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Abstract

Most on-premises database architectures employ advanced database features such
as replication (standby databases), consolidation and separation (pluggable databases),
and high availability (HA) through clustered configurations, each with a dizzying num-
ber of metrics to help monitor, assess and notify if errors occur. These advanced
database architectures are explicitly designed to enforce enterprise Service Level Agree-
ments (SLAs), maximising stability while serving critical business functions. In Cloud
architectures, a trade off between the cost of the infrastructure and the ability for cus-
tom configuration has become apparent, therefore knowing what size, configuration
and where to place workloads is most important prior to any cloud adoption if we are
to achieve the benefits that clouds profess to bring. It has been advocated by cloud ser-
vice providers that cloud configurations reduce cost, speed up key business processes
and improve support for agile development lifecycles. However, when enterprises suf-
fer from server sprawl, the ability to individually assess each database system prior
to cloud migration has resulted in paralysis-by-analysis. This can lead to guestimates
of what resources are perceived as being used or required. In this thesis we investi-
gate how to account for complex database architectures and their workloads in clouds,
focusing on accounting, forecasting and capacity planning, workload placement, an-
swering questions that are key to successful cloud adoption such as: What types of
workloads are employed? Do those workloads exhibit complex data patterns such as
trends, shocks or seasonality? What resources are the workloads consuming and re-
quire in the future? How should the workloads be placed to fully utilise database cloud
architectures without compromising existing SLAs? Introducing new techniques and
automation, we remove the high level of manual technical expertise and understanding
currently employed by enterprises, which can be seen as error prone, cumbersome and
time consuming.
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Chapter 1

Introduction

The term ‘Intergalactic Network’ was

a kind of intentionally grandiloquent

way to express the idea, because we

didn’t really expect to get at that right

away. It was all we could possibly do

to make timesharing systems work

Dr. J. C. R. Licklider 1962

The adoption of cloud is now, arguably, an inevitability rather than a choice. When
the idea of inter-connecting computers was first muted in the 1960’s it was deemed one
of fantasy or prophecy by DR J.C.R. Licklider. Dr Licklider had a vision of networked
computers in his internal 1963 APRA memo that, arguably, provides the backbone
or building blocks of how cloud computing has become a reality today, that is to say
clouds are accessed via a network [Kit03]. The ’inter-galactic network’ in terms of
cloud computing and its adoption is still a conundrum to solve as the paradigm of what
was seen as an implementation problem in 1963 by Licklider, who cited that a time-
sharing technology as the technology to connect a network of such centres [Ber05]
can have similar parallels today by raising the question of, what do I need? Presently
clouds store any type of data with an added complexion that access and its provision of
resources is subscribed to as everything-as-a-service at all levels of the technological
stack.

In 2020 Gartner® produced a competitor analysis [RGARHCDF20] highlighting
the complex landscape of Cloud Service Providers and their offerings. Gartner defined
a cloud database management system (DBMS) as being that from vendors that supply

12
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Figure 1.1: Gartner Magic Quadrant for Cloud Database Management Systems
[RGARHCDF20]

fully provider-managed public or private cloud software systems that manage data in
cloud storage (object, distributed data or other propriety storage infrastructure) that
may use multiple data models such as relational, non-relational (document, key-value,
wide-column, graph), geospatial, time series and others.

This market research performed by analysts Gartner, as shown in Figure 1.1, high-
lighted that the traditional DBMS offerings from the main vendors in the market place
such as Microsoft, IBM, Oracle and SAP et al are all moving their database products
to the cloud, thus joining new database vendors such as AWS and Google. This migra-
tion by the vendors has forced the users, who haven’t yet fully adopted cloud, to also
adopt if they are to continue their usage of the vendor software they rely on. Software
vendors who are pushing their cloud prophecy, have an effect on software consumers
having to adopt the paradigm. A feedback loop is created between the customers and
their enterprises reliance on vendor software or technology to satisfy their own busi-
ness needs. This has created a market shift that requires a brief historical synopsis.
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1.1 What are Clouds?

Cloud computing, characterised by the National Institute of Standards and Tech-
nology (NIST) in 2011 [MG11] as: a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction. This cloud
model is composed of five essential characteristics (on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, measured service), three service models
(Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-
Service (IaaS)), and four deployment models (Private, Community, Public and Hybrid
Clouds).

There is a notable omission of Database-as-a-Service (DBaaS) from this 2011
NIST classification, even though DBaaS is widely accepted as a cloud-service. DBaaS
was first muted as far back as 2002 by Hacigumus et al [HIM02]. In-fact, there are
also many other as-a-service terms missing from the NIST classification and for many
years scientists struggled to classify anything-as-a-service in the early years of cloud
computing, as depicted by Duan et al [DFZ+15], who did a study on the classifica-
tions of cloud. For the purpose of this thesis, it is important that we refer to Database
Services provided by cloud architecture (stated by NIST) as DBaaS and Database Ser-
vices that are provided by traditional architecture as on-premises. This is because we
will be providing analysis from experiments with workloads executed on traditional
on-premises architectures with a view to placing a ’shape’ of resources in a DBaaS
cloud.

1.2 Monitoring and Provisioning in Clouds

Cloud provisioning requires a high level of orchestration and automation to allocate
the Cloud Service Providers (CSP) resources and services to a customer. Provisioning
is a key feature in the cloud computing model, because it concerns how a customer pro-
cures resource usage. Most cloud service providers aim to provide this functionality
through an access interface such as a web portal via a single-pane-of-glass. A user can
procure a shape of resources and configuration from a catalog of available resources,
resulting in a slice of topology. For example, Infrastructure consisting of physical
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server, storage and network (CPU, Storage, Memory and network Bandwidth), Plat-

form such as a Virtual Machine (VM) with an Operating system or Software to execute
or run an application. Cloud Provisioning is important because it allows the customer
the ability to scale over a traditional model with on-premises, where the infrastructure
is setup to last for years. Knowing what slice of cloud, involves knowing the size
therefore a critical facet of provisioning is an understanding of capacity planning.

Provisioning through high orchestration such as the automatic installation of a
ready-made functioning VM, is not an easy thing to achieve because the organisation
may require complex management and monitoring of workloads residing on differ-
ent clouds provided by different cloud vendors. Most CSPs provide cloud through
something called compute, which is a combination of CPU, Memory, Networking and
Storage. Other service offerings or ancillary services that improve capabilities such
as machine learning or analytics are provided on top of this cloud configuration. Pol-
icy enforcement in a self-service provisioning model helps allow users to only pro-
cure what is available to them so not to over-procure. Introducing these functions
of provisioning to the right teams all have one common feature, which is configura-
tion and a facet of configuration is capacity and workload placement. Cost control is
achieved through active monitoring of the resources being consumed and then offering
the user notifications via alerts if the limit of thresholds of resources being consumed
are breached. Effective monitoring of the resources allows the customer the scale by
elasticising with the aim of maintaining service (SLAs)

1.2.1 DevOps

DevOps was spawned out of the lack of collaboration between development and
operation teams with their constant friction over the processes or delivery practices
when employing the Software Development Life Cycle (SDLC) as Mahanta et al de-
scribe [RPAM16]. Mahanta et al suggested that DevOps is not only a methodology but
a mindset that has, through orchestration tooling, helped bridge a traditional gap be-
tween teams that often acted separately, which was often exaggerated by on-premises
silo’s. DevOps is also seen as an enabler for the Agile development methodology as
it streamlines continuous delivery. DevOps provides this through pipelines optimisa-
tion, for example, software is committed to a software repository such as GitHub. A
deployment pipeline creates the software artefacts, which are then deployed to Dev,
Test and Staging. At each stage in the pipeline, the relevant notifications and approvals
are issued before, finally, being deployed to the live platforms as a software update as
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Figure 1.2: What do we mean by DevOps? [Mar21]

shown in Figure 1.2 (“Copyright Oracle and its affiliates. Used with permission”).

DevOps is different to Agile even though they have correlations that people may
assume are the same. Both work in conjunction with each other and are critical to
organisations looking to adopt cloud, given cloud implies a high level of orchestra-
tion and automation. Agile seeks to improve efficiency for developers and release
schedules, where DevOps brings together continuous delivery and implementation as
described by Mohammed [Moh17].

1.2.2 AIOps

Artificial Intelligence (AI) for IT Operations (AIOps) was first coined by Gartner
[Gar19] as the use of AI related technologies for traditional IT Operation activities
and tasks. This may include correlation, anomaly detection, error processing and their
resulting log files from said errors or metric consumption. Dang et al [DLH19] pro-
duced a survey into this emerging area as one that is attractive because it allows the
customer or user to proactively monitor for faults rather than use threshold based re-
active monitoring. This is an area that part of our research conducted in this thesis
also explores. Utilising a supervised machine learning engine to perform a prediction
on time series data to inform the user that there could be, ‘potentially’, a problem of
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Figure 1.3: Sample OCI Database Configuration [Mar21]

resource exhaustion. This was a biproduct of our original intention to predict what a
workload could consume prior to placement in a cloud. From a monitoring perspec-
tive, the prediction algorithm proposed and developed as part of this thesis could aid
preventative monitoring for faults attributed to resource exhaustion by predicting them
routinely.

1.3 Cloud Architecture

Understanding cloud architecture is complex because it involves lots of different
concepts such as Compute, Storage, Network, Availability and Security, which can
be sliced in different ways all working in harmony. All the dominant cloud service
providers of Oracle, Microsoft, Google and AWS they have similar concepts but are
different in name as shown in Tables 1.1, 1.2, 1.3, 1.4 and 1.5. All CSPs offer ancillary
services such as Analytics, Big Data, Machine Learning and Artificial Intelligence
(ML/AI), with specialised cloud configurations to fit particular industries. For the
purposes of the thesis we will be focusing on Oracle Cloud Infrastructure (OCI) in
a bare metal (without aa base operating system) configuration, which is particularly
important for the final paper discussed in Section 5.3. We have listed AWS, Azure and
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GCP as comparisons to support that our work could equally work in clouds other than
that of Oracle, but through the support of Oracle who provided access to technology
we have focused on Oracle Cloud Infrastructure.

An example of how cloud can be implemented from an architectural perspective
is shown in Figure 1.3 (“Copyright Oracle and its affiliates. Used with permission”).
Here we have compartments each of which is a slice of cloud consisting of network,
storage, compute split over several Domains located in a Region. From a networking
perspective LBaaS (Load-Balancing-as-a-service) helps provide a High Availability
(HA) function with each Domain having their own subnets networking configurations.
A region is a geographic location and all CSPs provide data centres geographically
located throughout the world to serve customers geographically. In this example we
can see that the compartment consists of enough compute to store databases and appli-
cations with the requisite private and public networks via ports that control access via
accounts implemented through security policies. The database and its optimiser while
reflect the number of CPUs, amount of memory and size of and speed of storage (IO)
are not reflective in Figure 1.3. Intelligent Agents are installed locally on each entity
with access to the server interrogating a workload. Access to the central repository that
stores the metric data can be held remotely (via the agent) or in a data layer within the
Cloud Architecture itself. This is not shown in Figure 1.3.

Regions and Availability Domains
Concept Amazon (AWS) Google (GCP) Microsoft

(AZURE)
Oracle (OCI)

Cluster of Data Cen-
tres & Services

Region Regions Region Region

Abstracted data Centre Availability Zone Zones Availability Zone Availability Do-
main

Hardware Groupings - Multiregional
Resources, Global
Services

Fault Domains Fault domains

Table 1.1: Comparison of Cloud Regions and Availability Domains [Goo21b],
[Cor21e], [Cor21f], [Cor21g]
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Accounts, Tagging ad Organising
Concept Amazon (AWS) Google (GCP) Microsoft

(AZURE)
Oracle (OCI)

Account Account Account Account Tenancy
organising resources Resource Groups Subscriptions Re-

source Groups
Compartments

Metadata to re-
sources

Tags Hashes and eTags Tags OCI Tagging

Multiple accounts
management

AWS Organisa-
tions

NA NA

Table 1.2: Comparison of Cloud Access Architecture [Goo21b], [Cor21e], [Cor21f],
[Cor21g]

Compute Service Mapping
Concept Amazon (AWS) Google (GCP) Microsoft

(AZURE)
Oracle (OCI)

Multi-tenant Vir-
tual Machines

Elastic Compute
Cloud (EC2)

Compute Engine Azure VM’s OCI VM Instances

Single tenant Vir-
tual Machines

Azure Dedicated
Hosts

OCI Dedicated
VM Hosts

Bare Metal hosts AWS EC2 - I3.metal Azure BareMetal
Infrastructure

OCI Bare Metal In-
stances

Managed Kuber-
netes Service and
Registry

Amazon Elastic
Kubernetes Service
(EKS) Amazon
Elastic Container
Registry

Kubernetes En-
gine Container
registry

Azure Kubernetes
Service (AKS)
Azure Container
Registry

Oracle Container
Engine for Kuber-
netes OCI Registry

Serverless Lambda Cloud Functions Azure Functions Oracle Functions

Table 1.3: Comparison of Cloud Compute Architecture [Goo21b], [Cor21e], [Cor21f],
[Cor21g]

1.4 Traditional Enterprise On-Premises Architecture

Prior to cloud computing, organisations utilised I.T. attached to data centres which
the organisation was responsible for. Within these data centres physical infrastruc-
ture was installed causing organisations to spend vast amounts of money in procuring
and maintaining this equipment though Capital Expenditure (CAPEX) and Operational
Expenditure (OPEX) financial models. This created financial strains because it was
an up-front investment, thus architects were employed to create architectural patterns

that were flexible to enable SDLC yet easy enough to maintain. N-Tier architecture
emerged as the dominant architectural pattern that could achieve these goals. An ex-
ample of legacy customer database architecture utilising an N-Tier approach can be
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Storage Service Mapping
Concept Amazon (AWS) Google (GCP) Microsoft

(AZURE)
Oracle (OCI)

Object Storage AWS Simple Stor-
age (S3)

Cloud Storage
Cloud Storage
Nearline

Blob Storage Object Storage

Archival Storage AWS S3 Glacier Cloud Storage
Coldline

Blob Storage
(archive access
tier)

Archive Storage

Block Storage AWS Elastic Block
Store (EBS)

Compute Engine
Persistent Disks

Managed disks Block Volumes

Shared File Sys-
tem

AWS Elastic File
System

Azure Files File Storage

Bulk Data Trans-
fer

AWS Snowball Transfer Appliance
; Transfer Service

Import/Export
Azure Data Box

Data Transfer Ap-
pliance

Hybrid Data Mi-
gration

AWS Storage gate-
way

ZFS / Avere StorSimple Storage Gateway

Table 1.4: Comparison of Cloud Storage Architecture [Goo21b], [Cor21e], [Cor21f],
[Cor21g]

found in Figure 1.4. In this diagram we see several configurations of database (Sin-
gle and clustered) running on VMs. These databases then employ standby databases
systems that are also running on VMs. The storage tier is accessed via mount points
through Network Attached Storage (NAS) to a Storage Area Network (SAN).

1.4.1 N-Tier Architecture

N-tier can also be referred as Multi-tier architecture because software is separated
out into different tiers both physically and logically. By enforcing separation it allows
each tier to be delivered to the top of its capacity without necessarily impacting another
tier. For example, the apps tier is separated from the database tier ensuring that the
application does not take resources from the database located in the data tier. There are
three main tiers but the term N meaning any number from 1, allowing the system to be
further dissected into separation. For example the data tier being further disseminated
into further tiers such as storage and database to incorporate Storage Area Network
(SAN)/ Network Attached Storage (NAS) technology:

• Presentation tier - The top-most level for the application is the user interface
with the role being to translate the task being requested by the application, into
a result that the user understands.
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Database Service Mapping
Concept Amazon (AWS) Google (GCP) Microsoft

(AZURE)
Oracle (OCI)

Managed
Relational
Database
systems

Amazon Rela-
tional Database
Service (RDS)
Amazon Aurora

Cloud SQL Cloud
Spanner Cloud-
SQL Cloud SQL
(MySQL, Post-
gres)

SQL Database
Database for
MySQL Database
for PostgreSQL

Oracle Autonomous
Transaction Processing
(ATP), Oracle MySQL
Database Service

NoSQL Amazon Dynam-
icDB

Cloud Datastore,
Cloud Bigtable

Table Storage Cos-
mos DB

Oracle NoSQL Database
Cloud Service, Oracle Au-
tonomous JSON Database
(AJD)

Data Ware-
housing

Amazon Redshift BigQuery Synapse Analytics Oracle Autonomous Data
Warehouse (ADW), Ora-
cle MySQL HeatWave

Table 1.5: Comparison of Cloud Database Services Architecture [Goo21b], [Cor21e],
[Cor21f], [Cor21g]

Figure 1.4: Legacy N-Tier Architecture
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• Logic tier - This tier processes, coordinates and makes logical decisions such
as calculations and evaluations on the data as it moves around or between the
presentation and data tiers.

• Data tier - The information is stored and retrieved for a database or filesystem.

Since the advent of cloud one major problem is how to migrate or port these N-

Tier architectures to cloud raising the key question of cloud portability. Kostoska et al

[KDGR15] specifically looked at this area, proposing, that given a system portability
problem, one may need to understand the relationships and dependencies between the
services and application prior to cloud migration. There are several ways to do this
such as Topology and Orchestration Services for Applications (TOSCA). In recent
years all cloud vendors provide portability tooling or lift-and-shift capability by either
supporting the application if it is open stack or migrating the data itself. This reverts
the question back to one of capacity: what size is required and how do I place my
application when porting or shifting my applications to cloud?

