, involve negotiating with multiple 
road users in a complex intersection, where fast decisions are necessary. Behavioral 
adaptation can also be expected to suffer in any situation where cognitive control is required 
for an appropriate, although not necessarily fast, response, such as when a potential conflict 
can be predicted using cues in the traffic environment (see Baumann et al., 2008 and Muttart 
et al., 2007). This expectation is discussed further in Section 6.2 below.  

It should be noted that while there are several studies that consistently report that cognitive 
load causes increased response times in tasks which rely on cognitive control (such as the 
DRT), there are very few studies which have explored the effects on responses to visual 
looming alone. Further studies are thus needed to confirm the results in Paper I.  

6.2 Glance behaviors in routine driving 

It was found in Paper II (Research Question 2: How do cognitive tasks affect drivers’ glance 
behavior in routine driving?) that gaze concentration, which typically occurs during 
engagement in cognitive tasks (e.g., Recarte & Nunes, 2000, 2003; Reimer et al., 2013; 
Victor et al., 2005; Y. Wang et al., 2014), seems to stem from gaze-shift inhibitions, rather 
than gaze-shift delays. The drivers looked more towards the future path (i.e., they displayed 
gaze concentration) during cognitive task execution compared to when they were just driving 
(baseline) in two traffic scenarios which both had relevant information in off-path locations: a 
four-way intersection scenario and a hidden exit scenario. This finding is in line with the 
results from many previous studies, most of which describe the effects of cognitive tasks on 
drivers’ visual behavior on highways and main roads (Recarte & Nunes, 2000, 2003; Reimer 
et al., 2013, 2012; Reimer, 2009; Victor et al., 2005; Y. Wang et al., 2014), although some 
were conducted in more complex traffic environments (Harbluk et al., 2007; Biondi et al., 
2015). 

Interestingly, when glance behaviors were studied at a high temporal resolution in Paper II, it 
was found that the timing of glances towards relevant areas in off-path locations was 
unaffected by cognitive demand. In other words, the gaze patterns in relation to the traffic 
environment were unaffected by cognitive demand in terms of timing, but changed so that the 
proportion of on-path fixations was larger. Note that cognitive demand did not cause a delay 
in glances towards off-path locations (as speculated by Lehtonen et al., 2012), a result which 
would have been consistent with the well-known effect of delayed response times in tasks 
requiring cognitive control. Instead, it appears that cognitive load leads to some off-path 
glances being omitted. Moreover, the risk of such “absent glances” did not seem to depend on 
the traffic environment. 

Further, it was found in Paper II that the effect of cognitive demand on visual behavior was 
dependent on gaze direction. While gaze shifts from an on-path to an off-path direction were 
inhibited by cognitive demand, gaze shifts in the opposite direction (off-path to on-path) 
remained unaffected. This resulted in fewer off-path glances and longer on-path glances: that 
is, gaze concentration.  
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One way to understand this finding is, again, in terms of the cognitive control hypothesis 
(Engstrӧm et al., 2017). If we assume that drivers automatically direct their gaze towards the 
future path (because that is the most frequent and consistent gaze direction needed for the 
most frequent and consistent task, lane keeping), then eyes-on-path becomes the automated 
and default gaze location. It would follow that moving the gaze to an off-path location 
requires cognitive control (as has been speculated by Lehtonen et al., 2012). That is, drivers 
who have an on-path gaze direction during increased cognitive load are less likely to switch 
to an off-path gaze direction, since that would require cognitive control. Drivers who, on the 
other hand, have an off-path gaze direction during increased cognitive load can switch back 
to the default on-path gaze direction automatically, and cognitive load would not disrupt that 
gaze switch. Thus, gaze concentration can be viewed as an automatic behavior in which gaze 
reverts to the default location. This behavior is likely automatized over time, through 
successful employment of the neural pathways (Cohen et al., 1990) used during the 
extensively practiced lane keeping task.  

The effect of gaze concentration on traffic safety is most likely situation-dependent. The gaze 
concentration effect in drivers was originally observed in studies conducted on highways and 
larger roads (e.g., Recarte & Nunes, 2000, 2003; Reimer et al., 2013, 2012; Reimer, 2009; 
Victor et al., 2005; Y. Wang et al., 2014). On such roads, there is not much safety-relevant 
information in off-path locations and hence, spending more time gazing at the road ahead is 
likely to be safety-beneficial. In fact, as mentioned in Section 3.3, the gaze concentration 
effect has been suggested as an explanation for the decreased risk of rear-end collisions 
during cell phone conversations (Dingus et al., 2019; Victor et al., 2015). However, in more 
complex scenarios such as intersections, it is unlikely that gaze concentration is safety-
beneficial. Instead, a decreased proportion of eye fixations towards (potentially) safety-
relevant objects in off-path locations is likely to reduce the driver’s situation awareness, 
making him/her less prepared to act if a potential threat turns into an actual threat (Harbluk et 
al., 2007; Biondi et al., 2015). It is thus possible that if another vehicle had entered the main 
road in the hidden exit scenario in Paper II, the drivers would have noticed it later and/or 
reacted to it later. This deserves investigation in future research. 

