328 research outputs found

    RHAS: robust hybrid auto-scaling for web applications in cloud computing

    Get PDF

    Risk-based framework for SLA violation abatement from the cloud service provider's perspective

    Get PDF
    © The British Computer Society 2018. The constant increase in the growth of the cloud market creates new challenges for cloud service providers. One such challenge is the need to avoid possible service level agreement (SLA) violations and their consequences through good SLA management. Researchers have proposed various frameworks and have made significant advances in managing SLAs from the perspective of both cloud users and providers. However, none of these approaches guides the service provider on the necessary steps to take for SLA violation abatement; that is, the prediction of possible SLA violations, the process to follow when the system identifies the threat of SLA violation, and the recommended action to take to avoid SLA violation. In this paper, we approach this process of SLA violation detection and abatement from a risk management perspective. We propose a Risk Management-based Framework for SLA violation abatement (RMF-SLA) following the formation of an SLA which comprises SLA monitoring, violation prediction and decision recommendation. Through experiments, we validate and demonstrate the suitability of the proposed framework for assisting cloud providers to minimize possible service violations and penalties

    Predictive Analysis for Cloud Infrastructure Metrics

    Get PDF
    In a cloud computing environment, enterprises have the flexibility to request resources according to their application demands. This elastic feature of cloud computing makes it an attractive option for enterprises to host their applications on the cloud. Cloud providers usually exploit this elasticity by auto-scaling the application resources for quality assurance. However, there is a setup-time delay that may take minutes between the demand for a new resource and it being prepared for utilization. This causes the static resource provisioning techniques, which request allocation of a new resource only when the application breaches a specific threshold, to be slow and inefficient for the resource allocation task. To overcome this limitation, it is important to foresee the upcoming resource demand for an application before it becomes overloaded and trigger resource allocation in advance to allow setup time for the newly allocated resource. Machine learning techniques like time-series forecasting can be leveraged to provide promising results for dynamic resource allocation. In this research project, I developed a predictive analysis model for dynamic resource provisioning for cloud infrastructure. The researched solution demonstrates that it can predict the upcoming workload for various cloud infrastructure metrics upto 4 hours in future to allow allocation of virtual machines in advance

    Autoscaling Method for Docker Swarm Towards Bursty Workload

    Get PDF
    The autoscaling mechanism of cloud computing can automatically adjust computing resources according to user needs, improve quality of service (QoS) and avoid over-provision. However, the traditional autoscaling methods suffer from oscillation and degradation of QoS when dealing with burstiness. Therefore, the autoscaling algorithm should consider the effect of bursty workloads. In this paper, we propose a novel AmRP (an autoscaling method that combines reactive and proactive mechanisms) that uses proactive scaling to launch some containers in advance, and then the reactive module performs vertical scaling based on existing containers to increase resources rapidly. Our method also integrates burst detection to alleviate the oscillation of the scaling algorithm and improve the QoS. Finally, we evaluated our approach with state-of-the-art baseline scaling methods under different workloads in a Docker Swarm cluster. Compared with the baseline methods, the experimental results show that AmRP has fewer SLA violations when dealing with bursty workloads, and its resource cost is also lower

    CILP: Co-simulation based imitation learner for dynamic resource provisioning in cloud computing environments

    Get PDF
    Intelligent Virtual Machine (VM) provisioning is central to cost and resource efficient computation in cloud computing environments. As bootstrapping VMs is time-consuming, a key challenge for latency-critical tasks is to predict future workload demands to provision VMs proactively. However, existing AI-based solutions tend to not holistically consider all crucial aspects such as provisioning overheads, heterogeneous VM costs and Quality of Service (QoS) of the cloud system. To address this, we propose a novel method, called CILP, that formulates the VM provisioning problem as two sub-problems of prediction and optimization, where the provisioning plan is optimized based on predicted workload demands. CILP leverages a neural network as a surrogate model to predict future workload demands with a co-simulated digital-twin of the infrastructure to compute QoS scores. We extend the neural network to also act as an imitation learner that dynamically decides the optimal VM provisioning plan. A transformer based neural model reduces training and inference overheads while our novel two-phase decision making loop facilitates in making informed provisioning decisions. Crucially, we address limitations of prior work by including resource utilization, deployment costs and provisioning overheads to inform the provisioning decisions in our imitation learning framework. Experiments with three public benchmarks demonstrate that CILP gives up to 22% higher resource utilization, 14% higher QoS scores and 44% lower execution costs compared to the current online and offline optimization based state-of-the-art methods

    Prediction Based Efficient Resource Provisioning and Its Impact on QoS Parameters in the Cloud Environment

    Get PDF
    The purpose of this paper is to provision the on demand resources to the end users as per their need using prediction method in cloud computing environment. The provisioning of virtualized resources to cloud consumers according to their need is a crucial step in the deployment of applications on the cloud. However, the dynamical management of resources for variable workloads remains a challenging problem for cloud providers. This problem can be solved by using a prediction based adaptive resource provisioning mechanism, which can estimate the upcoming resource demands of applications. The present research introduces a prediction based resource provisioning model for the allocation of resources in advance. The proposed approach facilitates the release of unused resources in the pool with quality of service (QoS), which is defined based on prediction model to perform the allocation of resources in advance. In this work, the model is used to determine the future workload prediction for user requests on web servers, and its impact toward achieving efficient resource provisioning in terms of resource exploitation and QoS. The main contribution of this paper is to develop the prediction model for efficient and dynamic resource provisioning to meet the requirements of end users

    Uncertainty-Aware Workload Prediction in Cloud Computing

    Full text link
    Predicting future resource demand in Cloud Computing is essential for managing Cloud data centres and guaranteeing customers a minimum Quality of Service (QoS) level. Modelling the uncertainty of future demand improves the quality of the prediction and reduces the waste due to overallocation. In this paper, we propose univariate and bivariate Bayesian deep learning models to predict the distribution of future resource demand and its uncertainty. We design different training scenarios to train these models, where each procedure is a different combination of pretraining and fine-tuning steps on multiple datasets configurations. We also compare the bivariate model to its univariate counterpart training with one or more datasets to investigate how different components affect the accuracy of the prediction and impact the QoS. Finally, we investigate whether our models have transfer learning capabilities. Extensive experiments show that pretraining with multiple datasets boosts performances while fine-tuning does not. Our models generalise well on related but unseen time series, proving transfer learning capabilities. Runtime performance analysis shows that the models are deployable in real-world applications. For this study, we preprocessed twelve datasets from real-world traces in a consistent and detailed way and made them available to facilitate the research in this field
    corecore