1.5 Metrics and Workloads

Science uses quantitative measurements by putting a value on something, for exam-
ple, the rate of reaction by measuring how many seconds it takes for change to happen.
Computer science also strives to provide software metrics as a way to measure a soft-
ware system or process of some property. All operating systems and software allow
administrators the ability to view how the system(s) are running from a perspective,
with metrics providing the ability to do so. This enables administrators in aiding di-
agnoses should a process or system begin to slow down, they execute commands and
identify the process responsible. CSP’s provide clouds based on measurements of re-
sources, namely storage and compute, with compute being mainly made up of CPU,
local OS Storage and Memory. However, there are many metrics that one could be in-
terested in if a system requires, for example, network throughput. Therefore if one is to
map or compare one system to another, one must obtain the correct measurement from
the right metric to correctly and accurately capacity plan a workload. In our first pa-
per we focused on identifying the correct metrics at the Database layer of on-premises
N-tier architecture. With a view to obtaining a trace of metric data from a database
workload that can be mapped to a cloud architecture. Database Optimisers work by
taking the configuration from their surroundings. For example, the number of CPUs,
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amount of Memory and Storage, which influences the performance of the task they are
performing (SQL). The larger and/or faster the number of machine resources, such as
an increase or memory or CPU speed, the greater the number/speed of tasks that can
be processed.

The larger and faster the machine the more tasks and efficiency of the database.
In Section 5.1, our first paper, we tackle how some configurations in the Operating
System can also influence the execution of workload or if the VM has been assigned
more CPUs by the hypervisor.

1.6 Capacity Planning

IT capacity planning involves estimating the storage, computer hardware, software
and connection infrastructure resources required over some future period of time. A
common concern of enterprises is whether the required resources are in place to han-
dle an increase in users or number of interactions. Capacity management is concerned
about adding central processing units (CPUs), memory and storage to a physical or
virtual server. This has been the traditional and vertical way of scaling up web ap-
plications, however IT capacity planning has been developed to include the goal of
forecasting the requirements for this scaling approach.

A discrepancy between the capacity of an organization and the demands of its cus-
tomers results in inefficiency, either in under-utilized resources or unfulfilled customer
demand. The goal of capacity planning is to minimize this discrepancy. Demand for an
organization’s capacity varies based on changes in production output, such as increas-
ing or decreasing the production quantity of an existing product, or producing new
products. Better utilization of existing capacity can be accomplished through improve-
ments in overall equipment effectiveness (OEE). Capacity can be increased through
introducing new techniques, equipment and materials, increasing the number of work-
ers or machines, increasing the number of shifts, or acquiring additional production
facilities. For example, in Equation 1.1 capacity is a function of the number of ma-
chines (M) needed to satisfy the tasks (T) to be satisfied in the available utilisation (U)

of the machines efficiency (E). There are other definitions of capacity that could be
independent of utilisation too. This equation (1.1) is only an example to highlight the
problem of capacity planning.

Capacity = f (M,T,U,E) (1.1)
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Systems, arguably, metamorphose over time through the recursive nature of the
SDLC as more functionality is added or features employed to enforce SLAs and im-
prove QoS. This is an inevitability of all systems that are employed for long periods
of time, coupled with traditional I.T. working in silos has created some notable gaps if
one is to adopt cloud. For example, how to map key metrics that make-up a system at
each layer of N-tier architecture to Cloud architectures. How to forecast all workloads
in an advanced database system (Cluster, Pluggable or Standby) and place workloads
together to maximise Total Cost of Ownership (TCO) while satisfying SLA, SLOs or
QoS. We specifically tackle this question in the related work Section 3 of this the-
sis, especially if those systems employ advanced database features such as clustering,
replication or pluggable databases. We provide actual results on any evaluations per-
formed and outcomes of the algorithms tested on real world cloud configurations as
we discuss in our papers in Section 5.

• How do we account for these complex architectures via metrics, measurements
and workloads?

• How do we categorise or differentiate one system and its workload from another?

• How do we map one architecture (on-premises) to another (cloud)?

1.7 Forecasting or Predicting the Future

A critical function of any capacity planning is to stay ahead of growth and when
viewed graphically, can be represented through time-series data that extends upward
and to the right of any x,y linear chart as shown in Figure 1.5. Forecasting is used
extensively in econometrics and is becoming more prominent in I.T. especially with
the introduction of Machine Learning that can scale and speed up forecasting models,
which we discuss in our second piece of work in Section 5.2. Forecasting is construct-
ing new data points beyond what is already known, if the line goes up insinuating
trend. All systems exhibit peaks and troughs that can be mapped to system usage such
as surges in users. For example, an OLTP system may not be busy at night when, activ-
ity is light compared to the day and this can be reflected in the time-series data. Some
systems also exhibit particular behaviours periodically. For example, consider a retail
banking system that stores account information of its customers. Those customers are
paid with a frequency of daily, weekly or monthly but mostly monthly. Therefore the
system is more likely to be busier at the end or beginning of the month as that is when
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Figure 1.5: Forecasting CPU Metric Data

most people have most disposable income and bill payment activity takes place. Iden-
tifying these patterns in the system usage are crucial to forecasting, as shown in Figure
1.5.

Consider a metric such as CPU that has measurements captured on its usage every
15 minutes, producing 96 observations in any 24 hour period. A 15 minute capture
period equates to 672 (weekly), 2688 (monthly) and over 8064 quarterly (3 months).
Even if we are to reduce the capture rate to hourly it only reduces the data points to
approximately 720 hourly data points over a 3 month period. If we are to understand
the system usage and the complex exhibits in the data signal (patterns and trends)
from the time-series data, one must ensure that we capture the correct measurements
at the correct time window. Simply capturing a week will miss the surge in users
of a financial accounting system if customers are paid monthly. Equally, the bank
is required to submit financial information for tax purposes periodically, causing the
analysis window to elongate beyond three months to potentially a year. Being able
to provide a forecasting model that can complete in a timely manner, within a few
minutes, is also key to user acceptance.

Consider one two-node database cluster that is an Online Transaction Preprocess-
ing System (OLTP) of the financial accounting example, previously given. If we are
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required to understand the CPU growth (the amount of CPU cycles consumed to com-
plete a task), then an understanding of several things is required, such as the fact that,
configuration of certain parameters at an operating system level can influence CPU.
The Number of CPUs assigned to the workload, especially in clustered environments,
and the size and model of the CPU. In a clustered environment, one CPU metric has
now transposed into two CPU metrics, one from each node. Lots of systems employ
multiple nodes of any number from 2, therefore a question of scale becomes a sig-
nificant challenge, especially if we are to capture the historical picture of the system,
through the system, multiple metrics that satisfy the compute aspect of cloud (CPU,
Storage and Memory). Evaluating multiple models in a timely fashion was also part
of the bigger problem of scale coupled with multiple metrics of a database can vary
between one node and 32 nodes, although the standard node configuration is usually
2-4 nodes. It became apparent that there was a need to filter the number of models to
be evaluated in a timely fashion. The key questions pertaining to Capacity Planning
and performing a forecast are:

• How do we understand the historical usage of the system and its workload?

• How can we predict what the future resource consumption of the workload will
be?

• How do we scale to forecast all the metrics that make up a system?

• How do we scale to forecast all the system that make up an estate?

• Short Term - How do we predict when resources will run out: proactive moni-
toring?

• Long Term - How do we perform capacity planning, whether that is on-premises,
off-premises or involving non-cloud environments?

1.8 Research Context

Adopting clouds is non-trivial and one of the main barriers to cloud adoption is
understanding costs, as Khajeh-Hosseini et al [KHGSS12] suggested in their 2010
analysis. They suggested that costs are complicated to meter in cloud, because resource
usage is not easily accounted for and the lack of a cloud toolkit makes cloud adoption
tricky. Understanding resource consumption accurately is part of capacity planning,
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and a quick survey of AWS, Microsoft, Google and Oracle all show basic cloud costing
tools yet stop short of proper capacity planning tooling or tooling that can accurately
forecast future usage or place workloads together in an efficient manner. All CSP’s
provide a lift-and-shift capability, for example, moving a container or VM with the
workload in its entirety. The responsibility to provision the correct size of target prior
to a migration or cloud adoption lies with the consumer who requests resources.

The research context is to focus on capacity planning by:

1. In the first paper, we understand the approach to capacity planning by captur-
ing the key metrics that identify resource consumption. This is important and
relevant from on-premises complex database architectures with advanced fea-
tures such as replication, clustering and pluggable databases, with or without
containerisation.

2. In the first paper, we analyse the signal obtained from the metrics, so that we
can understand how the architectures influence workloads. Understanding how
workloads change depending on the task they are asked to fulfil, and accounting
for these in advanced architectures, is paramount. This is often reflected in the
signal

3. For any procurement of IT, a capacity planning exercise is performed and part of
that exercise is an estimation of future resource consumption is. However, it is
not well understood how the intricacies of complex usage patterns can influence
future estimates, especially in systems that exhibit volatile data signals, which is
discussed in detail in the second paper.

4. In the second paper we also propose that current techniques available do not
scale when we are consolidating hundreds of database systems each with many
metrics, thus a scaleable approach that leverages machine learning holds promise
for providing an accurate forecast of future resource consumption at scale.

5. In the final paper, we propose that once the workloads are identified, how do we
place them in the target architecture efficiently without compromising SLAs or
clustered architectures. Current bin-packing algorithms do not account for ad-
vanced database features such as clustering or consolidated / isolated pluggable
databases. This is a manual process taking expertise and time to accomplish.
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1.9 Thesis Aims, Objectives and Contributions

Aim: To provide a firm foundation for capacity planning for databases with the
aim of cloud adoption, including placing workloads in a cloud architecture without
compromising advanced features such as clustering, replication (standby databases) or
consolidation (pluggable databases) with the minimal resource wastage.

1.9.1 Objectives

• To identify the current footprint of the database including any advanced features
such as Standby, Clustering and Pluggable databases by understanding the key
metrics needed to account for advanced database workloads prior to cloud adop-
tion.

• To perform a long-term capacity planning exercise (forecast) of what the future
workload consumption will be, whether that is cloud, on-premisses, off-premises
or non-cloud.

• To perform a short-term capacity planning exercise to predict when a workload
will run out of resources to aid and prioritise workloads based on size or config-
uration prior to cloud adoption.

• To map and assign the advanced database workloads in a database cloud archi-
tecture (OCI) without compromising advanced database features such as Standby,
Clustering and consolidated Pluggable configurations in such a way to maximise
the target resources and their utilisation.

1.9.2 Empirical Evaluation

In terms of the empirical evaluation, the following contributions have been made:

• We report the results of an empirical analysis of the metrics for several represen-
tative workloads on diverse real-life configurations

• An investigation into the application of time series modelling techniques such as
ARIMA and HES (defined in Section 3.3.1) to perform workflow predictions for
OLTP and OLAP workloads.
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• An empirical evaluation with controlled workloads at the database layers of the
technological stack such as Database Instances that employ advanced database
features.

• A demonstration of the applicability of the approach in real world workloads
hosted by Oracle Advanced Customer Services.

• We identify the challenges and opportunities presented by advanced architectural
features, when placing database workloads into complex cloud infrastructures
from the empirical evaluation undertaken and the extra steps required prior to
cloud adoption.

• We evaluate the algorithms in experiments and real world use cases that involve
the placement of workloads into advanced target cloud architectures (OCI).

1.9.3 Contributions

The following contributions have been made

• We show in paper ’DBaaS Cloud Capacity Planning - Accounting for Dynamic

RDBMS System that Employ Clustering and Standby Architectures’ in section
5.1, several contributions and lessons. A different approach to accounting for
database architectures that employ advanced configurations is required as our
experiments and analysis show.

1. When Capacity Planning, one should obtain metrics at an instance-by-

instance level and not for the global clustered database as a whole. The
single most important reason for this is that a cluster can run in an uneven
manner if QoS is applied, resulting in one node consuming more resource
than another node in the cluster.

2. Metrics need to be captured at different layers of the infrastructure in ad-
vanced configurations to avoid caching mechanisms which may skew true
usage. For example, the storage layer employs caching to speed up IO in-
tensive operations. Hypervisors and VMManagers assign CPU with some
of the CPU being directed as support overhead, therefore the database may
assume it has a full CPU core when in fact it has not.

3. Operating System configuration has a profound effect when comparing one
architecture to another as we observed in one experiment. For example,
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Thread(s) per core influenced the execution of a OLTP workload on one
VM to another resulting in increased efficiency. Accounting for operating
system configurations is important when capacity planning, which may be
overlooked.

4. Advanced database architectures such as Standby Databases present a com-
pletely different footprint to that of the live database and when capacity
planning, one should not assume that a standby database will be a mir-
ror reflection of resource consumption to the primary database as we show
in our experiments. Also the way that standby databases operate means
that certain metrics are not available, such as physical reads/writes, CPU
and Memory, thus gathering metrics at the database layer is impractical.
This results in the need to gather metrics at the host layer, which intro-
duces a layer of complication should the host house more than one standby
database.

5. In environments that employ advanced database architectures such as a
clustering, if a workload running on one node fails over to other nodes in
the cluster one should not assume that the properties of the composed work-
load being failed over will follow obviously from its constituents. Upon
fail-over a new database footprint is created which will influence any ca-
pacity planning exercise.

• In our second piece of work titled ’Database Workload Capacity Planning using

Time Series Analysis and Machine Learning’ in Section 5.2, we present tech-
niques that are used for forecasting with a focus on short and long term capacity
planning. Short-term capacity planning is the immediate usage and a forecast
performed with a prediction over several days. Long-term capacity planning re-
quires a forecast on data over many months with a prediction over many weeks.
Several contributions and lessons where achieved were a novel approach was
created.

1. We are able to understand the complex data patterns exhibited by database
architectures that employ advanced database features such as clustering and
pluggable databases. We can identify how workloads can exhibit trend, sea-
sonality and exogenous shocks that enable us to map them back to events
in the system’s behaviour

2. We present a novel proposal for the self-selection and self-configuration of
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forecasting models such as Seasonal Automated Regressional Integrated
Moving Averages Exogenous Variables (SARIMAX) and Holts Exponential
Smoothing (HES) extended to Trigonometric Seasonality Box-Cox ARMA
Trend Seasonal components (TBATS) for use with a given workload. We
introduce Fourier Transforms on data that exhibit multiple seasonality (com-
plex patterns) with the aim of increasing accuracy.

3. We leverage Supervised Machine Learning within the forecasting tech-
niques that first learn the signal exhibited from the trace obtained from the
metric data before performing the prediction. By utilising machine learning
we reduce the amount of compute time taken to crunch the data and per-
form the prediction significantly from around 11-15mins without, Machine
Learning, per metric to 1-2 mins with Supervised Machine Learning.

4. The Autocorrelate Function (ACF) and Partial Autocorrelate Functions (PACF)
allow accounting of the time series into a stationary series that can be visu-
alised through a correlogram. By automating this step we can significantly
reduce the number of models per metric.

5. The work that we set out and cover in our the second paper, presents the
novel approach to forecasting on volatile data exhibited from database ar-
chitectures that employ advanced features. This work has resulted in a
patent being filed through the Oracle Corporation in the United States and
European Union.

• In our final piece of work titled ’Placement of Workloads from Advanced RDBMS

architectures into Complex Cloud Infrastructure’ shown in Section 5.3, we tackle
placement of workloads, which provided several contributions and lessons that
were achieved resulting, in a novel approach being created.

1. We identify the challenges and opportunities presented by advanced ar-
chitectural features such as clustering and consolidated database environ-
ments employing pluggable databases, when placing workloads into com-
plex cloud infrastructure such as Oracle Cloud Infrastructure (OCI).

2. We present a new vector bin-packing algorithm for provisioning database
workloads that takes into account fine-grained monitoring information and
advanced architectures such as clustered databases that enable placement
without compromising High Availability (HA) configurations.
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3. We present an approach that identifies, once the workloads have been fitted,
if further efficiencies can be obtained from the newly consolidated cloud
workloads, advising if elastication is required.

4. We evaluate the algorithms in real world use cases of varying workload
complexity and present the findings.

5. The work that we set out and cover in our the third paper resulted in a
patent being filed through the Oracle Corporation in the United States and
European Union.

1.10 Thesis Structure

This thesis is presented according to the guiding principles of a Journal Format.
The core collection consists of published peer-reviewed papers and one manuscript
submitted, which I have produced during my PhD studies: In all the first-authored
publications, I contributed to the main ideas proposal, research development, research
planning, literature review, writing, evaluation and analysis of the results. My super-
visor, Norman Paton, also contributed to the ideas, proofread the papers and approved
the results. To comply with the Journal Format policy, the self-contained papers are
presented as they appear in print, with their respective abstracts, figures and references.
Hence, there is a reasonable amount of repetition.

• Title: DBaaS Cloud Capacity Planning - Accounting for Dynamic RDBMS Sys-
tem that Employ Clustering and Standby Architectures

Authors: Antony Higginson, Clive Bostock, Norman Paton, Suzanne Embury

Published: In Proceedings of the 20th International Conference on Extending
Database Technology (EDBT), Published by OpenProceedings,
March 21-24 2017,
Venice, Italy,
Pages 687 - 699,
ISBN: 978-3-89318-073-8,
https://10.5441/002/edbt.2017.01.

• Title: Database Workload Capacity Planning using Time Series Analysis and
Machine Learning
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Authors: Antony S. Higginson, Mihaela Dediu, Octavian Arsene, Norman W.
Paton, Suzanne M. Embury.

Published: In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, Published by ACM,
June 2020,
Pages 769–783,
https://doi.org/10.1145/3318464.3386140.

• Title: Placement of Workloads from Advanced RDBMS Architectures into Com-
plex Cloud Infrastructure

Authors: Antony Higginson, Clive Bostock, Norman Paton, Suzanne Embury

Published: In Proceedings of the 20th International Conference on Extending
Database Technology (EDBT),

Submitted to ACM,
March 21-24 2017,
Venice, Italy,
Pages 687 - 699,
ISBN: 978-3-89318-073-8,
https://10.5441/002/edbt.2017.01.

1.11 Chapters

1.11.1 Chapter 2

In Chapter 2 we give a brief description of the historical journey to cloud from on-
premises architecture and the differences, architecturally, of cloud. We discuss what
makes the cloud proposition an attractive one to organisations, including the types
of clouds organisations opt for and their distinctive configurations. We look at the
challenges of cloud adoption that organisations face, including the steps required and
why capacity planning is integral to cloud adoption. This chapter sets the scene for
why the cloud proposition is one of inevitability rather than choice.
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1.11.2 Chapter 3

In Chapter 3 we describe the experimental setup in detail that was used to execute,
obtain, extract the metric data. We look at the available benchmarks that the industry
use when comparing one hardware architecture to another and identifying or describing
a workload. We describe the workloads in detail and the specific traits that differentiate
one type of workload from another. This chapter sets the scene for the experiments we
conduct to evaluate our work.