The results in Paper II call for further research to understand the interaction between 
cognitive tasks and the task of driving. Because the drivers did not appear to compensate for 
“absent glances” to off-path locations by performing them later, the timing between 
variations in cognitive load and intended gaze shifts is significant from a traffic safety 
perspective. The probability that a driver will fail to scan an important area might thus 
depend on the timing between intended gaze shifts to that area and peaks in cognitive 
demand. Just as the timing between off-path glances and lead vehicle braking events are 
decisive for the risk of rear-end collisions (Victor et al., 2015), so could the timing between 
cognitive task engagement and intended gaze shifts be decisive for the risk of missing 
relevant information in off-path locations.  

For the design of driver support systems, it is very important to know when system 
interventions should occur. A system which sends warnings too late is, of course, less 
effective. But a system which sends warnings too early (for example, a forward collision 
warning system that warns an attentive driver of an impending collision a second before the 
driver was already going to brake) is likely to be perceived as annoying and turned off by the 
driver. However, depending on driver state, drivers might need support at different times. 
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Imagine a system that could help drivers achieve situation-appropriate scanning behavior in 
intersections. First of all, such a system would need to take the traffic environment, including 
other road users, into account when deciding what is appropriate glance behavior for the 
driver. Imagine that the system detected that the driver did not look towards a crossing cycle 
path as expected and needed, and that the system also knew that the driver was engaged in 
some cognitive task. If cognitive load causes off-path glances to be omitted rather than 
delayed, the system should not wait to remind the driver to scan the environment. If, on the 
other hand, glances are merely delayed, there is reason for the system to wait with the 
intervention to avoid annoying the driver. Therefore, in order to improve the systems’ 
capacity to support safe driving, more research is needed to confirm whether the findings in 
Paper II persist in other studies and scenarios.  

6.3 Pre-trip decisions to use autonomous driving systems 

AD seems to be able to free up time for working or engaging in other NDRTs while traveling, 
just as people want (Hecht et al., 2020; Pfleging et al., 2016; Winkeler et al., 2019). Having 
the possibility to engage in NDRTs while traveling will therefore likely be a compelling 
argument for deciding to use AD systems, once available. The results in Paper III show that 
the drivers were indeed able to engage in the NDRT. They directed their gaze towards the 
NDRT for the vast majority of time and performed it as well in the car as they did in an office 
environment. The drivers also reported that they were able to concentrate and become 
absorbed in the task, although it should be kept in mind that there were large individual 
differences in how task engagement was experienced. While some participants experienced 
the situation as rather stressful and stated that they tried to divide their attention between the 
NDRT and the traffic environment, several reported being pleasantly surprised by their 
experience of letting go of driving and engaging in the NDRT.  

Somewhat surprisingly, even the most skeptical participant was able to perform the NDRT 
well and (to some extent) let go of driving. This participant described herself as a late adopter 
who never used any systems for assisted driving and never used a cell phone while driving. 
She also said in the interview that she did not want to disengage from of driving; still, during 
the first test occasion she only looked at the road ahead 15% of the time, and her longest off-
path glance was 11 s. On the second test occasion, she reported feeling more relaxed and 
said, “Basically I did not look at the road hardly at all.” Here, the percentage of time she 
looked at the road ahead was 12% and the longest off-path glance was 10 s. To put these 
numbers in context, it has been shown that drivers who engage in NDRTs during manual and 
assisted driving very rarely look away from the forward roadway for more than three 
seconds; a naturalistic driving study by A. Morando et al. (2020) found that only 1% of off-
path glances had a duration beyond 2.6 s and 2.8 s in manual and assisted driving, 
respectively. The skeptical participant, although she said that she tried to monitor the traffic, 
did indeed make use of the AD function to let go of driving and engage in the NDRT. 
Clearly, not only early adopters and AD enthusiasts are able to hand over control to the car.  

It should be noted that in Paper III, test participants were explicitly asked to perform an 
artificial task while traveling in AD mode in real traffic while test leaders were present in the 
rear seat. This experimental design addressed Research Question 3 (To what extent are 
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drivers able to engage in non-driving-related tasks while traveling in AD mode in real 
traffic?); however, many questions remain about the manifestation of task engagement in 
future vehicles offering AD. For example, drivers such as the skeptical participant described 
above might choose not to engage in NDRTs if not explicitly asked to do so. Finding out how 
future systems will be used is complicated for several reasons, not the least because behaviors 
tend to change over time as the systems are being used—referred to as behavioral adaptation 
(Sullivan et al., 2016). In Paper III, the drivers participated in the study on two occasions, 
with approximately one week in between. This design meant that the first encounter and any 
early learning effects could be accounted for. These effects were rather small, but there were 
indications both in the interviews and the glance behaviors that drivers became more relaxed 
and could engage more in the NDRT on the second occasion. Earlier studies have also 
demonstrated that drivers became more relaxed and changed their behaviors with repeated 
exposure to AD (Andersson et al., 2018; Large et al., 2019). However, behavioral adaptation 
to AD systems most likely continues for much longer when drivers use the systems in their 
everyday driving than what has yet been studied. A naturalistic driving study by Dunn et al. 
(2019) found that drivers who used a car with systems for assisted driving for one month 
exhibited behavior that was different than that of drivers who already had the systems in their 
cars (and thus were more accustomed to them) and were observed for approximately one 
year. When the systems were activated, the drivers who were less experienced engaged less 
in NDRTs and looked away from the forward roadway less than when the systems were 
available but not activated; the more experienced drivers did the opposite, engaging more in 
NDRTs and looking away from the forward roadway more. Naturally, naturalistic testing of 
systems which are not yet fully developed (such as the system for AD employed in Paper III) 
is difficult, so this type of long-term behavioral adaptation is hard to study empirically before 
products are actually on the market.  

