3,497 research outputs found

    Faith in the Algorithm, Part 1: Beyond the Turing Test

    Get PDF
    Since the Turing test was first proposed by Alan Turing in 1950, the primary goal of artificial intelligence has been predicated on the ability for computers to imitate human behavior. However, the majority of uses for the computer can be said to fall outside the domain of human abilities and it is exactly outside of this domain where computers have demonstrated their greatest contribution to intelligence. Another goal for artificial intelligence is one that is not predicated on human mimicry, but instead, on human amplification. This article surveys various systems that contribute to the advancement of human and social intelligence

    The Feeling of Color: A Haptic Feedback Device for the Visually Disabled

    Get PDF
    Tapson J, Gurari N, Diaz J, et al. The Feeling of Color: A Haptic Feedback Device for the Visually Disabled. Presented at the Biomedical Circuits and Systems Conference (BIOCAS), Baltimore, MD.We describe a sensory augmentation system designed to provide the visually disabled with a sense of color. Our system consists of a glove with short-range optical color sensors mounted on its fingertips, and a torso-worn belt on which tactors (haptic feedback actuators) are mounted. Each fingertip sensor detects the observed objectpsilas color. This information is encoded to the tactor through vibrations in respective locations and varying modulations. Early results suggest that detection of primary colors is possible with near 100% accuracy and moderate latency, with a minimum amount of training

    Affordances and the new political ecology

    Get PDF

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Language (Technology) is Power: A Critical Survey of "Bias" in NLP

    Full text link
    We survey 146 papers analyzing "bias" in NLP systems, finding that their motivations are often vague, inconsistent, and lacking in normative reasoning, despite the fact that analyzing "bias" is an inherently normative process. We further find that these papers' proposed quantitative techniques for measuring or mitigating "bias" are poorly matched to their motivations and do not engage with the relevant literature outside of NLP. Based on these findings, we describe the beginnings of a path forward by proposing three recommendations that should guide work analyzing "bias" in NLP systems. These recommendations rest on a greater recognition of the relationships between language and social hierarchies, encouraging researchers and practitioners to articulate their conceptualizations of "bias"---i.e., what kinds of system behaviors are harmful, in what ways, to whom, and why, as well as the normative reasoning underlying these statements---and to center work around the lived experiences of members of communities affected by NLP systems, while interrogating and reimagining the power relations between technologists and such communities

    The design of artifacts for augmenting intellect

    Get PDF
    Fifty years ago, Doug Engelbart created a conceptual framework for augmenting human intellect in the context of problem-solving. We expand upon Engelbart's framework and use his concepts of process hierarchies and artifact augmentation for the design of personal intelligence augmentation (IA) systems within the domains of memory, motivation, decision making, and mood. This paper proposes a systematic design methodology for personal IA devices, organizes existing IA research within a logical framework, and uncovers underexplored areas of IA that could benefit from the invention of new artifacts

    Visual circuit flying with augmented head-tracking on limited field of view flight training devices

    Get PDF
    The virtual reality technique of amplified head rotations was applied to a fixed-base, low-fidelity flight simulator enabling users to fly a visual flying circuit, a task previously severely restricted by limited field of views and fixed field of regard. An exploratory experi- ment with nine pilots was conducted to test this technique on a fixed-base simulator across three displays: single monitor, triple monitor and triple projector. Participants started airborne downwind in a visual circuit with the primary task of completing the circuit to a full stop landing while having a secondary task of spotting popup traffic in the vicinity simulated by blimps. Data was collected to study effects on flight performance, workload and simulator sickness. The results showed that there were very few significant difference between displays, in itself remarkable considering the difference in display size and field of views. Triple monitor was found to be the best compromise delivering flight performance and traffic detection scores just below triple projector but without some peculiar track deviations during flight and a less chance of simulator sickness. With participants quickly adapting to this technique and favorable feedback, these findings demonstrated the poten- tial value of upgrading flight training devices and to improve their utility and pave the way for future research into this domain

    Augmenting low-fidelity flight simulation training devices via amplified head rotations

    Get PDF
    Due to economic and operational constraints, there is an increasing demand from aviation operators and training manufacturers to extract maximum training usage from the lower fidelity suite of flight simulators. It is possible to augment low-fidelity flight simulators to achieve equivalent performance compared to high-fidelity setups but at reduced cost and greater mobility. In particular for visual manoeuvres, the virtual reality technique of head-tracking amplification for virtual view control enables full field-of-regard access even with limited field-of-view displays. This research quantified the effects of this technique on piloting performance, workload and simulator sickness by applying it to a fixed-base, low-fidelity, low-cost flight simulator. In two separate simulator trials, participants had to land a simulated aircraft from a visual traffic circuit pattern whilst scanning for airborne traffic. Initially, a single augmented display was compared to the common triple display setup in front of the pilot. Starting from the base leg, pilots exhibited tighter turns closer to the desired ground track and were more actively conducting visual scans using the augmented display. This was followed up by a second experiment to quantify the scalability of augmentation towards larger displays and field of views. Task complexity was increased by starting the traffic pattern from the downwind leg. Triple displays in front of the pilot yielded the best compromise delivering flight performance and traffic detection scores just below the triple projectors but without an increase in track deviations and the pilots were also less prone to simulator sickness symptoms. This research demonstrated that head augmentation yields clear benefits of quick user adaptation, low-cost, ease of systems integration, together with the capability to negate the impact of display sizes yet without incurring significant penalties in workload and incurring simulator sickness. The impact of this research is that it facilitates future flight training solutions using this augmentation technique to meet budgetary and mobility requirements. This enables deployment of simulators in large numbers to deliver expanded mission rehearsal previously unattainable within this class of low-fidelity simulators, and with no restrictions for transfer to other training media
    corecore