1.11.3 Chapter 4

Chapter 4 reviews the fundamental semantics of current techniques for capacity
planning when accounting for databases and adopting cloud. The semantics refers to
how to extract metric data from the correct level of the technological software stack
such as the operating system, database and individual instances. We look at the ex-
isting techniques for forecasting and the various models such as time series analysis
compared with other models such as stochastic and optimising solutions used today.
When it comes to placement of the workloads we cover the various bin-packing algo-
rithms such as First-fit decreasing (FFD) and optimal solutions.

1.11.4 Presentation of Published Work

In Chapter 5 we present a collection of published papers that covers specifics of
the work from Chapter 4. These papers have been published in respected international
conferences and form the bulk of the thesis. For each of the published works we also
introduce the impact factor and journal ranking as covered by Resurchify [Met21].

1.11.5 Concluding Remarks

In Chapter 6 we provide an overall conclusion of the thesis commenting on the
significance of the results from our experiments. We discuss limitations of the work
and how future work can be undertaken in taking the research further.

1.11.6 Appendix

There are two appendices A and B. Appendix A is the license and permissions from
the published pieces of work for use as part of this Thesis. Appendix B represents the
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nuts and bolts, such as SQL queries, Python Libraries, OS, Database Versions and
Products used in the experiments that supported the work.



Chapter 2

The Cloud Proposition - The Journey
to Cloud Adoption

Invention comes in many forms and

at many scales. The most radical and

transformative of inventions are often

those that empower others to unleash

their creativity - to pursue their

dreams.

Jeffrey P. Bezos, Founder

Amazon.com Inc

2.1 Historical Journey

Amazon Internet Solutions, started in 2006, described by Geoff Bezos, who was
the CEO up until 2021, compared cloud to the utility company from the early 1900’s.
A factory needing electricity would build its own power plant; once the factories had
the ability to get electrical energy from a utility, the demand for expensive private
plants diminished. AWS had noticed that customers wanted to run Microsoft products
on AWS. Microsoft, themselves had a conundrum too; in 2006 Windows Azure was
created and Microsoft struck a deal with AWS in 2008 through Bob Muglia (Head of
Servers and Tools Division at Microsoft). Muglia agreed to add Amazon to a program
for companies that rent Microsoft tools to the their own customers and pay Microsoft
at the end of each month. Although Amazon was not telling investors what they were

36
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doing there was an indicator as the customer base of Amazon grew very quickly, noti-
fying Microsoft of the potential for Cloud as a Business [Day16]. Arguably the dawn
of the cloud arms race had started. Google and Microsoft launched competing services
but Amazon was already capturing customers as they were first to launch. It wasn’t
until 2011 that Bob Muglia was removed for Satya Nadella (Future Microsoft CEO in
2014) did Microsoft truly push for Cloud Computing and the birth of Microsoft cloud
(Azure). Google Cloud Platform (GCP) with its Google App Engine was launched in
2008 with the modus operandi of allowing developers to create web tools on google
infrastructure. The goal being: make it easier to get started and scale when the app

has significant traffic and users.

A common theme was beginning to surface and that was: the procurement of IT
to satisfy business requirements efficiently and at scale had become slow and cumber-
some, arguably because of N-Tier architectures. This resulted in a change of the status
quo from the big traditional vendors and their on-premises software such as Microsoft,
Oracle and IBM. Google [RGARHCDF20] have since become one of the dominant
leaders in Cloud Computing along with Amazon. Not all vendors joined the arms race
at the same time; Larry Ellison (Oracle CEO) was not an advocate of cloud to start
with, and in 2009 dismissed cloud computing as a hype at first [LEwEZ09]. His crit-
icism of some vendors stating their software is in a ’cloud’ when it was attached to a
network, while true, arguably caused Oracle to be late in adopting cloud, which he was
criticised for by the industry. Oracle have since become one of the dominant cloud
vendors in recent years [RGARHCDF20]. Many commentators [Day16], [Til21] or
analysts are now focusing on the battle or arms race that has surfaced between cloud
vendors for cloud supremacy. Like every war, there is always collateral damage, which
the customers feel. The affect on customers is the dreaded vendor lock-in that cus-
tomers tried to avoid in the previous user license agreements of the 1980’s, 1990’s and
early 2000’s. Customers opting for multi or hybrid cloud solutions have created a new
toxic mix of, arguably, the old problems of I.T. and Software development, but at a
much faster pace.

Broadly speaking, most enterprises follow a System-Development Life Cycle (SDLC)
that has evolved from a five stage process muted by Redack ([Rad05]) to a seven stage
process as described by Langer in 2008 [Lan08]. The SDLC enables a newly de-
veloped project to transition into an operational one supporting or implementing a
business function. This, never ending, cycle has evolved over the years and while the
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Figure 2.1: Software Development Lifecycle (SDLC) - Highlight focus

methods vary widely from enterprise-to-enterprise they have a common goal: to de-
velop software as cheaply, efficiently and effectively as possible. Cloud aims to enable
this goal with development methodologies such as Agile that tend to wind together
these processes into a tight or rapidly repeating cycle. Waterfall type development
methodologies tend to take each step in turn, where outputs from one become inputs
to another. A high-level of the phases are as follows and are shown in Figure 2.1. In
Figure 2.1 we adapt the SDLC where the work in this thesis is relevant as highlighted
by the red ellipses. We discuss this is detail in Sections 1.9, 1.9.1 and 1.9.2 .

• Planning - Resource allocation (human and materials), capacity planning, project
scheduling, cost estimation, provisioning

• System Analysis and Requirements - The business communicates with the IT
teams to convey their requirements for new development and enhancement, usu-
ally involving stakeholders and subject matter experts.

• Systems Design - Architects and developers begin to design the software and
architecture through established processes and frameworks such as The Open
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Group of Architecture Framework (TOGAF). This may involve new technology
or the promoting existing technology with the aim of employing standardisation.

• Development - This phase produces the software, and depending on the method-
ology employed, it could be timed-boxed sprints such as Agile or a single block
of effort like the Waterfall method. The aim is to produce working software
quickly

• Integration and Testing - Arguably the most import phase, this aims to test qual-
ity of software through unit, integration, performance and security testing.

• Implementation and Deployment - Usually this is a highly automated phase via
continuous or application release tools.

• Operations and Maintenance - Software is continually monitored to ensure proper
operation. Bugs and defects discovered in Production are reported and responded
to, feeding back into the software development phase.

With the introduction of cloud and orchestration methodologies such as DevOps, some
of the phases from SDLC are now highly automated. Achieving speed and efficiencies
through environment replication, orchestration, effective monitoring and rapid deploy-
ment via environment provisioning, all result in a positive case for cloud adoption.
Knowing what, where and by how much, arguably takes a prominent role.

However, simply adopting cloud is not as easy as one might believe because cloud
has the added complexity of the infrastructure being remote or unknown, as it is ac-
cessed over a network ‘somewhere’ and maintained by ‘someone’. Therefore, most
adoptions of cloud infrastructure will involve some form of re-platform, upgrade, new
architecture implementation and/or changing of financial models such as Capital Ex-
penditure (CAPEX) and Operational Expenditure (OPEX) into a new model of pay-

as-you-go subscription based Cloud Expenditure (CLOUDEX). Software Vendors are,
proverbially, asking their customers to not only move house but move country, adopt a
new language and adhere to the new rules that implies. Cloud vendors have, however,
gone some way to make adoption seem less problematic than perceived by introduc-
ing simple lift-and-shift models. The cloud arms race seems to be focusing of which
vendor can migrate the greatest number of customers and their systems to their cloud
platform quickest.
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Figure 2.2: DBaaS evolution from traditional I.T.

2.2 Cloud Features and Market Forces

Traditionally, I.T. was consumed via data centres where applications or systems
consisting of groups of applications interwoven or interoperating together were siloed.
This silo’d approach allowed for separation between Dev, Test or Quality Assurance
(Pre-production) and Live. Virtualisation allowed for the data centres and their silos to
become more flexible through zones. For example a large physical piece of hardware
(Server) could be virtualised into several servers in a zone to serve a particular group
of applications, as shown in Figure 2.2. To protect data and, to a certain extent, create a
business continuity plan, traditional failover, backup and recovery routines where then
applied to these silos.

This created challenges for organisations that worked in this way specifically, it
was expensive as the IT utilisation was directly funded from the business revenue via
their financial models such as CAPEX or OPEX and servers were often under utilised.
For example, consider a two-node cluster each node running at 48% utilisation. If one
server fails then the traffic or users fail over to the single remaining node, which would
increase to 98% utilisation. The moment the two-node cluster increases to 51% utili-
sation per node, then a third node had to be added, bringing down the total load. This
complexity was often offset by introducing Quality of Service (QoS) that was assigned
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to prioritise certain business functions ’in the event’ of failure, to the detriment of the
organisation that argues that all functions are critical. This under utilisation of I.T.
resources and the inflexibility of moving data from different silos created a low return
of investment (RoI) and increased the total cost of ownership (TCO). Expanding I.T.
in silos required bigger physical hardware, resulting in more servers, larger silos and
more data centres. Organisations then had the added complexity of these data centres
being close to their premises, to reduce latency issues.

Consider a small to medium sized enterprise (SME) such as a law firm with a few
offices each with a team of solicitors. This added cost and complexity of employing
a team of I.T. professionals to administer their I.T. could be the difference between
success and failure of a business operating on tight margins. Cloud, as a concept,
practically removed this worry that many SME’s faced, one that Amazon arguably
was first to grasp. AWS rented out the usage of Microsoft applications, removing the
need to employ I.T. professionals or skill up software administrators because that risk,
complexity and cost was shifted to AWS in the event of failure. As long as there was
internet access and the use of Virtual Private Networks (VPNs), an SME could function
normally.

Consider a larger organisation with its own data centre, working in a traditional
siloed approach. The SDLC required that testing be done thoroughly to avoid outages
yet because there was separation in silos this meant breaching networks to copy or re-
store data from backups. Elongated development times were often seen as restrictive to
the development teams, with little or no like-for-like environments to develop against.
The aim of the SDLC is to develop software as cheaply, efficiently and effectively as
possible, yet the siloed approach created friction to this happening.

Cloud economics involves several facets but one of the biggest drivers is economies
of scale. Economies of scale is an important one to understand, as with cloud it avoids
the initial ’up-front’ investment often associated with a CAPEX financial model. In
2010 Microsoft produced a white paper specifically looking at the economics of cloud
(Harms and Yamartino [HY10]). In their study they looked at Supply-side savings,
Demand-side aggregation and Multi-tenancy efficiency, concluding there were three
main drivers to economies of scale. These were larger data-centres can deploy com-
putational resources at significantly lower cost than smaller ones; demand pooling im-
proves the utilisation of these resources and multi-tenancy lowers application mainte-
nance labour costs. Therefore knowing what slice or cloud to rent for how long is a
requirement to fully maximise the resources, is a critical facet if cloud adoption is to
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be successful or not.

2.3 Different Types of Clouds

2.3.1 Public Clouds

Public Clouds are the most common type of cloud computing environment. Mi-
crosoft Azure, Oracle Cloud Infrastructure, Google Cloud Platform and Amazon Web
Services Cloud are all examples of a public cloud. In a public cloud you share the same
Infrastructure, Storage, Network Devices and Compute with other organisations. Sep-
aration is managed through ’tenants’ and ’domains’ with a security layer that keeps the
data secure, allowing users to manage their access via a web browser. Typically these
types of configurations are used to provide web-based mail, online office applications
or development and testing environments.

2.3.2 Private Clouds

A private cloud consists of computing resource that are exclusive to one business
or organisation. A private cloud can be physically located locally such as on-premises
of the organisation or remotely at the CSP. One of the key differences between a public
and private cloud is that the cloud services and infrastructure are held within a private
network therefore the cloud is dedicated solely to the organisation as shown in Figure
1.3. This type of cloud configuration allows for more flexibility, control or scalability,
as the resources are not shared with other organisations.

2.3.3 Hybrid Clouds

Hybrid clouds are a combination of an organisation requiring computing resources
that are shared and unshared. These types of configurations can be much more compli-
cated especially with configurations requiring HA such as clustering and replication.
Consider the example in Figure 2.3 provided as a Microsoft SQL Hybrid Server solu-
tion by Amazon AWS. It shows how database services can be shared between the data
centre on-premises and remotely via Amazon Virtual Private Cloud. The connection
is facilitated via a network connection and the creation of a Distributed Availability

Group that spans both locations and configurations. These types of configurations are
especially attractive for organisations that require advanced database features such as
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Figure 2.3: How to architect a hybrid Microsoft SQL Server solution using distributed
availability groups [Siv18]

failover, clustering or replication. These types of systems are usually running core
critical business functions.

There are several cloud service models described as IaaS, PaaS, DBaaS and SaaS
shown in Figure 2.4. These service models are arguably increasing with the inclusion
of Analytics and Machine Learning Layers or serverless as scientists struggle to clas-
sify services in the anything-as-a-service [DFZ+15]. NIST also do not classify DBaaS,
however, for the purpose of the thesis, and given most software vendors offer different
types of database services such as DataWarehousing, NoSQL and High Performance
Database on top of normal database, we include DBaaS.

2.3.4 IaaS

Infrastructure as a service (IaaS) is the physical hardware needed to run essential
computing services such as the Data Centre, Operations needed to maintain the assets
within the data centre as well as the Physical Hardware, Servers, Storage, Networking
and Security (Firewalls). IaaS allows the consumer to by-pass the cost and complex-
ity of purchasing and maintaining the physical data centre infrastructure and physical
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Figure 2.4: Cloud Service Models [Mar21]

servers. Each component of IaaS is offered as a service, for example, the storage ser-
vices may encompass many different types of storage such as Volume, Object or Block.
Different types of storages facilitate different types or volumes of files. For example,
if database replication is employed the database logs may be stored in cheaper vol-
ume storage along with the database backups compared with pictures or videos for a
streaming app that requires high speed block or object storage.

2.3.5 PaaS

Platform as a service (PaaS) is the operating systems, middleware and development
tools organisations used to develop or deploy applications. Similar to IaaS, PaaS in-
cludes the servers, storage and networking with the aim of supporting the SDLC. For
example, building, testing, deploying and updating applications using a development
methodology such as Agile. PaaS allows organisations to avoid the expense of buying
and maintaining software licenses or the underlying application infrastructure and mid-
dleware, containers or orchestration tools such as Kuberbetes, Docker etc. Typically
the cloud consumer will manage the services and applications that the organisation
develops with the CSP managing everything else.
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2.3.6 DBaaS

Historically the Database Layer had been included in the PaaS layer, however given
the plethora of different database services it has been separated for this thesis as its own
cloud service type. Most cloud vendors have also taken this approach of separating
DBaaS into its own service type in recent years [AWS21, Cor21m, Mic21, Goo21a].
Most applications that require the storing and retrieval of data require some form of
database, for example if the data requires normalisation to serve financial information
then a Relational Database Management System (RDBMS) is required. DBMS sys-
tems have evolved into some of the most advanced software platforms around and often
incorporate replication, clustering, separation and consolidation (Pluggable databases)
and security as they are often integral to the application and core business functions.
There are specialist types of databases, depending on the application, for example in-
memory, noSQL and Data Warehousing databases may focus on particular aspects of
the application. A data Warehouse aggregates data to aid business intelligence type ap-
plications and is often busy in the evenings, crunching the data taken from daily busi-
ness activity. Similarly, an OLTP database may require clustered high performance
computing that satisfy Online Transaction Processing (OLTP) applications and run
core business activity. NoSQL databases may satisfy systems that have large online
stocks, where displaying the correct stock based on filters at speed is the requirement.

Database systems are often interwind with each other feeding information into one
database from another. Applications may utilise different types of database depending
on the workflow (tasks) the user(s) follows. For example, a user wishes to purchase
online stock and may look at stock presented via a NoSQL database. When they chose
to purchase an item and click through a checkout, a relational database is then accessed
to ensure the correct financial information is created, accessed and updated. Similar
to IaaS and PaaS, DBaaS allows the organisation to rent database services such as
database storage in the form of a Schema, without the cost of user licenses, Infras-
tructure (IaaS), Operating systems or the highly skilled and talented professionals who
maintain database environments.

2.3.7 SaaS

Software as a Service (SaaS) is a way of delivering applications over the internet;
instead of installing and maintaining software, one simply accesses it via the internet.
SaaS applications are commonly web-based such as internet-mail accessed via a thin
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client. SaaS is attractive for customers who do not need to pay for perpetual licenses
or have the need for administration teams to deploy and maintain the software. SaaS
deployments are high in orchestration utilising tools such as Docker and Puppet via
deployment pipelines to deploy code. In traditional N-tier architectures, software had
to be replicated on web-servers, which presented a problem of scaling as the user
activity (web activity) increased. Horizontal scaling is where the application is placed
on multiple machines with vertical scaling being the increase of resources on existing
machines. SaaS removes the cost and complexity of scaling as the consumer migrates
to a pays-as-you-go model. If one needs to scale they simply request more resources,
which was advocated by Google Cloud Platform for the development of web based
apps.

2.4 Adopting Cloud

Cloud adoption for any organisation that already have advanced database archi-
tectures employed is non-trivial; it is complicated, and requires particular skills and
expertise to plan, design, create, implement and migrate to cloud. A basic cloud instal-
lation for the purposes of quickly performing rudimentary development work is quick
and easy as all cloud vendors provide a simple pay-as-you-go web-based functionality.
Most organisations require or adhere to some form of cloud framework as Chang et al

[CWW14] concluded in their work. They identified several risk factors, both strate-
gic and operational, such as business, security and technical that are critical to cloud
adoption. In an analysis of 11 Cloud Frameworks provided by the leading cloud ven-
dors, they identified all have gaps when it comes to cloud adoption. One particular
framework of relevance to capacity planning analysed was, the Performance Metrics
Framework (PMF). Chang identified that PMF does not measure PaaS and SaaS and
that this framework should included technical cost for IaaS, PaaS and SaaS, highlight-
ing that there is a gap of capacity planning for cloud adoption. When it comes to
adopting cloud for complex database architectures very little work has been completed
as we cover in our first paper in section 5.1.