Drivers' experiences when using a system determine how behavioral adaptation develops and 
whether the system is appreciated and will be used (Dunn et al., 2019). An interesting finding 
in Paper III was that some of the test participants stated that they felt that task engagement 
helped them let go of driving and trust the system. It therefore might be beneficial to 
encourage involvement in NDRTs to create trust in the system. 

When drivers do other things behind the wheel (such as working or sleeping) during AD, 
changing their position in the car for improved comfort and task performance is a likely 
effect (Köhler et al., 2019). In fact, a participant in the Paper III study noted that the space in 
the driver seat was tight and not an optimal working environment when, for example, using a 
computer. Therefore, research and product development is also needed (and, indeed, 
underway) to understand how drivers wish to sit, so that more seating positions are available 
in vehicles with AD systems—without compromising occupant safety in the event of an 
evasive maneuver or crash (see e.g., Jorlöv et al., 2017; Leledakis et al., 2021). 

6.4 Assessing cognitive load using physiological measures 

The inconsistent effects of cognitive tasks on physiological measures in different studies (see 
Tao et al., 2019, for a review) can largely be explained by the fact that the studies assess 
cognitive load on a unidimensional scale, even though it is a multidimensional response (see 
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Section 3.1). If we stop trying to assess cognitive load as a singular entity, and instead focus 
on more specific and measurable mental responses and their neurological underpinnings, our 
chances of performing useful and reliable assessments will increase significantly.  

It was demonstrated in Paper IV (Research Question 4: How can cognitive load in car drivers 
be assessed using physiological measures?) that cognitive task demand gave rise to different 
physiological responses as the mental responses changed during the course of the experiment. 
Consequently, by acknowledging multiple different—and often coinciding—mental 
responses to multiple influencing factors (including task demands and environmental factors 
such as traffic environment complexity), mental state measurability can be greatly improved.  

It follows that our chances of assessing cognitive load in a useful and reliable way will 
increase if we can understand which mental responses are actually reflected by the 
physiological responses. In other words, it seems reasonable to stop trying to assess cognitive 
load per se and instead focus on more specific and measurable mental responses. For 
example, rather than interpreting increased heart rate as a sign of cognitive load, it may 
instead prove more useful for assessing emotional stress or physiological arousal (Conway et 
al., 2013), which may or may not occur during cognitive task engagement.  

It is also important to remember that physiological measures are sensitive to multiple mental 
responses (Richter & Slade, 2017). To reduce the number of relationships between mental 
and physiological responses, concurrent analyses of multiple physiological measures are 
needed. Studying multi-measure response patterns rather than single-measure responses 
makes it possible to exploit both the similarities and differences between the different 
measures. For example, as demonstrated in Paper IV, visual and non-visual attention can be 
differentiated when pupil diameter (which increases in response to increased attention 
regardless of modality) and eye blink rate (which decreases during increased visual attention 
but increases during increased non-visual attention) are analyzed jointly (Recarte et al., 
2008). The distinction between visual and non-visual attention can be of great importance 
when assessing a driver’s mental state, since the type of attention can indicate the difference 
between a distracted driver and an attentive one. If gaze direction is also measured, it is 
possible to also determine whether visual attention is directed towards safety-relevant areas in 
the traffic environment (indicating an attentive driver), or towards something un-related to 
driving (indicating a visually distracted driver). 

Studying multi-measure response patterns instead of single-measure responses also reduces 
the number of correlations between physiological measurements and different mental states. 
This means that the measurements’ context dependence is reduced, since fewer factors affect 
the measurements. Consequently, the risk of making incorrect inferences from observed 
responses is reduced and the measurements’ external validity is improved.  

The use of multiple measures has indeed been encouraged for a long time (see, e.g., de 
Waard, 1996). In fact, most research seeking physiological indicators of cognitive load, 
especially that which employs machine learning to develop cognitive load classifiers, does 
indeed include multiple measures in the analyses (e.g., Chihara et al., 2020; Murphey et al., 
2019; Putze et al., 2010). However, one cannot develop cognitive load classifiers simply by 
using many physiological measures if the fundamental problem—attempting to assess a 
multidimensional construct on a unidimensional scale—remains. The fact that multiple 
mental responses co-occur needs to be acknowledged in order for the classifiers to function in 
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different settings. If a classifier is trained on a limited range of cognitive load types (i.e., not 
all mental responses that can comprise cognitive load are included in the training data), then 
the classifier is likely to struggle to detect cognitive load when used in a different setting with 
a novel (for it) type of cognitive load. This difficulty is likely to occur if classifiers are trained 
in controlled experiments in which participants experience relatively high levels of stress and 
effort, and are then used in naturalistic settings—where cognitive tasks are self-initiated and 
the resulting cognitive load is lower in stress and effort because the driver is more relaxed. 