2.5 High-level Roadmap of a Cloud Implementation

Any cloud adoption involving a critical database with advanced features will invari-
ably be treated as a migration project, simply because of the criticality of the business
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Figure 2.5: High Level DBaaS Cloud Adoption [Mar21]

function and because the database will reside on new architecture. There are four basic
objectives when migrating a database to cloud: -

• Methods and Tools - List all the tools, methods and services available for database
migration.

• Migration Strategy - Understand the parameters that help and design the right
migration strategy.

• Advantages & Disadvantages - Articulate the trade-offs and advantages of the
methods and tools, especially complexity, latency times, Recovery time objec-
tive (RTO).

• Demonstration of tooling - Building the reference Cloud architecture and testing
the migration tooling to migrate database to cloud.

As each objective is expanded with further tasks identified, the level of complexity
grows. Often, a cloud adoption exercise, involves the consulting services of the cloud
vendor to aid the customer in achieving a successful database migration to cloud. In
Figure 2.5 with Oracle Advanced Customer Services working with the customer, we
show, at a high level how both parties work together to adopt cloud in complex database
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environments. Often sharing tasks or responsibilities is not isolated to one party or the
other. This diagram highlights, some of, the many critical tasks and functions required
when adopting cloud.

2.6 Capacity Planning for Cloud Adoption

In the context of Section 2.5, Capacity Planning for Cloud Adoption has two ma-
jor viewpoints to consider, which are the Consumer and Provider. These viewpoints
are often treated as large projects because of their complexities. A user’s perspective
can be profoundly determined by SLAs whether those are throughput, availability or
response times. A Provider’s viewpoint can be determined by the ability to dynami-
cally meet those SLAs. Menasce et al proposed an application that can take the SLAs,
through the use of an optimisation algorithm, optimise the cloud vendor best suited to
the application [MN09], viewing capacity planning as a optimisation problem. Others
have also looked at capacity planning stochastically, utilising a wide range of models
such as Markov Decision Chains or providing optimisation frameworks, but at the IaaS
level of cloud as Ghosh et al show [GLX+14]. In our papers, as the work in this thesis
will show, VMs or Physical Machines mask the true resource usage of the workload
being executed in the databases layer (DBaaS). Therefore one must look at workloads,
at a more granular detail, such as the specific database instance.

A major aspect of any migration or cloud adoption is understanding the impact of
the newly adopted architecture on the resource consumption of the workload; the DML
and SQL statements (Selects, Updates, Inserts and Deletes) being executed. Oracle
databases work on a cost-based optimiser (CBO). The cost is a number obtained based
on database statistics and calculations such as the number of physical I/O operations
it thinks it will need to find the data. This is important as several factors can influence
the CBO, for example disk performance (Solid State disk or Hard Disks Drives HDD),
Data being stored in Memory, Indexes created on the database tables, Data composition
stored in advanced configurations such as table partitioning, to name but a few. CPU
also influences the CBO by means of the CPU cycles per second or the number of
CPUs available. As we show in our first paper, one of the contributions made was the
understanding of threads per core metric on a VM. This metric can be configured at a
hypervisor level and can influence the execution of the CBO causing the efficiency of
the workload execution to be positive or negative.

Capacity Planning at the moment is cumbersome and expert friendly, as it requires
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talented professionals with a deep understanding of Database architecture and System
Administration. For example, knowing how the internal database optimisers work, how
to extract key performance and configuration data from the host or database and then
interpreting those parameters into a meaningful value. Knowledge of benchmarks such
as SPECInt (CPU) and TPC (Database Workloads) to enable or internally configure
these metric values within the database, for comparison, is fundamental if one is to
map N-Tier to a cloud architecture. Often this work is done via the use of spreadsheets,
which build in complexity and are expert friendly.

2.6.1 Metric Data - Identifying Workloads from Metrics

Some metrics are only applicable to different tiers and therefore a further under-
standing of the system architecture is required. For example, a VM may have two
applications consuming CPU yet when the measurement is taken it gives the value of
CPU being consumed on the VM not indicating who or what application is consuming
the CPU. This is a common problem when obtaining measurements from metrics on
database servers. A further level of abstraction is required to interrogate the metrics
further, by specifically looking at the database tier as well as the host. These met-
rics specifically look at Data Manipulation (DML) such as select, insert, updates and
delete statements that are executed by the application. Databases that are configured
to employ advanced features such as clustering and replication also behave differently
because they may be in a different state such as recovery (Standby database) or have
multiple nodes (Clustering). This is something we identify and tackle in the first pa-
per in this thesis; how to account for these dynamic RDBMS systems and capture the
correct metrics when different types of workloads are executed.

Obtaining the metric values is done via execution of a command(s) on the operating
system or within the database, which provides the value at that particular time. To
obtain a trace one must periodically execute the same command, for example, every 5,
10, 15 minutes or hourly. Execution of the commands also consumes resources so one
must take a balanced approach of obtaining the correct metric at the right frequency
to give enough data to perform an accurate analysis without placing the system under
unnecessary strain. Obtaining the measurements between time periods to wide (daily)
with cause a natural smoothing affect in the data, resulting in masking of the true values
of the spikes, peaks and troughs. This can skew a prediction, something we identify in
our second paper and also tackle in this thesis. Therefore obtaining the measurement
from the metric at the correct frequency, capturing the traits that the system exhibits,
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is crucial if one is to perform an accurate analysis of consumption with a view to
performing a forecast of what the system requires prior to a migration. One can then
map the system behaviours, for example surges in users logging on at particular times
of the day, to the data signal obtained from the trace of metric data.

A workload is a collection of metrics and there have been several attempts to group
together or identify and standardise workloads to answer particular questions when it
comes to characterising I.T. systems. For example, throughput, as advocated by Zhan
et al [ZZS+12] who specifically look at data centres that house High Volume Com-
puting (HVC) and the different types of systems that serve business functions such as
Online Transaction Processing (OLTP) and Data Warehousing (OLAP). This is a par-
ticular problem for customers with large data centres or cloud computing as they rely
on using specific benchmarks such as Standard Performance Evaluation Corporation
(SPEC) [Cor17c] and Transaction Performance Processing Council (TPC) [Cou21]. In
this thesis we also rely on these standard benchmarks when capturing and obtaining
measurements from metrics. Workloads are critical because they enable the formula-
tion of a vector consisting of multiple metrics to create a shape of resource consump-
tion. Given the complexity of cloud, as shown in Figure 1.3 this shape can be used to
place a workload, in a target environment with other shapes. Metaphorically, similar to
the tetris game of different shapes of resources being fitted together with the minimal
amount of wastage, this is something we tackle in our final paper.

2.7 Database Metrics - Manually Obtaining Database
Statistics

Within the Oracle database resides the Automatic Workload Repository (AWR)
[Cor17b]. The AWR is a mechanism used to capture performance statistics namely:

• Wait events used to identify performance problems.

• Time model statistics indicating the amount of DB time associated with a pro-
cess.

• Active Session History (ASH) statistics that capture specific statistics of a par-
ticular session or user.

• Some system and session statistics.
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Figure 2.6: Basic Description of AWR Design for capturing Database Statistics
[Dix12]

• Objects such as tables, sequences, views, indexes etc, usage statistics.

• Resource intensive SQL statements.

The repository that stores metric data also feeds into other tooling, for example tun-
ing advisors such as the Automatic Database Diagnostic Monitor (ADDM) [Cor17a],
that are used to aid diagnosis of performance problems. These tools aid the database
administrator (DBA) in tuning or configuring the database to run at its most optimal.
DBA’s use these tools to provide insight into resource consumption and they can also
be used to aid capacity planning. The AWR is configured to capture data hourly, and
stores the data in a separate tablespace and schema. However, the length of time (re-
tention period) is configurable, and DBA’s often keep several months worth of data to
aid performance problems that often degrade over time until a threshold is met that
causes an outage. A detailed description has been provided in Appendix B.3.2. Ex-
tracting, understanding, interpreting and mapping key database metric data from AWR
reports is cumbersome and time consuming, especially if there are many hundreds or
thousands of databases.

DBA’s often write custom SQL scripts that interrogate the AWR repository amongst
other views within the database such as the internal database DBA and V$ views. The
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Figure 2.7: Enterprise Manager Cloud Control 12c Architecture [Cor21c]

AWR is part of a wider complicated mechanism for statistics gathering that DBA’s
interrogate to understanding the internal workings of the database, as shown in Fig-
ure 2.6. DBA’s are talented professionals who also have knowledge of many areas of
the technological stack such as Storage and Operating systems. Often they work in
conjunction with other talented professionals such as System, Network or Storage Ad-
ministrators and Developers to ensure that the application is designed to run at its most
optimum.

2.7.1 Database Metrics - Intelligent Agent Based Software

Manual extraction of database metrics is cumbersome, time consuming and re-
quires an elevated level of skill, however unless an agent based approach is adopted
there is little an Administrator can do except to extract data manually. There are agent
based management software packages available that can aid the Administrator in es-
tates where there are many hundreds or thousands of databases. Intelligent agents
are based on Monitor Analyse Plan and Execute (MAPE) as described by Arcaini et

al [ARS15], and can execute commands periodically via a scheduler, storing those
results in a central repository. Oracle Enterprise Manager (OEM) [Cor21h] is a li-
censed agent based management software that stores the results of said commands in
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an database, as we show in Figure 2.7 (“Copyright Oracle and its affiliates. Used with
permission”). Using an intelligent agent based application like OEM has its obvious
advantages because the approach allows for the user to extract performance and config-
uration information from many databases centrally, rather than individually querying
each database. However, not all information is extracted by the intelligent agent. For
obscure or nuanced database parameters one must either specifically customise the
agent or manually query the database AWR.

OEM is a licensed intelligent agent based application for managing databases.
OEM has plug-ins that can do tasks such as stop and start databases, provision, per-
form backup and recoveries. Querying the central repository database and extracting
the data centrally reduces the cumbersome and laborious effort of extracting data man-
ually. We show how to do this in Appendix B.4.1 that shows a simple SQL query that
can list a particular database and its unique identifier (GUID). That database GUID is
then plugged into other queries to extract metric data into a suitable time series format
that can be processed for forecasting and placement as described in Appendix B.

2.8 Conclusions

In this section we described how the cloud has now become an inevitability, and
a natural progression from N-tier architecture to cloud is well under way. How to
migrate these complex database architectures to cloud is fraught with difficulty and
simple lift-and-shift will not suffice if one is to ensure minimum downtime and a suc-
cessful migration. Extracting the data that is critical to understanding the system be-
haviours also requires a degree of expertise that is often under-valued or taken from
granted. Once the data is extracted a high level of understanding is required to inter-
pret the data into meaningful information that can aid decisions that greatly influence
to design and procurement of cloud. In this thesis we aim to improve the understanding
required to perform an accurate capacity planning exercise on complex architectures
by; clearly defining the steps needed to performing an analysis, forecast and placement
of workloads from complex database N-Tier architectures with the aim of a successful
cloud adoption.

The focus of this thesis, and the work undertaken was several fold. Understanding
the key configurations and architectural designs that can influence a workload such as
standby and clustered configurations.

• Capture and extract meaningful metrics that reflect the true footing of a workload
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into a meaningful trace.

• Analysing the trace of data to understand any patterns in the data that can influ-
ence a forecast is not trivial.

• Once the size of the workload is understood, place them together in a cloud is
difficult if one is not to impact each of the workloads with another.

• A high level of automation is required with little human input to remove the
manual exertion or mistakes that often accompany capacity planning exercises
on large and complicated database estates.



Chapter 3

Related Work

Computer Science is no more about

computers than astronomy is about

telescopes.

Edsger W. Dijkstra

3.1 Capacity Planning

I.T. Capacity Planning is the art of providing enough resources to meet the de-
mands of any SLAs, SLOs and QoS without bankrupting the organisation charged
with meeting said SLAs, SLOs and QoS. Any form of I.T. procurement, provisioning
or daily operations such as upgrades, migrations performance tuning, etc, involves an
element of capacity planning. Capacity planning is aimed at answering consumption
requirements prior to a deployment, while capacity management tends to deal with the
management of resources already assigned. The aim of capacity planning, in practice,
is to effectively reduce resource wastage and optimise resource consumption. Over
provisioning can cause vast wastage to an organisation that may end up operating a
data centre that is under utilised. Under provisioning can also give rise to significant
consequences if outages occur due to applications or business functions failing due to
a lack of resources. Thus a fine balance is required. Understanding Capacity Planning
is complex because it involves many facets of resource consumption. In any form of
cloud adoption, whether private, public or hybrid clouds, the basic concepts of capacity
planning will remain the same as capacity planning for on-premises architecture with
the exception that the cloud infrastructure configuration may be unknown.

55
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The common theme with financial models (models where decisions are made on
the basis of financial considerations) is that resource capacity planning, for example
capturing resource usage and performing forecasts on future resource consumption,
feeds into financial models that may determine or influence a particular cloud vendor
or configuration in the cloud adoption process. This is also true for any framework,
of which there are many ([SW13], [MCM13], [GDR15], [SMLB14]). Resource con-
sumption and forecasting is an important facet of a framework, as it helps an organi-
sation understand the shape of a new infrastructure. Frameworks often list what needs
to be done rather than how to complete the task. The how is a much lower level of de-
tail and expertise but there are still gaps in understanding the task of capturing metric
consumption and to inform an accurate forecast. The proverbial of ’the right tools for

the job’ is paramount when performing the how.

Most forms of capacity planning seem to focus on IaaS (VMs) and not the actual
workload at a DBaaS or PaaS Layer ([KJA17], [SC16], [MK20]). In the literature,
some works are multidisciplinary, for example, they are basing their work on a SLA
approach utilising a machine learning technique to solve the conundrum they face.
This allows for the work to be placed in multiple locations in Table 3.1. Yan et al

[YLCL21] took a systemic approach in understanding how to optimize database work-
loads to achieve high-performance. Their analysis on available literature when looking
at workload-aware performance tuning was separated into three main topics of Work-

load Classification, Workload Forecasting and Workload-based Tuning. They further
separate these topics into categories and the literature of work done in these categories.
I will be following this approach for this section as it clearly provides a systemic anal-
ysis to capacity planning as, shown in Table 3.1. In this table we have broken down the
related work into several main topics and there is a reasonable amount of duplication
from the papers and their related works. This table lists where researchers have used
similar techniques, for example, Stochastic, Regression or Machine Learning tech-
niques to answer the question of resource consumption.

3.1.1 Financial Models

Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) are viewed as
financial models that can be a driver to cloud adoption as described by Kajiyama et al

2017 [KJA17] who conducted a survey into the decisions that affect cloud adoption.
One of the biggest drivers for cloud adoption was the perceived benefit of ’Reducing

spending on infrastructure’, however they did not provide any models or frameworks
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Category Comparable (Thesis) Literature

Capacity
Planning

Financial Models Can aid reducing physical
or projected costs

[SWJ+11] [KJA17] [PPN16]

Frameworks Can be leveraged as part
of a framework but is not
a framework

[SW13] [MCM13] [SMLB14]
[GDR15]

QoS, SLOs &
SLAs

Can assist in placing
workloads based on QoS,
SLAs or SLAs but does
not enforce

[SWJ+11] [Gro11] [KL12]
[NXYJ17] [CBL+17]
[BBB+17] [HBS+16] [AKY10]
[PAT+20] [CMRB14]

Workload
Classification

Benchmarks Utilises existing bench-
marks does not create new
benchmarks

[Cou21] [HBS+16] [MB13]

On-Premises Works with workloads
from architecture

[Cou21] [Cor17c] [MB13]
[GKD+09] [KCK+13]
[GRCK07]

Cloud (IaaS, PaaS,
DBaaS)

Works with workloads
from any architecture or
platform from any vendor

[XLZ+21] [AETEK13]
[BBB+17] [GLX+13]
[HBS+16] [PAT+20]
[SMCFM18] [YQR+12]
[MK20] [AbMl20] [MB13]
[MKB+12]

Workload
Forecasting

Time-Series Extends and Introduces
new techniques to deal
with complex data struc-
tures

[XLZ+21] [Gro11] [CBL+17]
[MKB+12] [Sko19] [CMRB14]
[SMCFM18] [MK20]

Machine Learning Leverages Supervised
Learning

[AETEK13] [GKD+09]

Stochastic Pro-
cesses

Not Applicable [GLX+13] [AKY10] [PAT+20]
[KCK+13] [MK20]

Other Not Applicable [KL12] [BBB+17] [HS19]

Workload
Placement

Bin Packing Extends FFD to place
complex RDBMS Work-
loads from complex archi-
tectures

[GRCK07] [YQR+12]
[AbMl20] [DKJ11] [ACKS13]
[PS21] [KGJ+21]

Optimisation Could aid evaluation after
placement

[KL12] [NXYJ17] [BBB+17]
[GLX+13] [GKD+09]
[ZMPC18] [HS19]

Table 3.1: An Overview of Main Research Categories and Literature on Database
Capacity Planning
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to achieve cloud adoption. Shang et al 2011 [SWJ+11] seek to establish which cloud
is value-for-money. They took the approach that based on an SLA performance they
could derive if a cloud was financially viable. Pantelić et al 2016 [PPN16] used Multi-
Attribute Utility Theory (MAUT) and created criteria with weights. They determined
that ’The Monthly average price’ ranked second in importance behind Data Security
in a ratio scale of 1-10. They then placed each cloud as-a-service in a hierarchy of
importance. They concluded that using a MAUT method is a valid approach to select
which cloud service is favourable, suggesting that the financial factors are not the sole
drivers to cloud adoption but an important facet.

3.1.2 Frameworks

Sabharwal and Wali [SW13] concluded that capacity planning can actually be bro-
ken out into different sub-sections such as capacity-in-use, redundant capacity and
standby capacity with the aim of answering key questions of Performance Require-
ments, Business Criticality and Future Growth. They surmise that the key goals of
capacity planning are the reduction and efficient utilisation of resources, workload
management and SLAs, Controlling VM Sprawl or Automatic Failures and Forecast-
ing future growth. However, they stop short of providing solutions to answer these
questions but provide a framework detailing a plan that can help to answer these chal-
lenges. Providing a framework to structure an approach is something addressed by
Mozafari et al [MCM13] and Shari et al [SMLB14] using techniques such as MCDM
(Multi Decision Criteria Decision Making) by weighing up attributes of a particular
database by their importance in helping choose the right cloud. Gangwar et al 2015
[GDR15], looked at two frameworks called the Technology Acceptance Model (TAM)
and Technology Organisational Environment (TOE). In their work, they identify sev-
eral limitations, for example, TAM measures perceived adoption and self-reports on
future behaviour rather than measuring of actual behaviour. TOE is a taxonomy for cat-
egorizing variables that make up the framework. For Cloud computing they proposed
extending both TAM and TOE, integrating them together to create a single model given
the complexities cloud brings. They specifically refer to capacity as not only physical
resources but organisational capacity to adopt change that cloud brings.
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3.1.3 Quality of Service (QoS), Service Level Agreements (SLAs)
and Service Level Objectives (SLOs)

SLAs are paramount for critical systems that run 24*7. Most database features
enforce redundancy to help meet critical SLAs and SLOs, for example, through clus-
tering or standby databases. NEC Data Management Labs [Gro11] identified that one
size does not fit all, and that customer SLAs and profit should be the main metrics for
system management or optimisation. They created a piecewise linear function model
based on profit and SLAs and applied this to individual SQL queries being executed.
Kouki et al 2012 [KL12] identified that from a SaaS perspective of a Cloud Service
Provider, to address how to maximise revenues without compromising QoS, SLAs or
SLOs of their users. In their work they took a queuing theory approach to requests,
and using Mean Value Analysis (MVA) they evaluate the performance of the request
by assigning a label (Gold, Silver or Bronze). From this assignment they can capacity
plan the resources needed to satisfy requirements, however, they do not place a work-
load. Noreikis et al 2017 [NXYJ17] took a novel approach to capacity planning based
on QoS, focusing on hierarchical or edge clouds with Augmented and Virtual Reality
applications. They determined QoS from a response delay of requests and what the
demand in resources (CPU etc) will be with the aim of prioritising the task. Working
at scale seems to be a problem with capacity planning based on SLAs, SLOs and QoS
as different systems require bespoke solutions. From a PaaS or DBaaS perspective this
could be very challenging for a CSP that has many customers with the responsibility of
their systems. Carvalho et al 2017 [CBL+17] extended their previous work of capacity
planning based on QoS and SLAs but at an IaaS level (VMs). They prioritise requests
and assign them to an available VM. This most recent work takes multi-dimensional
resources and not just CPD (Earlier work). Other works such as Hwang et al 2016
[HBS+16], Boukhelef et al [BBB+17], Andrzejak et al 2010 [AKY10], Pereira et al

2020 [PAT+20] and Calheiros et al 2014 [CMRB14] also provide solutions specifically
focusing on SLAs, SLOs and QoS. Oracle Advanced Customer Services, in the man-

aged service offerings, see SLOs, SLAs and QoS as critical drivers. Therefore being
able to effectively capacity plan, short and long term, is critical to ensuring delivery of
a high quality service.
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3.2 Workload Classification

Classifying a workload is repetitive, that is to say a workload as a shape of re-
sources can be obtained at each of the SaaS, DBaaS, PaaS and IaaS layers. One diffi-
culty is knowing what to categorise the workload (OLTP, OLAP, DataMart) as and at
what layer (IaaS, PaaS or DBaaS) if one is to enable successful SLAs, SLOs or QoS?
Different types of workloads (OLTP, OLAP, DataMart) behave differently at different
times and therefore depending on the type of workload will influence the SLAs, SLOs
or QoS. The number of workloads can be expanded to any defined type. In this thesis
we only used OLTP, OLAP and DataMart to keep the work simple. Capacity planning
for DBaaS, must account for resource consumption of a type of workload that utilises
advanced database features otherwise this gap is not accounted for. In our first paper
we specifically tackle this gap where an OLTP DBMS workload behaves differently
in a standby configuration, identifying the challenges of capacity planning these ad-
vanced configurations. It could be argued that it would be naive if one did not capacity
plan for RDBMS systems that utilise these features or suggest that these features would
not be available in the cloud (lift and shift capability), given users often run critical ap-
plications in a dual configuration while a cloud adoption takes place, especially if the
database is very large or critical. For example, the RDBMS is many TB in size and/or
has a tight SLAs, SLOs and QoS assigned to the system. Oracle Cloud Infrastructure
has a product called Goldengate [Cor21i] that is a data mesh platform for replicating
data in real-time between databases of different configurations for the purpose of re-
dundancy and aid these types of issues. There is also an Oracle product called Data
Guard for maintaining standby databases with the aim of addressing Recovery Time
Objectives (RTO) and minimise data loss through recovery point objectives (RPO).
Other vendors such as Microsoft also provide standby database capability in Azure
as does GCP provide tooling in the form of Data Transfer and Data Mesh products.
Knowing how and what techniques are available to help identify, classify and label a
workload is critical, if one is to understand the nuances, characteristics and implica-
tions posed by the workload if it is to be executed in a cloud configuration.

3.2.1 Benchmarks

A characteristic of a workload can be assessed and replicated with the use of a
Benchmark and there are several depending on what is deemed important. The chal-
lenge arises when one tries to compare an apple with a pear with the only surmise
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being that they are fruit. A reputable benchmark can help address this problem. For
example, system throughput that focuses on databases can be identified with the use
of The Transaction Processing Performance Council (TPC) [Cou21], which, produces
benchmarks based on the popular types of systems such as transactions processing
(OLTP - TPC-C, TPC-E), Data Marts (TPC-H), or Big Data and Data Warehouse
(OLAP TPCx-HS, TPCx-BB). These types of benchmark work on database requests
and measure the throughput, providing a result that users can then use to measure
performance. Different business tasks display different behaviours; for example, an
OLTP workload tends to be short, concise transactions compared with an OLAP type
workload that may have complicated tasks on larger data sets, often utilising machine
learning algorithms. Another challenge is accounting for advanced features. TPC does
provide clustering benchmarks however, it does not cover standby databases or con-
solidated environments such as Pluggable databases, which are required for Maximum
availability architecture. TPC only focuses on throughput of workloads through par-
ticular configurations of RDBMS.

Another characteristic of a workload that is deemed critical and important to ca-
pacity planning is CPU. Standard Performance Evaluation Corporation (SPEC) is an-
other suit of benchmarks with one of particular importance, which is CPU Integer.
SPEC CPU 2017 [Cor17c] is organised into four main suites being; CPU Speed In-
teger 2017, 2017 Floating point, CPU 2017 Rate and CPU 2017 Rate Floating point,
with optional metric for measuring energy consumption. This benchmark acts like a
common denominator in comparing chip architecture by the number of SPECInts used
when a particular workload (OLTP, OLAP, DataMart) are executed. This benchmark
enables the user to determine if the CPU architecture on the cloud architecture is com-
parable to chip architecture from on-premises architecture and is the benchmark we
use throughout this thesis.

Hwang et al 2016 [HBS+16] specifically looked at cloud benchmarks such as TPC
[Cou21], Hi-Bench (Intel) [HHD+10], BenchCloud, CloudSuite [FAK+12] (Academia
tools) and YCSB (Yahoo) [CST+10]. They categorised metrics for evaluating clouds
such as Performance, Capability and Metrics with the aim of creating models capa-
ble of answering scaling problems such as scaling out, scaling up and elasticity at
cloud (IaaS, PaaS and SaaS), in the absence of a benchmark that covers all three lay-
ers. They propose extensions to the these benchmarks using their approach. Using
the right benchmark is critical to capacity planning as it allows comparable compar-
isons to be made depending on the type of workload executed. A user can determine if
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the cloud architecture and/or its configuration will meet the demand of the workload,
SLAs, SLOs and QoS.

3.2.2 On-Premises

Forecasting on-premises takes the form of either predicting the requirements of a
data centre as Gmach et al 2007 [GRCK07], who used linear regression techniques
(ARMA) to identify trends and use a bin packing algorithm to group VMs together in
pools. Kraft et al, 2013, [KCK+13], also looked at particular storage metrics (such as
IO) in the context of data centres. Focusing on how workloads influence each other. At
an individual machine such as scaling out or scaling up as described by Ganapathi et al

2009 [GKD+09] focused on ML on-premises and is discussed in the machine learning
Section 3.3.2.

3.2.3 Cloud (IaaS, PaaS, DBaaS)

Moussa and Badir 2013 [MB13] explained that the TPC-H and TPC-DS bench-
marks are not designed for Data Warehouses in the cloud, further adding to the problem
of developing and evaluating models. They identified what requirements are needed
to create a cloud benchmark. Most research has focused on workloads at an IaaS
level, which is mainly attributed to Virtual Machines (VMs). Mahambre and Chafe
[MKB+12] look at the workload of a Virtual Machine to create patterns of workloads
to understand how resources are being utilised, analysing the actual query being exe-
cuted to predict if and when it is likely to exhaust the resources available. They use
time-series analysis to form a prediction but do not disclose what particular models
they use or how they deal with repeating patterns such as ARIMA or TBATS (Dis-
cussed in section 3.3.1). Ali-Eldin et al 2013 [AETEK13] focused on Amazon and
Azure clouds through a Workload Analysis and Classification tool (WAC), with the
aim of being able to assign workloads for candidacy to elasticise (Cloud burst) via con-
trollers. A prediction if formed on the resource controllers and it is these controllers
that then add additional resources to where the workload is being executed. They
use a variety of techniques to do so, such as machine learning leveraging K-Nearest-
Neighbours (KNN) and Support Vector Machines (SVMs) to classify the workload.
When a new unknown workload arrives into their WAC tool a majority vote is taken
with more weight being attributed to the nearest neighbours and then a class is assigned
to the workload. This focuses on more capacity management and short term capacity
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planning in the form of cloud bursting to manage sudden spikes of a workload once
the workload is in the cloud.

Ghosh et al 2014 [GLX+13] focused on IaaS by assigning a cost to a VM work-
load, using stochastic techniques such as a stochastic reward net (SRN) and then based
on probability, capacity plan the future resource requirements of the VM. Highlighting
the need for specific solutions at the DBaaS and SaaS or actual database layer of the
technological stack. Boukhelef et al 2017 [BBB+17] specifically looked at IO work-
loads in DBaaS clouds for hybrid storage for database objects (logical tables, etc,).
They focussed on the Service Level Objective (SLO), and by solving an optimisation
problem, place data based on the IO Speeds. Recently, Xia et al 2021 [XLZ+21] pro-
posed a classification framework that classifies a workload as being stable, peak or
trough, and then through a combination of statistical time series techniques are able to
segment the time series to form a prediction. The aim of achieving long term cloud
forecasting, however, it is not fully addressed as they have had challenges with volatile
signals, hence the segmentation of the time series into periods. There seems to be a no-
table gap of accurately accounting and forecasting the actual database workload taking
into consideration advanced database features such as Clustering, Standby databases
or Pluggable (consolidated) databases on cloud (DBaaS, PaaS) unless it is a VM at the
IaaS layer.

3.3 Workload Forecasting

Forecasting is a well understood problem and has been extensively used in econo-
metrics to build models that form predictions. Most current work on cloud modelling
focuses on VMs at an IaaS level. One of the key issues with modelling at this level is
that it bundles several things together, for example CPU is taken as the sum of CPU
used at a VM rather, than a VM may have a database running that is consuming CPU
amongst other small tasks. As we show in our first paper, VMs mask the true usage
of a database workload and it is possible to have multiple databases running in a VM
or multiple pluggable (consolidated) instances running on a master container instance
running in a VM. therefore, there is no easy way to determine where the CPU is be-
ing consumed when one forecasts at the VM level, without risking over-provisioning

by including resources that are not necessarily being used. Performing a prediction
of a workload in clouds is a relatively new topic, but essential from both sides of the
relationship, whether that is the CSP that provisions the resources or the user who
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consumes the resources. From our earlier work, in the paper Section 5.1, we show
that extracting key metrics from advanced configurations over periods of time, sev-
eral things became apparent. The data signal exhibits trend, patterns can be identified
via peaks and troughs, and large spikes are shown when external activities are exe-
cuted such as a backups, data aggregations. Therefore, a forecasting technique that
can model accurately with the ability to take into consideration these traits is required.

3.3.1 Time-Series Analysis

Time-Series Analysis is a family of techniques that is widely used to perform fore-
casts, which is used extensively in Economics, Sales, Budgeting and Market Trad-
ing, to name a few. Auto-Regressive Moving Average (ARMA) later expanded to
Auto-Regressive Integrated Moving Average (ARIMA), has been evolved further to
incorporate Seasonal variations (SARIMA) and finally, where we are today SARI-
MAX, which handles Exogenous variables or shocks. ARIMA is a class of models
that capture the subtle structures held within the data signal. It was developed by
Norbert Wiener et al in the 1930’s and 1940’s [W+64]. Statisticians George Box and
Gwilym Jenkins further developed these models for Business and Economic data in
the 1970’s, hence the name Box-Jenkins [BJRL15]. Time Series analysis is well suited
to forecasting computational metric data because metric data exhibits complex struc-
tures such as trend, reoccurring patterns (Seasons) and/or complex seasons (seasons
within seasons). Time series models are typically characterised by their parameters.
For ARIMA, the parameters are as follows p,d,q and for seasonal components addi-
tional parameters are added P,D,Q and F to account for frequency thus creating the
model (p,d,q,P,D,Q),24, where 24 would be a frequency of 24 hours. We explain the
importance of these parameters in our second paper in Section 5.2. Skorupa, 2019
[Sko19] suggested that time series exhibiting multiple seasonality [Sko19], can be
dealt with using the Trigonometric seasonality Box-Cox transformation ARIMA er-
rors Trend Seasonal Components (TBATS) method, which uses a Fourier series to
reduce the length of period or number of observations needed to perform a forecast.
This is discussed in detail in our paper in Section 5.

Several academics have used Time Series Analysis to perform forecasting on com-
putational workloads, however they tend to focus at the IaaS layer on VMs. Calheiros
et al 2014 [CMRB14] did an in-depth analysis of the ARIMA technique, again fo-
cusing on the VM as a workload but for QoS and solving the problem of dynamic
provisioning that CSPs currently experience. They predict the workload behaviour
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and feed this into a queuing model for calculating the VM provisioning. They run
ARIMA models against Web VMs at an hourly granularity, with data points taken over
a month. Sousa et al [SMCFM18] looked at the MySQL database cluster in an Ama-
zon EC2 cloud and used ARIMA to predict the workload. However, the environment
is a simple one unlike our environment: an Oracle Exadata database cluster running
several TPC workloads. Our aim is to evaluate enterprise workloads, and as our ex-
periments will show we have evolved the time series technique to encompass ARIMA
with Exogenous and Fourier terms to understand the complex structures within the
time series data and make predictions

3.3.2 Machine Learning

As discussed in detail in our second paper titled ”Database Workload Capacity

Planning using Time Series Analysis and Machine Learning” Supervised Machine
Learning is able to assist forecasting for several reasons, for example, taking histori-
cal data with known relationships between observations over historical time frequency
such as hourly, daily or monthly, and the output is a numerical value (prediction) of
what we think the future resource consumption of a metric is. Machine Learning can
learn the historical data points and those traits exhibited by the data signal and lends
itself well to regression problems. Also from our own perspective we wanted to use
Machine Learning to help reduce the time to crunch the data in producing the forecast-
ing model and address the problem of scale, i.e. crunching multiple models, metrics
from many hundreds, if not thousands of customers each running many clustered or
single databases. Here we consider a simple two-node clustered database and one
metric (CPU). As we discuss in our paper, we measure data up to 30 lags. A time
Lag is an interval of time between one event and another related event that happens
after it. For example, a CPU data point taken hourly with each Lag relating to one
hour (Lag=1) and the correlation between the values that are one time period apart. If
we assume 30 Lags then we are considering the correlation between values that are
30 hours apart. ARIMA, SARIMA and SARIMAX models have many important pa-
rameters that make up the model, which we describe in detail in the second paper, in
Section 4.1 titled ”Models”. We also noticed that the time to crunch the data for an
individual model was several minutes, therefore we looked to Machine Learning as a
way to reduce this elapsed processing time of not having to crunch all the data each
time the model is executed. The model only has to be executed on newly added data
points, which is again discussed in detail in our second paper.
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Using Machine Learning to aid the forming of a prediction is a relatively new idea,
especially in cloud computing. Ganapathi et al 2009 [GKD+09] performed an empir-
ical analysis of the different types of learning engines to tackle regression problems
in a database optimiser for an IO metric. They looked at regression, clustering, com-
ponent, canonical and correlation analysis, using supervised machine learning to train
against the historical data. They concluded that Kernel Canonical Correlation Analysis
(KCCA) was favourable, using nearest neighbours to form a prediction. They do not
elaborate on how they deal with seasons, trend or external shocks (Exogenous). Tang et

al 2019, [TYP19] used ensemble deep learning based on ARIMA to form predictions
on Electrical loads as an important aspect of power system planning and operation. In
this study they had issues such as non-linear patterns, external factors and volatile sig-
nals exhibiting seasons, which is interesting when compared with the data signal of an
OLTP database instance for IO. An IO data signal is also influenced by external factors
such as backups and data aggregations or loads that can cause an abnormal IO spike. If
these loads are executed frequently this can create a season that ARIMA type models
are best suited to deal with. Most recently, Fadda et al 2021 [FFPB21] have leveraged
Machine Learning and ARIMA models to help answer the question of Tactical Capac-
ity Planning (TCP) in logistics relating to delivery services and their demand. They
created a Decision Support system to capture demand of daily orders taken from a city
demographic, forecasting the capacity of the next time period based on the previous
time period. This recent work reinforces our claim from 2020, that Machine Learning
and time-series analysis models such as ARIMA modelling can be coupled together,
performing forecasts to many facets of industry. Our aim is provide an accurate and
efficient on the correct type of signal that is capable of being able to scale on hundreds
of metrics for many customers important systems.