It should be noted that there are indeed studies that acknowledge that different measures are 
sensitive to different influencing factors, and that more than one type of cognitive load occure 
in response to cognitive task manipulations (Patel et al., 2018). A meta-analysis by Hughes et 
al. (2019) of cardiac responses to perceptual and cognitive task manipulations concluded that 
different measures were sensitive to different influencing factors (e.g. event rate and task 
duration). The authors suggested that different measures should therefore be used to assess 
cognitive load, depending on the type of task at hand. However, even if they acknowledged 
that different types of cognitive load can occur, they still refered to all of them as “mental 
workload”. This is unfortunate, because if the mental responses that are de facto being 
measured are specified, rather than grouped together under an umbrella term like cognitive 
load (or similar), our chances of finding measures that work in many settings would increase. 
Also, specifying the individual mental responses rather than grouping them together would 
greatly facilitate our exploration of the effects of cognitive tasks in different situations 
(including their effects on driver behaviors), and subsequently help us determine which 
mental responses are of greatest importance for traffic safety.  

Importantly, when acknowledging the mixture of multiple, coexisting mental responses in a 
specific setting, it is unnecessary to decide which mental responses should be included in the 
cognitive load construct and which should be excluded (which, as mentioned in Section 3.1, 
is difficult). For example, in Paper IV it appeared that in the early task repetitions the 
participants were experiencing high emotional stress (indicated by increased heart rate) and 
high cortical arousal (indicated by increased pupil diameter), while in the later repetitions 
they were more relaxed, but still increased their cortical arousal in response to the task 
demand. Depending on how cognitive load is defined, and which measures are used to assess 
it, these results could be interpreted differently: either the level of cognitive load was constant 
throughout the experiment (if only the cortical arousal reflected in the pupil diameter is 
considered), or the level of cognitive load decreased during the course of the experiment (if 
stress reflected by heart rate is considered). It seems meaningless to choose between these 
interpretations when both measures can be informative if multiple coexisting mental 
responses to cognitive task demand are assessed individually. That is, during the course of the 
experiment, drivers became more comfortable and less stressed when doing the tasks, but 
they kept investing similar amounts of cognitive effort in the task performance. 

6.5 Considering multiple mental responses when studying driver behaviors 

Importantly, the different mental responses (e.g., stress and cognitive effort) that occur when 
drivers engage in cognitive tasks can have different effects on driver behaviors. Different 
studies of cognitive load are thus not necessarily comparable just because they include some 
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sort of cognitive demand, and a large measure of caution must be applied when comparing 
and generalizing results.  

The way the effects of cognitive tasks on driver behaviors has been studied and interpreted in 
Papers I and II is, however, in line with most research today, as well as with the cognitive 
control hypothesis. That is, when cognitive task demand was manipulated, cognitive load was 
assumed to increase or decrease on a unidimensional scale, and possibly induce changes in 
driver behaviors. This approach cannot determine whether the observed effects would be the 
same if the mental responses to the cognitive demand were different.  

According to Engström et al. (2017), all cognitive tasks should, however, have the same 
effect on driver behaviors (in terms of drivers falling back into automatized behaviors) since 
the effect is attributed to their common denominator: the prefrontal cortex activity which 
comprises cognitive control. It should thus not matter which other mental responses co-occur 
with this prefrontal cortex activity. Based on the results in Papers I and II, it is not possible to 
confirm or reject this assumption. That is, we currently do not know what would have 
happened in the lead vehicle braking scenario in Paper I if not only the drivers’ level of 
cognitive control but also their level of, for example, stress had been high, since the way the 
scenario was implemented the drivers’ level of stress was de facto low (as confirmed in Paper 
IV).  

There should, however, be little doubt that other mental responses which can also result from 
cognitive task demands (along with cognitive control) can also affect driver behaviors. Some 
mental responses, such as negative emotions (Oei et al., 2012) and stress (Schwabe, 2017), 
can reduce prefrontal cortex activity and increase the likelihood of resorting to automated 
behaviors. It is thus possible that these mental responses have a similar effect on driver 
behaviors that the cognitive control hypothesis suggests task-directed cognitive control has. 
In that case, driver support systems should be designed to detect not just high levels of 
cognitive control, but also high levels of stress and negative emotions, in order to be able to 
assist drivers in situations where cognitive control is required for safe driving.  Other possible 
mental responses to cognitive tasks, such as emotions (Chan & Singhal, 2015) and fatigue 
(Ismail & Karwowski, 2020), may have other effects on driver behaviors and thus require 
other types of driver support.  

A model by Dehais et al. (2020) seems useful for understanding which mental responses to 
variations in task demand might have the greatest impact on traffic safety and thus deserve 
the most attention. The model suggests that performance in cognitive tasks can be understood 
in relation to arousal and task engagement (see Figure 3).4 The authors provide convincing 
arguments for their model, abandoning the idea of limited resources and instead explain 
performance variations by referring to observed neurological mechanisms and interactions 
between brain areas. According to the model, high levels of task engagement and arousal, 
such as when a driver is highly involved in a challenging and stressful cognitive task, can 
lead to task perseveration (continuing a behavior even though there is information that 
strongly speaks against it; Dehais et al., 2010) and inattention blindness/deafness (the 
inability to perceive clearly visible/audible task-irrelevant stimuli; Rensink, 2009). That is, a 

 

4 In my interpretation, task engagement is synonymous with task-directed effort and thus typically coincides 
with cognitive control, while high arousal is synonymous with high levels of emotional stress. 
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driver might under these conditions “get stuck” performing a cognitive task and fail to notice 
and/or adapt to system warnings or changes in the traffic environment.  