3.3.3 Stochastic Processes

Some academics have looked to stochastic processes to address capacity planning
in clouds or I.T. in general. Stochastic processes take a collection of random vari-
ables as they evolve or are indexed in time. Arguably, capacity planning and resource
consumption falls into this category as variables such as resource metrics or attributes
relating to an SLA, SLO or QoS. These attributes and metrics have a strong relation to
time in the form of historical observations to answer future consumption. The strong
emphasis is to predict behaviour. Stochastic models have the advantage of being less
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resource intensive in the calculations that form the prediction compared with time-
series analysis that have very complex models. Stochastic models tend to lean on
probability and confidence; for example a Markov chain represents different states that
a system may follow with the transitions between the states indicating the occurrence
of events such as the arrival of data from one location to another.

Andrzejak et al 2010 [AKY10] created a probabilistic model that enabled a user to
optimise attributes associated to an SLA such as cost, performance and reliability. The
model encapsulated parameters that a user could tweak in order to tune the SLA which
focussed on spot instances that are idle and could be used to reduce wastage. Ghosh
et al 2014 [GLX+13] introduced stochastic reward nets (SRN), similar to a Markov
chain, based on sub-models that monitor resource pools. They categorised the pools as
hot, warm and cold; the sub-models would interact with each other by assigning a cost,
which relates a status to a physical machine. A probability calculation is performed on
the Physical Machines to determine the likelihood of failure with the aim of moving
the VM to a resource pool. More recently, Pereira et al 2020 [PAT+20] used stochastic
techniques such as continuous Markov chains to model performance in cloud (fog)
web servers. In this study they looked at the VM and potential bottlenecks occurring
in a VM that have a detrimental affect on performance such as the network throughput.
The Markov chains were used to identify the relationship between these components
in the system and the probabilistic changes in state.

There are subtle differences between time series and stochastic processes even
though it could be argued both techniques are somewhat related and arrive at the same
outcome when performing a prediction on variables over time as highlighted by pre-
vious work. In stochastic processes they are random variables ordered in time. For
example a random workload appears at a particular time and depending on some val-
ues, something is to be done with it. For example, add more resource or move the
workload to somewhere where there is available resource, and based on probability the
result of the workload being moved or having resource added will change for the better
or worse (decision that could be aided by ML), which is a perfectly valid solution for
that particular type of problem. In a time series, the time is indexed by integers con-
tinuously and discrete; discrete meaning, one value per hour. Which, is why I chose to
focus on time series analysis as the metrics that make up a workload (CPU, Memory,
IO) will be continuously indexed by a value in a sequence in time for as long as the
workload is active. It is not a random variable per se, except that it may have random
events exhibited in the data signal in the form of peaks, troughs and spikes, that may
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have a pattern to them, that need to be accounted for.

3.4 Workload Placement

Placement of a workloads, when broken down, is multifaceted and inter-related.
That is to say, all parts of the problem need to be addressed together, rather than just
individual elements. In the context of dimensions, a one dimensional shape is one met-
ric, yet the resources that make up a cloud compute consist of multiple metrics (CPU,
IO and Memory), therefore, the dimensions are considered a vector. These vectors
may increase in number to included other areas of the cloud technological stack such
as network throughput, an element of scale when performing workload placement.
Identifying the workload within the context of a database employing advanced fea-
tures is also challenging. A clustered database can be seen as one database residing on
multiple nodes, when in fact it is a database served by a number of memory structures,
in the form of instances residing on each node, all consuming a vector of resources.
These clustered instances may not run evenly, as QoS may dictate that one node is bus-
ier (consuming more resources) than another, forcing connections through a particular
node rather than sharing them evenly. Databases that are consolidated in the form of a
pluggable feature also pose a conundrum. A pluggable database can be detached from
within a clustered database and attached elsewhere to another clustered database, each
pluggable database consumes a vector of resources. The final problem with placement
of workloads from advanced database configurations is the issue of High Availability
(HA) from standby databases or clustered databases. If a clustered database resides on
three nodes then it must be placed on three nodes or more otherwise we may reduce
the QoS mentioned earlier.

Bin-packing algorithms to place or order tasks is a well understood problem, as
analysed by Carter [Bay77], who conducted an analysis of the different types of bin-
packing algorithms in 1977. Resource allocation or workload(s) placement in cloud
environments is a well understood problem, for which bin-packing and optimisation
solutions have been used. There have been extensive studies or surveys undertaken as
Hameed, Khoshkbarforoushha et al [HKR+16] and Bhavani and Guruprasad, [BG14]
both identified in their survey’s from 2014 and 2016. Furthermore Singh and Chana
[SC16] produced an extensive survey in 2016 that concluded that resource provision-
ing is a challenging job and there is a need for more research into optimal resource
usage as this leads to improving the resources consumed with the aim of reducing
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wastage. This problem is ever more apparent in cloud computing, with users accessing
any shape of resources (vectors) from anywhere, with the requirement of still being
optimised. Most research has looked at consolidation from a Virtual Machine (VM)
perspective or a Quality of Service (QoS) perspective and these are often single di-
mensions not vectors of dimensions. By focusing on bin-packing algorithms, we are
evaluating if existing algorithms, such as first-fit decreasing are sufficient in placing
workloads from complex database architectures that employ, for example, Clustered
or Pluggable configurations.

3.4.1 Bin-Packing

The basic bin-packing problem is the process of taking items of differing volumes
and packing them into a finite number of bins in a way that minimises the number of
bins used. If one is to bin-pack on multiple metrics then one must use a vector approach
to bin packing as Azar et al 2013 [ACKS13] described in their understanding. Gmach
et al 2007 [GRCK07] provided a placement algorithm after forming a prediction on
workloads and their demands at a Data Centre. However, they are not specific on the
type of bin-packing algorithm used. For example, first, next or best-fit decreasing, or
how they handle workloads that are siblings of each other, which clustered workloads
are. As recently as 2018 several authors have found characterising and managing work-
loads a problem. Sen et al [SR18] concluded that sensitive workloads such as OLTP,
analytical and hybrid may not be optimally provisioned, thus over-provisioning may be
unavoidable. Zhang at al 2018 [ZMPC18] also viewed workload characterisation with
a view to optimisation. Masari and Khoshnevis [MK20] in their 2019 survey identified
techniques used to perform accurate forecasts of the resources being consumed as a
precursor to provisioning. However, they stopped short of proposing how to place the
workloads together once the forecasted future requirements are obtained. The most
recent work covering vector bin-packing focused on IaaS and the placement of VM as
the request is sent by the user as Pandiselvi and Sivakumar 2021 [PS21]. In their solu-
tion they looked at a ’Best-Fit’ to provision VMs in space that has become available.
Again looking at the data centre problem of the ’provider’. Ke et al 2021 [KGJ+21] re-
cently, looked at Vector Bin Packing as a solution to Cloud Resource Managers, which
they name as ’Fundy’, in cloud when provisioning VMs. Fundy works as a cloud
micro-service that farms out requests to multiple schedulers. This approach highlights
the difficulty with dealing with large data centres that Cloud Vendors are having to
provision for their customers.
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Most placement of workloads seems to centre on provisioning of VMs (IaaS or
PaaS) and not a workload (DBaaS or SaaS). Doddavula et al 2011 [DKJ11] suggested
how to reduce server sprawl with the introduction of a vector packing algorithm. In
their novel approach they classify vectors based on resource consumption and then
through Matrix multiplication determine the possible combinations. By then applying
rules, either the workload is full or a magnitude of full determine where the workload
should reside with other workloads until the maximum of the target server threshold
is reached. However in a clustered environment, this approach will face challenges
as it is possible that several workloads, in a pluggable configuration, running on the
same cluster are, classified as, full or a combination of classifications that could break
their algorithm. Yu et al 2012 [YQR+12] looked at specifically first-fit decreasing
bin-packing algorithms with a view to placement of workloads in DBaaS, however
they do not address consolidated databases such as pluggable or clustered workloads.
Azar et al 2013 [ACKS13] specifically used a vector (multiple metrics) to place virtual
machines and suggested several algorithms based on lower or upper bounds of the
resources consumed. Aydin et al 2019 [AbMl20], looked at placement using best-fit
decreasing algorithm for the purpose of reducing the initial resource consumption of
VM fire-ups. In this thesis we aim to plug the gap in placement of workloads from
advanced database configurations into complex cloud architectures by creating new
bin-packing algorithms.

3.4.2 Optimisation

Leading on from Bin-Packing as a solution to workload placement is the other side
of the coin, and view placement of workloads as an optimisation problem, where pri-
ority is assigned to the most important workload. Kouki et al 2012 [KL12] perform
a prediction based on SLAs with a view to establishing a capacity plan but they do
not place or migrate a workload based on this analysis even though they view it as
an optimisation problem. Boukhelef et al 2017 [BBB+17] took a heuristic approach
to placing IO workloads in a DBaaS cloud but focused on the storage element. The
challenge here is that workloads can have more than one metric that makes up compute
(Memory and CPU) therefore a vector is required. Zhang et al 2018 [ZMPC18] pro-
vided a survey of database workloads and how they are managed and concluded that
there are very few facilities to manage frequently changing workloads. They do not
look at clustered workloads but mainly the resources consumed by a SQL query and
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how this is managed within the database, viewing the work as an optimisation prob-
lem. Halfpap and Schlosser 2019 [HS19] used a heuristic linear programming model to
solve a placement problem by dissecting a database and where appropriate, replicating
the data across multiple nodes. In doing so, this placement technique shared the work-
load from being cumulative on one node to being distributed (replicated tasks) between
multiple nodes while keeping response times of the requests from said database opti-
mum, choosing the most optimum response time from the distributed group. However,
replicating data could be wasteful in a cloud environment if the consumer is obliged
to pay more than once (storage) for the same data in a trade-off against performance,
which is not addressed by Halfpap and Schlosser 2019. In this thesis I have chosen not
to view workload placement as an optimisation problem as the workloads have yet to
move to cloud. They reside in N-tier architecture, on-premises therefore leading me to
lean more towards a placement problem.

3.5 Conclusions

In summary, there are clearly gaps when performing a capacity planning exercise
that requires housing databases in clouds, especially when advanced database features
are employed. Whether that is collecting, extracting, accounting for the correct re-
sources such as a CPU, IO and Memory from clustered, consolidated or separated and
standby databases. These workloads change depending on the configuration or archi-
tecture, thus understanding which metrics to obtain is key. Categorizing the workloads
into general types such as OLTP, OLAP or Data Marts with an aim to labelling the
workloads that exhibit similar work patterns is also paramount as workloads and their
data signal change in their behaviour, especially if the workloads fail-over or a standby
is introduced. Once the data is extracted, a deeper understanding on the data signal is
required from each of the labelled workloads prior to forming a forecast. Workloads
exhibit complex data structures such as trend, seasonality and shocks, which must be
accounted for if the forecast is to be accurate. Regardless of whether the question is
one of short (Monitoring) or long (Capacity Planning) term resource consumption, ac-
curate forecasting at speed and scale is required. One must couple multiple techniques
together if one is to perform forecasts at scale (large estates). Once the forecast is ob-
tained, placing the workloads into a target cloud configuration without compromising
SLAs, SLOs or QoS presents a conundrum. One must identify the correct combination
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of workloads to place in the correct target configuration without exceeding the avail-
able resources. Existing bin-packing algorithms, work on a first, next or best-fit basis,
and, arguably, are too simplistic to place multiple source workloads and their vectors
into multiple target cloud nodes at the same time. Therefore bin-packing algorithms
also require further extensions.



Chapter 4

Experimental, Workload and
Environmental Setup

What most experimenters take for

granted before they begin their

experiments is infinitely more

interesting than any results to which

their experiments lead.

Norbert Wiener

Experiments were conducted for each piece of work and were important to empir-
ically evaluate new algorithms that were developed as part of this thesis. This section
describes in detail the environmental setup, code or algorithms developed and the de-
sign and reasoning for the experiments. There will be a reasonable amount of dupli-
cation from what is described in the published works. It is important to understand
that extracting data from live environments that customers utilise on Oracle technol-
ogy could not be done due to contractual obligations; Oracle has a policy of not using
customer’s live data for their own means without customer approval. However, the
environment was provided by the Oracle Corporation and was real world production
ready physical Hardware and Software that customers utilise today. The workloads
were developed to reflect N-Tier architecture and we will discuss this in more detail
further on in this chapter. The work was conducted on Oracle technology. However,
the algorithms produced in this thesis are agnostic of platform, vedor or configuration.
As long as the relevant metrics are captured to reflect the architecture, and the forecast
performed on a time series signal. Placement can take place using our bin-packing
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algorithm in any target bin so long as the sizes of target bins are inputted into the
templates.

The first piece of work as described in the paper titled DBaaS Cloud Capacity Plan-

ning - Accounting for Dynamic RDBMS System that Employ Clustering and Standby

Architectures required experiments to investigate if a workload executed on one ma-
chine consumes similar resources when the workload is executed on another machine.
The aim was to investigate what could cause the differences in resource consumption
and we focused on three types of database configuration.

• Running workloads on a single instance - basic configuration.

• Running workloads on a single instance with a standby database - moderate
configuration.

• Running workloads on two node clustered database - advanced configuration.

It was important to create experiments that satisfied the basic requirement to be con-

trollable, repeatable and observable. The experiments and the environments created
the foundations for all the work going forward, thus it was critical it was done correctly
to ensure that errors, in the data, when obtained from experiments relating to forecast-
ing where kept to a minimum given forecasts where expected to be performed on data
extracted from the workloads being executed. If the metric data is inaccurate then it
is reasonable to assume that any forecast will also be inaccurate. The first piece of
work as detailed in the paper titled DBaaS Cloud Capacity Planning - Accounting for

Dynamic RDBMS Syste m that Employ Clustering and Standby Architectures focused
mainly on understanding workloads and how to capture the nuances of system config-
uration between different types of databases that can impact a workload, and how these
impacts are reflected in the traces obtained from the metric data.

The second piece of work as detailed in paper Database Workload Capacity Plan-

ning using Time Series Analysis and Machine Learning, required a set of experiments
involving extracting a trace of metric data from the workloads developed and executed
from the first previous experiments. Once extracted, forecasts (predictions) where per-
formed. However, to truly evaluate the forecast models, the workloads needed to ex-
hibit complex data structures such as seasonality, trend and external shocks, hence
the need for the workloads to be controllable. We achieved these complex execution
patterns by executing the workload via Cron, which is an in-built scheduler that can
execute tasks at a particular time as described in Section B.1.4 of Appendix B. Three
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workloads were executed (OLTP, Data Mart and OLAP) and are also described in detail
further on in this chapter in section 4.2. An online backup was executed via Oracle’s
internal back-up program Recovery Manager (RMAN) [Cor21l], daily to produce an
external influence on the system that was seen in the IO metric. An online database
backup executed in twilight hours reflects natural business operations of live environ-
ments. To produce trend, users where spawned in a controlled manner at daily time
intervals, reflecting more general activity that was captured through the trace metric
data. Seasonality (Patterns) were performed by spawning a surge of users at particular
times of the day, reflecting users logging on at, for example, 09:00am of a working day.
Other patterns produced where to reflect data being aggregated in twilight hours, high-
lighting data being crunched to form BI reporting in an OLAP schema, and backups
executed at a uniform time intervals. These trends and seasonality where executed over
many weeks to provide adequate data to perform predictions at regular frequency. The
data signals observed produced complex data structures and therefore, for the experi-
ments to be successful, the models had to be able to predict the following conditions
and their ability to accurately assess:

1. Reoccurring Patterns (Seasonality).

2. Trends and Stationariness.

3. Mutliple patterns (Overlapping seasonality).

4. Shocks.

Time Series analysis lends itself to forming predictions more accurately, compared
with stochastic processes, because of the complex patterns that are exhibited in volatile
data signals, such as CPU and IO, as discussed in the Related Work section [Sko19]. To
test the models properly we had to first execute the workloads to populate the central
repository. Extracting the data from the database instances was done via an intelligent
agent, to reflect monitoring practice in customer estates employed today. Data capture
of the metrics is executed at 10-15 minute intervals and stored as raw data in a cen-
tral repository. Aggregations are performed on the raw data to capture the max value

hourly, and stored in the central repository. By performing hourly aggregations, cen-
trally in the repository, we remove any anomalies that may occur from performing
aggregations on each instance at a time. Also, in clustered environments all metric
data is required to give an accurate picture given data can be shared accross the cluster.
We then ran the forecast models on the now, uniformly, hourly data for each instance,
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to obtain a prediction. Testing the accuracy of the models was done by conducting the
following:

1. Running the prediction and comparing it to the actual line by allowing the work-
loads to run forward.

2. Calculating the Root Mean Squared Error (RMSE) rate between the prediction
line and the actual line.

3. Calculating the Mean Absolute Percentage Error (MAPE) rate between the pre-
diction line and actual line.

4. Calculating the Mean Absolute Percentage Accuracy (MAPA) rate between the
prediction line and actual line.

The final piece of work as described in the paper titled ”Placement of Workloads

from Advanced RDBMS Architectures into Complex Cloud Infrastructure” was deal-
ing with placement of database workloads into complex target cloud configurations.
This was further broken down into several smaller evaluations of fitting workloads
from, use cases of varying complexity into target cloud compute nodes, as shown in
Table 4.1. In the experiments we are only testing the database placement algorithms as
they are orthogonal to modelling; the placement algorithms do not know if the traces
being inserted as inputs to the algorithms are actual or modelled. However, it is per-
fectly plausible that the inputs have first been predicted to obtain an estimate of future
resource consumption to model what a future resource consumption may be prior to be-
ing placed, which is a common planning exercise in any estate migration. Once placed,
a further experiment was conducted to evaluate if the placed workloads could be fitted

tighter or more dynamically to achieve any efficiencies by elasticising the nodes. The
use case was a consolidated environment where multiple pluggable databases can be
detached and attached in a target node.

The experiments were designed to answer the following key questions relating to
the algorithms and code developed.