On a neurocognitive level, these phenomena may be (in part) explained by the 
neurochemicals norepinephrine (associated with arousal; Ross & Van Bockstaele, 2021) and 
dopamine (associated with, e.g., motivation and attention; Sescousse et al., 2018), which at 
high concentrations impair executive functioning (Eckstein et al., 2017) and trigger automatic 
responses (J. R. Wickens et al., 2007). High levels of task engagement also promote the 
dorsal attention network, which enables focused attention, at the expense of the ventral 
attention network, which enables the reorienting of attention in response to interruptive 
stimuli (Vossel et al., 2014). This leads to a deteriorated ability to perceive and adapt to new 
information (Todd et al., 2005).   

 

Figure 3. Model of performance degradations depending on arousal and task 
engagement, adapted from Dehais et al. (2020).  

Dehais et al.’s (2020) model further suggests that when task engagement and arousal are low 
due to non-stimulating and non-rewarding tasks, such as prolonged passive supervisory tasks, 
performance may suffer due to task disengagement and mind wandering. In this mental state, 
levels of dopamine and norepinephrine are low, which (just as when they are high) depress 
executive functioning (Eckstein et al., 2017), thus degrading performance in cognitively 
controlled activities. Also, during low arousal, the locus coeruleus-norepinephrine system 
promotes mind-wandering and degrades task performance by fostering activity in task-
unrelated brain networks (Chong & Baldwin, 2021).  

Moreover, in situations with a high likelihood of task failure, task engagement tends to be 
low as people give up trying (Fairclough et al., 2019); consequently, task performance 
degrades due to effort withdrawal (Dehais et al., 2020). Furthermore, in situations where 
failure can lead to serious consequences, the probability of stress and strong emotional 
reactions is high at the same time (i.e., arousal is high), which may divert attention away from 
the task and worsen task performance even more (Dehais et al., 2020).  
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Worth mentioning, although not included in Dehais et al.’s (2020) model, are fatigue-related 
performance declines which may occur due to sleepiness or prolonged task engagement. 
Chong and Baldwin (2021) review neuroergonomic explanations for these deteriorations. 
They suggest that prolonged execution of cognitively demanding tasks leads to “active 
fatigue” because the high level of activity in task-activated neurons eventually causes 
neuronal fatigue. The brain will then engage in sleep-related slow-wave activities to reset the 
neuronal firing rates in order to achieve cognitive restoration. These sleep-related processes 
(e.g., local sleep and microsleep, which occur during wakefulness) cause deteriorated task 
performance and may promote engagement in unrelated tasks, such as mind-wandering 
(Andrillon et al., 2019). Similarly, these processes also increase with sleepiness caused by 
long periods spent awake.  

Note that unlike the cognitive control hypothesis (Engström et al., 2017), Dehais et al.’s 
model does not deal with performance in tasks with automated behaviors. Also, their model is 
primarily intended to explain primary task performance variations in human operators (e.g., 
pilots), rather than performance degradations during multitasking. Still, it seems appropriate 
to investigate the effects of different levels of task engagement and arousal, in addition to the 
level of task-related cognitive control.  

In short, there are compelling arguments for questioning the common way of attributing the 
observed effects of cognitive tasks solely to task-related cognitive control. This simplification 
is particularly problematic when different studies report different effects, such as the  effects 
of cognitive load on vehicle speed or time headway (see Caird et al., 2018, for a review). 
Since different mental responses to cognitive demand (e.g., arousal and task engagement) 
appear to have different effects on driver behaviors, caution needs to be taken when 
comparing and generalizing study results. Because so many factors (task-related, but also 
environmental- and human-related) influence which mental responses occur (M. S. Young et 
al., 2015), different experiments are not necessarily comparable just because they include 
some sort of cognitive demand. It seems reasonable to assume that participants in controlled 
experiments who perform artificial tasks under the supervision of test leaders experience a 
higher level of arousal and task engagement than drivers typically do when talking on a 
mobile phone during routine driving. Comparing the effects of cell phone use in naturalistic 
studies with the effects of cognitive tasks in controlled experiments may thus be 
inappropriate, unless the arousal and engagement are actually comparable. This is not to say 
that behavioral effects observed in controlled experiments cannot be generalized to actual 
driving in situations with similar mental responses; however, it is critical to find out which 
mental responses have a significant influence on driver behaviors and thus need to be kept 
comparable.  

It also follows that drivers might need different types of support during cognitive task 
engagement, depending on their mental responses (Braun et al., 2021; Dehais et al., 2020). 
For example, imagine a driver who approaches an intersection while having a casual cell 
phone conversation with his/her spouse about what to have for dinner. The vehicle’s driver 
monitoring system observes that the driver fails to scan the environment appropriately. A 
subtle reminder to focus on the traffic environment might be enough to make the driver scan 
the environment appropriately and notice potential threats. But if the cell phone conversation 
were instead a heated discussion between spouses in the middle of a divorce, a subtle 
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reminder would most likely go unnoticed due to the high levels of emotional and cognitive 
engagement.  

6.6 Application areas for physiological measures in traffic safety  

The application of physiological measures can facilitate advancement in many different areas 
within research and product development. The requirements placed on the measures depend, 
of course, on the application: different measures can be useful for different purposes. To 
provide concrete examples, a non-exhaustive compilation of application areas related to 
traffic safety will be described below.  

To begin with, physiological measures can be used to validate experimental manipulations by 
confirming that the intended mental responses indeed occurred. It thus becomes easier to 
compare the outcomes of different studies applying different experimental manipulations, 
since there is reason to believe that the mental responses are indeed comparable.   

The wind scenario described in Paper IV is an excellent example of the critical importance of 
being able to confirm the impact of experimental manipulations on mental responses. This 
scenario was to be used for testing the cognitive control hypothesis (see Nilsson et al., 2017, 
Section 3.3, for a brief description of the experiment). Lane keeping is a consistent and 
extensively practiced task for experienced drivers, so it can be assumed to be automatized 
and should thus not suffer from performance degradations during cognitive load, according to 
the cognitive control hypothesis (Engström et al., 2017). But, if lane keeping is made 
sufficiently difficult, it should require cognitive control and consequently be negatively 
affected by cognitive load (Engström et al., 2017). This effect was observed in a previous 
study by Medeiros-Ward et al. (2014), and the wind scenario in Paper IV was set up to 
replicate that study. Contrary to what was expected, lane keeping was found to improve when 
the drivers were engaged in a cognitive task, with and without the crosswind (Nilsson et al., 
2017). The results thus seem to contradict the cognitive control hypothesis. However, an 
analysis of the physiological data showed that the crosswind had no statistically significant 
effect on any of the physiological measures that were derived (including six measures that 
were sensitive to other cognitive load manipulations in the same experiment). The unchanged 
physiological measures strongly indicate that the crosswind did not actually have any 
substantial effect on the drivers’ mental state. Thus the goal of the experimental crosswind 
manipulations—to make lane keeping cognitively demanding—was clearly not reached. The 
results could therefore not be used to confirm or reject the cognitive control hypothesis. 

Including multiple measures from different measurement categories (i.e., physiological, self-
report, and performance) improves the chances of being able to differentiate between mental 
responses further (Hancock & Matthews, 2019), providing a more detailed understanding of a 
situation (as pointed out in Section 6.4). As an example, such improved understanding comes 
from interpreting Paper IV’s results together with those of Paper II, which revealed that the 
drivers had fewer glances towards potential threats in off-path locations when they were 
engaged in a cognitive task. Clearly, directing the gaze to relevant areas in the traffic 
environment is a prerequisite for safe driving. However, gaze direction alone does not 
guarantee that drivers perceive and understand the fixated information, nor that they will act 
appropriately in response (Brown, 2005; Strayer et al., 2004). At this point, the physiological 
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data from Paper IV can add to our understanding. An increase in pupil diameter, together 
with a decrease in blink rate and blink duration, indicates that the drivers increased their 
visual attention and effort when approaching and passing the potential threats in all load 
conditions. That is, the physiological data suggest the driver did indeed perform attentive 
glances. It does, however, appear that the amount of extra effort that the drivers invested 
when the driving demand increased, decreased with higher levels of cognitive task demand, 
as the pupil diameter responses decreased in magnitude (see Figure 2, Paper IV). To avoid 
excessive testing—and increased risk of Type I errors—this decrease in pupil diameter 
increase was not statistically tested and thus needs to be validated in future experiments. Also 
observable in Figure 2 (Paper IV) but not statistically tested is the temporary drop in heart 
rate as the drivers approached the critical scenarios. One might speculate that this response 
reflects a preparation for action (Cooke, 2013). As with the pupil diameter and eye blink 
responses, this drop in heart rate decreased when the cognitive task demand increased. Again, 
further research is needed to replicate and statistically test this finding, as well as to confirm 
this interpretation. In short, the drivers directed their gaze to relevant off-path locations, 
increased their effort and visual attention (meaning that the glances were attentive), and may 
even have prepared to act (indicating that they understood the situation). When cognitive task 
demand increased, they still adapted to the scenario, but seem to have done so to a lesser 
extent.  

When more detailed analyses and mental state assessments can be performed, it follows that 
our understanding of the mechanisms underlying performance degradations will increase. For 
example, measurements of ERPs (recall that ERPs are brain responses to stimuli) can show 
the effects of experimental manipulations at specific stimulus-processing stages (Joos et al., 
2014). Van der Heiden et al. (2021), for example, showed that during AD, drivers had smaller 
responses in the frontal P3 component (reflecting a subject’s ability to notice stimuli) to task-
irrelevant auditory stimuli when performing cognitive tasks. Based on this finding, they 
inferred that engagement in cognitive tasks during AD could cause delayed or absent 
responses to auditory alerts.  

In addition to providing a more detailed understanding of mental responses to task demands 
or situations, physiological measures are also useful in mental state assessments in studies 
requiring high levels of ecological validity. The reason for this is that physiological 
measures—provided they are unintrusively recorded—can offer mental state assessments 
without altering the driving task (unlike, e.g., the DRT and LCT) or interrupting the driver 
(unlike, e.g., self-reports). The physiological measures therefore allow more life-like study 
designs than most other mental state assessment techniques.  