1. Minimum targets needed - What is the minimum number of target nodes required
to fit all workloads across all vectors (metrics)?

2. First Fit Decreasing Simple Placement - How do we place the workloads equally
across equal sized bins?
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Table 4.1: Workload Placement - Table of Experiments

Experiment Workloads Target Bins

Basic Single Database Instance 10 Workloads (10 OLTP, 10 OLAP and
10 DM)

4 * OCI Bare Metal equal
size

Basic Clustered Workloads 10 Workloads (10 RAC OLTP (5*2 Ex-
adata nodes))

4 * OCI Bare Metal equal
size

Basic different sized target bins 10 Workloads (10 OLTP, 10 OLAP and
10 DM)

4 * OCI Bare Metal un-
equal size

Moderate Combined (Clustered
and Single Instance)

20 Workloads (4 * 2 node clustered + 5
OLTP, 6 OLAP and 5 DM)

4 * OCI Bare Metal un-
equal size

Moderate scaling 50 Workloads (10 * 2 node clustered +
10 OLTP, 10 OLAP and 10 DM

4 * OCI Bare Metal equal
size

Moderate different sized target
bins

20 Workloads (4 * 2 node clustered + 5
OLTP, 6 OLAP and 5 DM

6 * unequal OCI Bare
Metal

Complex (Scaling & diffrent
sized bins)

50 Workloads (10 * 2 node clustered +
10 OLTP, 10 OLAP and 10 DM

10 * unequal OCI Bare
Metal

3. First Fit Decreasing Clustered Placement - If there are clustered workloads can
we ensure that the all clustered workloads are placed without compromising
High Availability?

4. Evaluating the placement - Once the workloads are placed (consolidated) to-
gether can we resize the target nodes, obtaining a tighter fit, reducing over pro-
visioning?

4.1 Experimental Environmental Setup

As shown in Figure 4.1, several configurations of databases employing different
advanced features where implemented to run the workloads. The workloads were ex-
ecuted via a Java Container, which spawned connections to the database. The storage
layer was mounted and accessed via a network to a SAN. Intelligent agents executed
various commands to poll metrics that were stored in a central repository. Oracle Auto-
matic Storage Manager (ASM) [Cor21a] is an Oracle product that is a volume manager
and file system for Oracle Database files. This is essential when running Oracle Real
Application Clusters (RAC) [Cor21k] as ASM controls IO by managing the configu-
ration across disks that are critical in the database storage architecture. This is shown
in Figure 4.1c where ASM is a sub-component of the technological stack.
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(a) Single Instance DB (b) Instances with Standby DB (c) Two Node Clustered DB

Figure 4.1: Experiment Architecture: different database combinations used for exper-
iments.

4.2 Definition of a Database Workload

A workload can be described as the activity being performed on the database at a
point-in-time, and essentially is broken down into the following:

• Database - An Oracle database is a set of physical files on disk(s) that store
data. Data may be in the form of logical objects, such as tables, views and
indexes, which are attached to those tables to aid the speed of access, reducing
the resources consumed in accessing the data.

• Instance - An Oracle instance is a set of memory structures and processes that
manage the database files. The instance exists in memory and a database exists
on disk; an instance can exist without a database and a database can exist without
an instance. For a database to be accessible the instance must be running.

• Activity - The DML (Data Modification Language)/DDL(Data Definition Lan-
guage) i.e, SQL that is being executed on the database by the application, creates
load consisting of CPU, memory and IOPS.

In the experiments, workloads are executed for a period of time via cron as shown
in Table 4.2. For example, an OLTP workload will have 100 users if it is a small
singular database, however for a larger RAC database the number of users is 2000
executed evenly across the cluster, running for 23:59 each day. We allow a 60 second
gap before the workload resets to remove the risk of overlap between one workload
finishing and another starting with the impact being, spawning 4000 users temporarily
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that would create an artificial spike. This 60 second gap allows existing users to finish
the execution of the queries which are essentially elongating in their elapsed execution
times as the data set gets bigger. To create a surge, a further 100 users are spawned
executing DML, against the Order Entry schema, which is described in Figure 4.2,
for a period of 2 hours at 09:00am in the morning, 1 hour at lunch and 5 hours in the
evening, which is increased to 1000 users if the database is a larger RAC configuration.
For an OLAP workload different DML is executed against an Sales History schema,
as described in Figure 4.3. These DML statements consist of more IO type queries
and are executed for 5 hours in the evening. Data Marts are a combination of both
OLTP transactions, short DML SQL during the day and larger more IO intensive DML
SQL in the evenings. The workloads were executed daily over a period of several
weeks, and where continuously monitored by a Database Administrator (DBA) should
any alerts, errors or faults take place so that they could be rectified. If an error took
place which rendered the workload or database in a state requiring a reboot, restart or
session termination, the experiment was halted and rerun from scratch. In cases where
a session needed to be restarted due to a spinning daemon process, that session was
terminated and re-spawned automatically. The first few runs of the workloads flushed
out many errors relating to memory configurations, and once stable ran for many weeks
without error.

4.3 Swingbench

Swingbench [Gil10] is a, free to download, Java load generator based on the exam-
ple schemas that come with the Oracle Database. Prior to running any workloads, there
are some prerequisite configurations to be executed on the database as an administra-
tor (DBA) with privileges and these are described in Appendix B.1.4. For example,
the database type will determine specific parameters to be set, and the database must
be in archivelog mode. There are essentially two main schemas that are used in the
Swingbench load generator as shown in Figures 4.2 and 4.3 (“Copyright Oracle and its
affiliates. Used with permission”).

• OE - Order Entry of customers purchasing items online (OLTP)

• SH - Sales History which is an OLAP schema
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Workload
Type

Workload
Profile

DBNAME(S) Workload Description Number
of Users

Duration
(hh:mi)

Avg
Trans-
action
per sec

OLTP General us-
age

RAPIDKIT
RAPID-
KIT2
DBM01

General Online Application with
updates, inserts and deletes simu-
late working day

100
2000
(DBM01)

23:59 0.2

OLTP Morning
Peak Logon
Surge

RAPIDKIT
RAPID-
KIT2
DBM01

Morning Surge to simulate users
logging on to the Online Appli-
cation with updates, inserts and
deletes

100
1000
(DBM01)

2:00 0.2

OLTP Lunch Time
Peak Logon
Surge

RAPIDKIT
RAPID-
KIT2
DBM01

Lunch Time Surge to simulate
users logging on to the Online
Application with updates, inserts
and deletes

100
1000
(DBM01)

1:00 0.2

OLTP Evening
Time Peak
Logon
Surge

RAPIDKIT
RAPID-
KIT2
DBM01

Evening Time Surge to simulate
users logging on to the Online
Application with updates, inserts
and deletes

100
1000
(DBM01)

5:00 0.2

Daily OLTP Hot Backup taken at 23:00
OLAP Data Ware-

house Gen-
eral Usage

RAPIDKIT
RAPID-
KIT2
DBM01

General Data Warehousing Ap-
plication with heavy Selects tak-
ing place out of hours building
Business Intelligence data

5
400
(DBM01)

8:00 0.4

Daily OLAP Hot Backup taken at 06:00
Daily OLAP archivelog backups taken at 12:00,18:00,00:00

DM OLTP Gen-
eral Usage

RAPIDKIT
RAPID-
KIT2
DBM01

Combination of DML taking
place during the business day and
heavy DML taking out of ours

200
1000
(DBM01)

23:59 0.2

DM OLTP
Morning
Peak Logon
Surge

RAPIDKIT
RAPID-
KIT2
DBM01

Morning Surge to simulate users
logging on to the Online Appli-
cation with updates, inserts and
deletes

100
500
(DBM01)

2:00 0.2

DM OLTP
Lunch
Time Peak
Logon
Surge

RAPIDKIT
RAPID-
KIT2
DBM01

Morning Surge to simulate users
logging on to the Online Appli-
cation with updates, inserts and
deletes

100
500
(DBM01)

2:00 0.3

DM OLTP
Evening
Time Peak
Logon
Surge

RAPIDKIT
RAPID-
KIT2
DBM01

Evening Time Surge to simulate
users logging on to the Online
Application with updates, inserts
and deletes

100
500
(DBM01)

5:00 0.3

DM OLAP
Batch
Loads Peak

RAPIDKIT
RAPID-
KIT2
DBM01

Evening Time Surge to simulate
users logging on to the Online
Application with updates, inserts
and deletes

5
400
(DBM01)

8:00 0.3

Daily DM Hot Backup taken at 06:00
Daily DM archivelog backups taken at 12:00,18:00,00:00

Table 4.2: Database Workloads
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Figure 4.2: Order Entry - OLTP Schema [Cor13] [Gil10]

4.3.1 Execution

Swingbench has SQL statements embedded in the Java code executed via a Java
container with connections spawned through the Oracle Network layer (TNS) on the
database server via a JDBC thin client. The configuration used to run this type of
application reflects enterprises that are employing on-premises N-Tier architectures.
The Linux Operating System Scheduler cron is used to initiate the workload and the
cron entries for the workload are shown in the appendix in Section B.1.3. Cron is
configured in the following sample output, taking the example of a daily workload that
runs for OLTP throughout the day for 24 hours for 200 users. Start at 3pm (0 15 * *
*) execute the soe bench.sh in the database identified as RapidKit for a run time (-rt)
of 23 hours 59 minutes spawning 200 users (-uc) pipe the output logfile location to be
run in the background (2&1)

0 15 * * * /u01/../soe_bench.sh RapidKit -rt 23:59 -uc 200 >> /tmp/daily.log 2>&1

|--------| |------------------| |------| |--------||------| |-------------| |---|
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4.4 Application Design to Generate Workloads

OrderEntry is based on the ’OE’ schema as shown in Figure 4.2. It can be run
continuously, that is until you run out of either file space (Archivelogs) or tablespace
(within the database). It introduces heavy contention on a small number of tables and
is designed to stress interconnects, CPU and Memory based on a OLTP workload, TPC
[Cou21]. It is installed using the wizard located in the bin directory and is discussed
in detail in the appendix in Section B.1.

SalesHistory is based on the ’SH’ oracle sample schemas [Cor13] as shown in Fig-
ure 4.3, Like the ’OE’ schema. It is designed to test the performance of complicated
queries when run against large tables. This type of schema is based on OLAP applica-
tions that are designed to test IO intensive queries.

Figure 4.3: Sales History - OLAP Schema [Cor13] [Gil10]

Both schemas are executed via a JDBC and PL/SQL, and can be scaled over a num-
ber of default sizes from 1GB to 1TB. In our experiments we begin with the schema
being small and over a period of weeks it grows to a significant size and thus trend, in
the form of incline growth, is introduced. This can be seen in the appendix in Section
B.1.3 under the paragraph titled ’RAC Instance OLTP - Linear Growth’. As the data
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size increases, the amount of resource consumed to execute the queries also increases
as more data are returned through the database query processor. The SQL is working
harder on a larger data set.

4.4.1 Physical Hardware and Operating System Configuration

The experiments involved an eclectic set of hardware, configured to run different
types of database as shown in Table 4.3. The hardware used was of Oracle Exadata
[Cor21d] of a 1/4 rack configuration with several VMs created of various physical re-
quirements. The Operating System used was Oracle Enterprise Linux with various
custom parameters set, which we will discuss further on in the chapter. The 2-node
cluster also had specialist network configurations set to enable the database cluster to
operate correctly, namely Virtual IP Addresses that manage the heartbeat function that
keeps node integrity within the cluster [Cor21k]. The Exadata Machine comes with
its own storage configuration, which ASM sits on top of, managing the IO generated
from the RAC Database. The single instance databases where configured to have NAS
attached SAN file system Storage that was not ASM managed. For the duration of the
experiments no updates on the physical hardware or operating system were performed.
This is because updates to the physical hardware or operating system can influence
the behaviour of the workload. For example, the Kernel of the operating system may
depreciate parameters that impact CPU, IO or Memory, between major releases result-
ing in the workload being processed differently. By keeping the configurations static
we reduce the risk of these affects being reflected in the data signal, thus skewing any
forecasts.

4.5 Data Capture and Processing - Enterprise Manager

Capturing the data is handled by an intelligent agent installed on each host where
the experiment is conducted. The agent has the ability to identify targets, such as:

• Operating System and their configurations.

• Databases and their configurations.

• Database Instances and their configurations.

• Storage configurations.
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VM
Name

OS
Type

CPU
Details

Memory Storage Database Type Products and Versions

Single Database Instance Configuration
VM 1 OEL

Linux
2.6.39

4 * 2.9
Ghz

32Gb 300Gb Oracle Single In-
stance Database
(RapidKit)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent

(12.1.0.4),

VM 2 OEL
Linux
2.6.39

4 * 2.9
Ghz

32Gb 300Gb Oracle Single In-
stance Database
(RapidKit2)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent

(12.1.0.4),

Clustered Database Instance Configuration
Clustered
Com-
pute
Node 1

OEL
Linux
2.6.39

24 *
2.9
Ghz

96Gb 14Tb Oracle Clustered
Multi-tenant
Database
Instance
(DBM011)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent

(12.1.0.4,
• Grid Infrastructure (12.1.0.2),
• Oracle Automatic Storage

Manager (12.1.0.2),

Clustered
Com-
pute
Node 2

OEL
Linux
2.6.39

24 *
2.9
Ghz

96Gb 14Tb Oracle Clustered
Multi-tenant
Database
Instance
(DBM012)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent

(12.1.0.4,
• Grid Infrastructure (12.1.0.2),
• Oracle Automatic Storage

Manager (12.1.0.2),

Standby Database Instance Configuration
VM 3 OEL

Linux
2.6.39

4 * 2.9
Ghz

32Gb 1Tb Oracle Single
Instance Standby
Database
(STBYRapidKit,
STBYRapid-
Kit2)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent

(12.1.0.4),

Central Repository Details
Storage
Reposi-
tory

OEL
Linux
2.6.39

24 *
2.4
Ghz

32Gb 500Gb Oracle Single In-
stance Database
(EMREPCTA)

• Enterprise Edition (11.2.0.3),
• Enterprise Manager R4

including Webserver and
BIPublisher (12.1.0.4),

• Enterprise Manager Agent
(12.1.0.4),

Table 4.3: Platform Outline
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• Performance Metrics of the Operating System.

• Performance Metrics of the Database and their instances.

• Performance Metrics of Storage software such as ASM.

• Performance Metrics of Storage Technology, such as NAS and SAN via Plug-ins

The agent must have the ability to login as a privileged user on the operating system
(Oracle user) and database (DBSNMP user) with administrator privileges to enable
the agent to execute commands and interrogate the database AWR repository. Data
from all targets are then stored in a central repository in the SYSMAN schema, which
houses a collection of tables, views and indexes, etc. These targets are stored as entities
in the repository and a simple SQL query can extract the targets as described in section
B.4.1. An aggregation DBMS task is executed nightly to create an hourly metric as
described in Section B.4.4 of the appendix section. Parsing the data extracted from the
OEM repository into Python via the Python database connector, Python libraries are
used to perform forecasts and execute forecast or placement algorithms. Data is kept
in the repository for 1 year, allowing a large number of data points to be extracted,
providing the workloads are generating activity.

Should there be a break in the connection between the targets and the central repos-
itory, such as a network issues, then the agent stores the metric data in the form of xml
files locally on the target and once connectivity is restored the data is then uploaded
and processed in the repository retrospectively. The xml files are then cleared down
once applied and the data stored in the SYSMAN schema. The central repository con-
sidered to be as important as any live critical database, and has its own RMAN backup
routine executed nightly. If there is a gap in the time series data then an interpolation

technique is used to estimate the data between two gaps. We do this if there are only 1
or two gaps, rather than reset a whole experiment to save time.

4.5.1 Data Capture and Processing - Python

Python [Fou21] was used to implement the algorithms and carry out the experi-
ments that acted as a Proof of Concept (PoC). Commercial development, within Oracle
is often conducted in Java, Javascript and follows a strict SDLC. There are several key
libraries and techniques that were used and these are described in detail in Sections
B.5 and B.5.1.
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In the second piece of work titled ”Database Workload Capacity Planning using

Time Series Analysis and Machine Learning”; we used python as the program lan-
guage to test the ARIMA, SARIMA and SARIMAX solutions of forecasting metric
data. We utilised several packages that are listed in detail in Table B.3. Once we have
forecasted the model, that model and its data are then stored in a repository. Root Mean
Squared Error (RMSE) calculations are then calculated. If the RMSE drops to below
85% accuracy and/or a period of 7 days elapses, which creates new data points, then
the algorithm is forced to re-learn. We do this to ensure consistency that the model
is up to date and takes into consideration the latest data points. This mechanism was
tested as part of the experiments to ensure that we could scale by processing many
models on many metrics from many database instances. Scaling out was a problem for
forecasting because we found that it was taking approximately 11-13 minutes for one
forecast model to process 1000 hours of metric values to predict 24 hours in the future.
we needed a solution that could reducing the elapsed time of 11-13 minutes to execute
the model to less than 3 minutes. Supervised Learning solved this problem because it
learnt the historical data. We trained on 60% and test on 40% split. The models that
require relearning are then rerun as a batch job to keep resource utilisation to within
acceptable boundaries. Supervised Machine Learning to perform forecasts is not new
per se, however supervised learning on metric data en masse and on volatile data with
complex data structures such as trend, seasonality, stationariness on metric data such
as IO and CPU, is.

In the final piece of work titled ”Placement of Workloads from Advanced RDBMS

Architectures into Complex Cloud Infrastructure”, we, again, used Python as the pro-
gram language, the motivation for this was much like the work on forecasting, it was
quick and had lots of opensource libraries that could be readily used. There was a
’binpacking’ package, however, this package was simplistic and could not be used to
deal with advanced workloads such as clustered environments or pluggable databases.
We needed to write our own bin-packing algorithm that would also act as a PoC.

4.6 Conclusions

The motivation for the experiments being configured and conducted in the manner
they where was several fold.

• Reflective of customers environments that are employed today.
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• Controllable, repeatable and observable given we were performing forecasts
based on metric data that required measurements to asses accuracy.