Finally, physiological measures could also be used in advanced driver assistance systems to 
monitor drivers’ mental or physical state so that the right support can be provided at the right 
time to prevent safety-critical performance degradations without nuisance interventions. The 
measures can, for example, be used in the assessment of a driver’s ability to take over control 
after AD, so that the system can decide if the car should make a safe stop or hand over 
control (Weaver & DeLucia, 2020), and what such a hand-over should look like (see e.g. Niu 
& Ma, 2022, on how a fatigue warning before a take-over request may improve driver 
performance). They may also be used to detect a sudden illness that requires the car to take 
over control from the driver and perform a safe stop (Langer et al., 2016). In-vehicle driver 
state monitoring systems have to perform highly accurate, real-time mental and/or physical 
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state assessments using only fully non-intrusive recording techniques. This is certainly not 
easy, but plenty of effort in this area is already being made (for reviews, see Arakawa, 2021; 
Leonhardt et al., 2018; Sidikova et al., 2020).  

6.7 Future work 

The findings reported in this thesis need to be replicated and validated in future studies using, 
for example, other test participant criteria and test environments. Also, individual differences 
in how cognitive task engagement affects behaviors and abilities deserve greater 
investigation. That is, are there certain individual characteristics, such as older age or a risk-
taking personality, which entail an increased risk of driving performance degradations during 
cognitive task engagement? If so, higher-risk groups should be identified, since they deserve 
more attention and representation in product development and evaluation.  

As argued repeatedly in this thesis, future studies of cognitive load are likely to provide the 
most useful insights if researchers acknowledge the existence of multiple mental responses to 
cognitive task demands. Study results can then help them determine which mental responses 
have safety-relevant effects on driver behaviors and abilities and explore the neurocognitive 
mechanisms that underly changes in behavior. At the same time, the level of detail and 
precision in driver state assessments needs to be balanced against measurability and usability 
in the context where the research is taking place. Some suggestions about what mental states 
should be measured to predict and counteract performance degradations in car drivers have 
already been put forward by others. For example, Lohani et al. (2019) argue that in a real-
world setting, it should be sufficient to classify the drivers’ mental state along an arousal 
spectrum that ranges from passive states with low levels of arousal (e.g., fatigue), to highly 
aroused states, including high levels of cognitive load. Dehais et al. (2020), on the other hand, 
argue that this spectrum is not enough to understand performance degradations; one also 
needs a dimension of task engagement (as discussed in Section 6.5). Others argue that one 
cannot ignore the drivers’ emotional responses to task engagement (and other influencing 
factors), since they also affect driver behaviors and traffic safety (Braun et al., 2021). It can 
also be argued that the use of cognitive control deserves monitoring, since performance 
degradations can then be predicted based on the cognitive control hypothesis (Engström et 
al., 2017). Future work should thus continue to disentangle the various mental responses to 
cognitive task demand so that their individual and combined effects on driver behaviors can 
be understood. Only then can we know which mental states that should be measured in order 
to detect and counteract performance degradations.  

Another area of research which deserves investigation is drivers’ ability to shift attention 
(Lee, 2014). That is, how easy it is for the driver to disengage from some non-driving-related 
cognitive activity and re-engage in the driving task when needed? The activity could be an 
internally driven, non-driving-related cognitive activity such as mind wandering or 
thinking—or an externally driven NDRT such as conversing or interacting with some device. 
The ability to shift attention and re-engage in driving is critical after AD when the driver may 
have been disengaged from the driving task for quite some time. (Research efforts to 
understand this ability are plenty; see Weaver & DeLucia, 2020, for a review.) This ability is, 
however, also critical, but rarely investigated, in manual and assisted driving when the driver 
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multitasks by sharing and shifting attention between the driving task and some non-driving-
related activity (Lee, 2014). If drivers are able to let go of the non-driving-related activity and 
shift attention to the driving task whenever needed, the diversion of attention towards the 
non-driving-related activity does not pose a problem. Future studies should therefore 
investigate what factors influence drivers’ task-switching abilities in manual driving, assisted 
driving, and AD. In addition to the factors that affect drivers’ ability to take over control after 
AD, factors that determine how drivers time-share and prioritize between tasks (depending on 
the traffic situation, type of task, and mental state) should also be investigated. As pointed out 
by Dehais et al. (2020) and discussed in Section 6.5, high levels of arousal and task 
engagement may lead to task perseveration—but other factors may as well (Fox & Huffman, 
2002). For example, the chance that drivers exhibit long off-path glances when engaging in a 
visually demanding NDRT has been found to increase as a function of task duration, as the 
drivers’ desire to complete the task grows with time and task perseveration thus increases 
(Lee et al., 2012). 

Finally, because of the many advantages of using physiological measures for assessing driver 
mental states, the measures should be used to a greater extent in future studies whenever 
drivers’ mental state plays a role. Further research is still needed to establish the best 
measures and methods for reliably assessing drivers’ mental states—ideally, in real time. 
Additionally, efforts should be made to understand and deal with individual differences since 
the variability between individuals is large (Stemmler & Wacker, 2010). Research should 
determine which individual differences in physiological responses are due to differences 
between individuals’ mental responses to the situation at hand (e.g., some participants get 
more stressed by being asked to perform a cognitive task than others; Matthews & Campbell, 
2009; Szalma, 2009) and which are due to differences between individuals’ physiological 
responses to the same mental response (e.g., frontal theta power increases during cognitive 
engagement in most people, but not all; Mitchell et al., 2008). Due to individual differences 
in physiological responses, individually adapted algorithms for reliable driver state 
assessments should be developed (Noh et al., 2021). Finally, future work should also explore 
the feasibility of continual learning— that is, systems which continuously learn the driver’s 
physiological response patterns over time, in order to recognize typical and atypical driver 
states for that individual. 
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7 Conclusions 

In this thesis, cognitive load in car drivers was studied from four different safety-related 
perspectives: investigating the effects of cognitive tasks on behaviors and decisions in three 
different stages of traveling (in a critical event [Paper I], in routine driving [Paper II], and in 
the pre-trip stage where decisions about how to travel are being made [Papers III]) and 
exploring how cognitive load in car drivers can be assessed (Paper IV). The main findings 
related to the four research questions and their implications are summarized below.   

1. How do cognitive tasks affect drivers’ response times in an unexpected safety-critical 
event? 

In a safety-critical event with a lead vehicle braking unexpectedly, drivers’ engagement in a 
cognitive task did not affect their response times (Paper I). This finding means that it is 
inappropriate to generalize from the (albeit well-established and highly consistent) effect of 
delayed response times in artificial response tasks, such as the DRT, to more realistic safety-
critical events in which responses are triggered automatically by visual looming.  

2. How do cognitive tasks affect drivers’ glance behavior in routine driving?  

During routine driving in traffic environments with potential threats in off-path locations, 
cognitive tasks affected drivers’ glance behaviors by inducing gaze concentration (Paper II), 
in line with previous research. Novel with this study was the high temporal resolution used to 
explore how the gaze concentration phenomenon related to safety-relevant elements in the 
traffic environment and to variations in cognitive load. While gaze shifts from an on-path to 
an off-path direction were inhibited by cognitive load, gaze shifts in the opposite direction 
(off-path to on-path) were unaffected. Further, the drivers’ visual adaptation to the traffic 
scenarios in terms of the timing of glances towards situation-relevant off-path locations was 
unaffected by cognitive load; only the total number of off-path glances was reduced. That is, 
gaze shifts were cancelled rather than delayed. This finding suggests that gaze direction 
control is not affected by cognitive load; however, gaze shift initiations are instantaneous and 
transient, and gaze shifts are permanently omitted if not initiated in time. 

The cognitive control hypothesis (Engström et al., 2017) offers a plausible explanation for the 
observed effects of cognitive load on both response times and gaze shifts. The hypothesis 
stipulates that cognitive load only affects behaviors which require cognitive control (i.e., less 
practiced or inconsistent behaviors, such as looking away from the road ahead or pressing a 
button in response to an artificial stimulus) but leaves automatized behaviors (i.e., consistent 
and extensively practiced behaviors, such as braking in response to visual looming or 
directing the gaze towards the road ahead) unaffected. Consequently, the hypothesis suggests 
that cognitive tasks are detrimental to traffic safety only when there is no suitable 
automatized behavior for the driver to fall back on (Engstrӧm et al., 2017). The cognitive 
control hypothesis thus seems useful for predicting when drivers’ engagement in cognitive 
tasks may compromise safety—and where driver support is thus needed.  
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3. To what extent are drivers able to engage in non-driving-related tasks while traveling in 
AD mode in real traffic? 

Drivers were able to engage in a non-driving-related task which was cognitively, visually, 
and motorically demanding, and perform it well, while traveling in AD mode in real traffic 
(Paper III). This finding suggests that drivers' desire to engage in non-driving-related 
activities while traveling using AD can be fulfilled. Being able to work or engage in other 
non-driving-related activities may influence drivers’ decisions about how to travel by 
motivating them to invest in and use AD systems—systems which are expected to increase 
traffic safety. In this way, cognitive tasks could change from being a safety problem to a 
safety catalyst by increasing the use of AD systems—given that AD is indeed safer than 
manual driving. 

4. How can cognitive load in car drivers be assessed using physiological measures? 

The results in Paper IV demonstrate that for accurate assessments of cognitive load, it has to 
be acknowledged that cognitive load consists of multiple mental responses which can give 
rise to different physiological responses. To date, attempts to assess cognitive load normally 
employ a unidimensional approach; that is, they only consider the level, not the composition 
(i.e., the combination of mental responses), of cognitive load. This approach entails a risk of 
deriving measures which are only sensitive to certain mental responses—responses which 
may or may not be part of the cognitive load in a different context. Such measures might thus 
not be useful for detecting cognitive load in contextually different settings. Concurrent 
analyses of multiple mental responses using multiple physiological measures can, however, 
greatly improve the assessment of drivers’ mental states and increase the usability of 
physiological measures in research and product development.  

Acknowledging multiple mental responses to cognitive task demands might also help resolve 
some inconsistencies between studies, in which cognitive tasks were found to have different 
effects on both physiological responses and driver behaviors in different studies. While some 
effects of cognitive tasks appear to be universal, in the sense that they are common for most 
cognitive tasks, many others differ depending on the task and the situation as a whole. It 
follows that efforts should be made to understand which mental responses to cognitive task 
engagement have the greatest impact on driver behaviors related to traffic safety, preferably 
by considering the neurocognitive mechanisms that underlie the effects. Such knowledge, 
together with reliable measures of the relevant mental responses, enables the development of 
systems that provide drivers with the right support at the right time and which can thus 
improve traffic safety. 
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