• Methodical in that Oracle Engineering Teams and Service Delivery Teams would
accept as standard practice.

• Defensible in that the work undertaken in the thesis can be implemented into
Oracle Products and Services.

It was important to focus on current N-tier architectures that enterprises and organ-
isations employ today while undergoing cloud transformations. This meant that we
had to utilise hardware of sufficient capacity to reflect live systems, which the Oracle
Corporation kindly made available. Oracle Exadata hardware and Oracle Software is
a license product that is expensive when it is licensed by the CPU under current li-
cense agreements. Some of the clustered nodes had 24 CPUs each, totalling 80 CPUs,
as shown in Table 4.3, at several thousand dollars per CPU. Oracle allowed these ex-
periments to be run without having to pay any license fees, and we had experiments
running thousands of users over a period of weeks on over 50 database instances.
There was a significant amount of work in installing, configuring hardware and soft-
ware, creating the workloads, installing and configuring the agents and setting up the
experiments to run error free for weeks at a time across multiple databases. Creating
the experiments to be repeatable, controllable and observable also was a challenge es-
pecially for many pieces of work on different database configurations. It was important
to corroborate a peak or trough in the data signal with a surge in users to ensure no spu-
rious results skewed the predictions, thus initially a lot of data analysis was undertaken
to scrutinise the metric data to obtain confidence in the workloads and agent capturing
the data. We achieved confidence, by comparing the data from the AWR repository
of the individual database instance against the metric data held in the OEM repository.
We performed data reconciliation for each workload (OLTP, OLAP and Data Mart)
and once correct we we could have confidence in the environment an experiments.

The second piece of work titled ”Database Workload Capacity Planning using

Time Series Analysis and Machine Learning”, was more challenging. From the exper-
iments conducted in the work titled ”DBaaS Cloud Capacity Planning - Accounting

for Dynamic RDBMS System that Employ Clustering and Standby Architectures”; we
obtained volatile data signals as we gathered the data at a granular frequency (Hourly
data points), requiring the creation of new models. The work was carried out in con-
sultation with Advanced Customer Services Engineering teams to ensure that any code
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we produced followed their standards and adhere, to their SDLC but in the form of
a PoC. Time Series Analysis is not a new concept, however, after the first slew of
experiments it became apparent that the time to compute the models and perform a
prediction on one metric from one database instance was taking a long time and was
not scaleable. Rethinking the solution we focused on Machine Learning as potentially
being able to reduce the ’crunch’ time by learning (training) 60% of the data signal
therefore once learned the algorithm would only need to crunch the few data points
added as the timeline rolled forward.

The final piece of work titled ”Placement of Workloads from Advanced RDBMS

Architectures into Complex Cloud Infrastructure”, was also challenging as it required
more new algorithms. We used the target architecture to be current Oracle Cloud In-
frastructure Bare Metal configuration to keep with the mantra of real world system
configurations. Obtaining a cloud architecture was not possible so we based the place-
ment on target specifications via templates. The algorithms do not migrate the work-
loads; they provide a plan or design prior to a migration. Analysis of the architecture
teams that Oracle Advanced Customer Services showed that providing an architec-
tural diagram of workloads via a design diagram would be advantageous as it allows
flexibility in moving workloads. We wrote the new algorithms based on templates re-
flecting the resource sizes of physical hardware, that a user would input or configure.
For example, selecting the number of on-premises databases that are to be placed or se-

lecting the available metrics that make up a vector, and configuring the available target
resource, such as Memory, IO, CPU. This approach allowed for greater user interaction
and could be automated by means of extracting the data from a central repository that
holds metric data, such as the OEM repository from used to conduct the experiments
throughout the thesis. In the final paper, a methodology is described in algorithm ta-
bles of how bin-packing works depending on the type of workload being placed. The
bins are not dynamically changed by the algorithm but do take into consideration the
amount of available headroom prior to placement. If the user wishes to manually in-
crease the size of the target bins and then, for example, rerun the bin-packing routine
with new sizes of target bins. The bin-packing algorithms will assume the new size
of the bins and place the workloads accordingly. It is not intelligent enough to be
dynamic.



Chapter 5

Presentation of Published Work

A drug is a substance which, if

injected into a rabbit, produces a

paper.

Otto Loewi

This chapter presents the core contributions of the thesis in the form of a collection
published peer-reviewed papers. The published papers appear in International Con-
ference Proceedings each with a high impact factor (Downloads and Citations). The
contributions are presented in order as discussed in Section 1.10, and Appendix A
shows the formal permissions for reusing them.

For each publication source, this chapter shows impact measurements in terms of
ranking (if available), acceptance rate (if available in the publication year), impact fac-
tor, citation ranking (if there are citations) and awards (if any). A conference impact
factor is estimated for the most recent (possible) year by analysing academic citations
from Google Scholar. The rankings are obtained from resurchify [Met21], which as-
sess major conferences and journals in Computer Science. The citation ranking is
determined by retrieving and sorting paper citations also from Google Scholar or the
University of Manchester’s own publication bibliographical metadata or from the jour-
nal’s own website such as Association of Computer Machinery (ACM) [DL21]. For
the journal submitted, we obtained the most recent impact factor, the SCImago Journal
Rank and (SJR) at the time of December 2022.

89
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5.1 DBaaS Cloud Capacity Planning - Accounting for
Dynamic RDBMS System that Employ Clustering
and Standby Architectures

Antony Higginson, Clive Bostock, Norman Paton, Suzanne Embury

In Proceedings of the 20th International Conference on Extending Database
Technology (EDBT),
Published by OpenProceedings,
March 21-24 2017,
Venice, Italy,
Pages 687 - 699,
ISBN: 978-3-89318-073-8,
https://10.5441/002/edbt.2017.01.

Summary: This paper sets the scene of how to account for advanced database
configurations, obtaining the correct metrics at the right layer in N-Tier architectures.
We empirically evaluate how the configurations and advance features impact the work-
loads and why this is important if we are to understand the target configuration of the
same advanced database features to be created in a cloud.

Approaches: The approach taken was to empirically evaluate by using increas-
ingly complex deployments of databases systems. Then execute a workload on each
system and capture the usage, by means of an intelligent agent, periodically taking
measurements of metrics such as, CPU, Memory and IO. These, relevant, metrics are
stored in a central repository, which can then be mined to measure any differences the
complex architectures have on the workload. The workloads are based on established
benchmarks such as SPECInt (CPU) and TPC (IO). This paper highlights and answers
the question where database deployments increase in complexity, what factors impact
on the execution of the workload and by how much. Does this influence how a capacity
planning exercise should be viewed prior to cloud adoption?

Comments on authorship: I proposed the main idea of the paper, developed and
validated the main approach, conducted an empirical evaluation, analysed results, in-
vestigated related work, provided results, and all graphics, participated in the entire
writing processes and addressed any comments. I created the environments, wrote any
code in the form of shell scripts to execute the workloads. I configured any operating
systems and databases as required and acted as the DBA to monitor the environments
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as the experiments ran. Specific shell code was written to extend Swingbench for our
purposes with the help of an Oracle Software Engineer (Clive Bostock) to ensure we
followed Oracle SDLC. I presented the work at the EDBT Conference. My supervisors
Norman Paton and Suzanne Embury also contributed to the idea, experiment design,
literature research and analysis. They also proof read the paper and approved the final
submission. They also guided the whole research process.

Key Contribution: See Sections 1.9.3 and 6.1
Impact Factor:(Dec 2022) Impact score - unavailable, Scimago shows the follow-

ing h-index 20, SJR 0.31, Google Scholar shows citations 3
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ABSTRACT
There are several major attractions that Cloud Computing
promises when dealing with computing environments, such
as the ease with which databases can be provisioned, main-
tained and accounted for seamlessly. However, this efficiency
panacea that company executives look for when managing
their estates often brings further challenges. Databases are
an integral part of any organisation and can be a source of
bottlenecks when it comes to provisioning, managing and
maintenance. Cloud computing certainly can address some
of these concerns when Database-as-a-Service (DBaaS) is
employed. However, one major aspect prior to adopting
DBaaS is Capacity Planning, with the aim of avoiding under-
estimation or over-estimation of the new resources required
from the cloud architecture, with the aim of consolidating
databases together or provisioning new databases into the
new architecture that DBaaS clouds will provide. Capac-
ity Planning has not evolved sufficiently to accommodate
complex database systems that employ advanced features
such as Clustered or Standby Databases that are required
to satisfy enterprise SLAs. Being able to efficiently capacity
plan an estate of databases accurately will allow executives
to expedite cloud adoption quickly, allowing the enterprise
to enjoy the benefits that cloud adoption brings. This pa-
per investigates the extent to which the physical properties
resulting from a workload, in terms of CPU, IO and mem-
ory, are preserved when the workload is run on different
platforms. Experiments are reported that represent OLTP,
OLAP and Data Mart workloads running on a range of ar-
chitectures, specifically single instance, single instance with
a standby, and clustered databases.

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

This paper proposes and empirically evaluates an approach
to capacity planing for complex database deployments.

Keywords
Cloud, DBaaS, Capacity Planning, Database, Provisioning,
Standby, Clustering

1. INTRODUCTION
Traditionally, companies accounted for the cost of assets

associated with their I.T. using Capex (Capital Expendi-
ture) type models, where assets such as hardware, licenses
and support, etc, were accounted for yearly. For example,
a software license usually is based on an on-premises model
that would be user based, or by the CPU if the application
served many thousands of users. The advent of Cloud com-
puting, with the pay-as-you-go subscription based model,
has changed the way company executives look at the cost-
ing models of their I.T.

A similar paradigm unfolds when I.T. departments such
as Development, Delivery and Support teams need to pro-
vision environments quickly to meet their business goals.
Traditional project methodologies would request environ-
ments aiding development and testing with the goal of going
live. Procurement and provisioning took time that was often
added to the project lifecycle. Cloud computing addresses
such issues so that a user can, with ease, request the rapid
provision of resources for a period of time.

Once the system went live those Delivery and Support
teams would then need to account for resources those partic-
ular systems consumed, reconciling with the Line Of Busi-
ness (LOB). The results of that analysis would then feed
back into next year’s Capex model. This ongoing capacity
planning to assess if they have enough resources is needed to
ensure is that, as systems grow, there are enough resources
to ensure that the system is able to meet QoS (Quality
of Service) expectations. Cloud Computing has also made
some advances here by enabling a metering or charge-back
facility that can accurately account for the resources used
(CPU, Memory, Storage). Cloud Computing can dynami-
cally modify the cloud to reduce or increase those resources



Figure 1: Example Architecture: Typical customer legacy database architecture.

as needed by the client.
However, companies with large estates have the additional

challenge of having a plethora of database versions, for ex-
ample, each database version offering a different feature that
has a performance benefit over another database version.
Similarly, the databases may be running on a eclectic set of
operating systems and hardware, each affecting the work-
load in a subtle or major way. For example, the latest run-
ning version of a database may run on a highly configured
SAN utilising the latest techniques in query optimization
and storage. Comparing this footprint with an older version
of software and infrastructure often leads to a Finger-in-the-
air type approach.

A key feature of DBaaS is the ability to multi-tenant
those databases where different workloads and database con-
figurations can coexist in the shared resources, adding to
the challenge of making effective capacity planning deci-
sions. Determining the allocation is further complicated if
the database utilises advanced features such as Clustering
or Failover Technology, as workloads shift from one instance
to another or are shared across multiple instances based on
their own resource allocation managers. Furthermore, if a
database employs a standby, this further complicates capac-
ity planning decisions.

Cloud Computing is in its infancy, with incremental adop-
tion within the industry as companies try and determine how
to unpick their database estates and move them to cloud in-
frastructure. Databases often grow organically over many
years in terms of their data and complexity, which often
leads to major projects being derived when a major upgrade
or re-platform exercise is required. With the introduction of
cloud these exercises are becoming more prudent. This often
leads to a series of questions on Capacity Planning.

• What is the current footprint of the database including
any advanced features such as Standby or Clustering?

• What is the current configuration of the database?

• What type of DBaaS should I create?

• What size of DBaaS should I create?

• Can I consolidate databases that have similar configu-
ration and utilisation foot-prints?

• Will my SLAs be compromised if I move to a cloud?

Such questions become very important prior to any pro-
visioning or migration exercise.

The time taken to perform this analysis on databases also
has a major impact on a company’s ability to adopt cloud
technologies often squeezing the bandwidth of the delivery
and support teams. The departments suffer paralysis-by-
analysis, and the migration to the cloud becomes more pro-
tracted to the frustration of all involved. If the analysis is
not performed accurately then the risks of over-estimation
and under-estimation increase. Being able to automate the
gathering of data, analysing the data and then making a
decision becomes ever more important in enterprises with
large estates.

In this paper we look at the challenges of Capacity Plan-
ning for advanced database systems that employ cluster-
ing and standby databases, with a view to migration to a
cloud. Our hypothesis is: “That a model based on physical
measures can be used to provide dependable predictions of
performance for diverse applications”. We make two main
contributions:

1. We propose an approach to workload analysis based on
physical metrics that are important to capacity plan-
ning for database systems with advanced configura-
tions.

2. We report the results of an empirical analysis of the
metrics for several representative workloads on diverse
real-life configurations.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the Background and Related Work. In
Section 3 we detail the environmental setup for conducting
experiments outlining the database capacity planning prob-
lem. In Section 4 we introduce our solution in detail and



provide details on the experiments and analysis. Section 5
gives conclusions and future work.

2. BACKGROUND AND RELATED WORK

2.1 Background
Fig 1 shows an example environment of a company that

is running different versions and configurations of databases
on VM hardware. Physical machines are dissected into 10
VM’s giving a level of separation. On these 10 VM’s a total
of 12 databases are run, of which 6 are primary databases
and 6 are standby databases. This MAA (Maximum Avail-
ability Architecture) allows the company some comfort by
running their primary (Platinum) SLA level applications
on VM numbers 3, 4, 5 and 6, which host two clustered
databases (offering a degree of resilience against node fail-
ure). In addition, these clustered databases have a physi-
cal standby database running on VM’s 9 and 10 in case of
database failure or corruption. Similarly, the 4 single in-
stance stand alone databases that are running on VM’s 1
and 2 also have a replicated standby database running on
VM’s 7 and 8, again offering the company some comfort
that their secondary (Gold) level of applications will have a
standby database for failover, should they need it.

The company also wish to increase their ROI (Return on
Investment) with this environment and thus often open up
the standby databases in “Read Only” mode during special
times for applications that need to run year-end or month-
end type BI (Business Intelligent) reports. This particular
type of architectural pattern is a typical configuration com-
panies use today to manage their database environments and
applications that have 24*7 type SLAs. The difficulty be-
comes apparent when a new exercise is introduced that looks
at consolidating, upgrading and migrating those environ-
ments listed in Fig 1 to a new cloud architecture, where re-
sources can be tightly accounted and dynamically assigned.
We are then faced with a capacity planning exercise.

2.2 Related Work
The objective of capacity planning is to provide an ac-

curate estimate of the resources required to run a set of
applications in a database cloud. Achieving this answer re-
lies on the accurate capture of some base metrics, based on
historical patterns, and applying some modelling techniques
to form a prediction. There are two main viewpoints: the
viewpoint of the CSP (Cloud Service Provider) in what they
offer and their capabilities, i.e are there enough resources to
provide services to consumers; and the viewpoint of the con-
sumer, for example, can a customer capacity plan their sys-
tems against the CSP’s capability? Indeed if the customer
wishes to become a CSP but in a private cloud configuration,
then the first viewpoint also becomes important.

A CSP offers resources, and existing models use various
techniques to help customers assess the CSP capabilities.
MCDM (Multi Criteria Decision Making) weighs the at-
tributes of an individual database by their importance in
helping to choose the right cloud (Mozafari et al 2013 [16]
and Shari et al 2014 [19]. CSP’s can also be assessed us-
ing a pricing model to validate their capability based on a
consumers single systems workload as suggested by (Shang
et al [20]); using this financial approach contributes to the
value-for-money question that many enterprises seek when
deciding on the right cloud.

If a consumer has a cloud, knowing where to place the
workload based on utilisation to achieve the best fit is criti-
cal when beginning to answer the QoS (Quality of Service)
question, and techniques such as bin-packing algorithms (Yu
et al [21]) help achieve this answer. However systems may
have dynamic workloads, which may evolve organically as
datasets and/or numbers of users grow or shrink, as is espe-
cially common in internet based systems. There is a need for
constant assessment of said workloads. Hacigumns et al [10]
and Kouki et al [11] both look at the workload of an applica-
tion or the query being executed, and then decide what type
of database in a cloud would satisfy QoS. Mozafari et al [15]
suggests using techniques that capture log and performance
data over a period of time, storing them in a central repos-
itory, and modelling the workloads at a database instance
level. With the advent of Virtualisation that enterprises
utilise, including CSP’s, when running their estates, several
techniques such as coefficient of variation and distribution
profiling are used to look at the utilisation of a Virtual Ma-
chine to try and capacity plan. Mahambre and Chafle [13]
look at the workload of a Virtual Machine to create relation-
ship patterns of workloads to understand how resources are
being utilised, analysing the actual query being executed to
predict if and when it is likely to exhaust resources available.

There seems to be a consensus among several academics
(Shang et al [20], Loboz [12] and Guidolin et al 2008 [9]) on
the need for long term capacity planning and the inadequacy
of capacity planning in this new age of cloud computing us-
ing current techniques. The techniques used today assume
that the architecture is simple, in that the architecture does
not utilise virtualisation or advanced database features such
as standby’s and clustering technology, but in the age of con-
solidation and drive for standardisation, the architecture is
not simple. Enterprises use combinations of technology in
different configurations to achieve their goals of consolida-
tion or standardisation. Most models use a form of linear
regression to predict growth patterns. Guidolin et al 2008
[9] conducted a study of those linear regression models and
came to the conclusion that as more parameters are added
the models become less accurate, something also highlighted
by Mozafari et al 2013 [15]. To mitigate against this inac-
curacy more controls are added at the cost of performance
of the model itself. For example, predicting the growth of
several databases based on resource utilisation may become
more inaccurate as the number of source systems being anal-
ysed increases, therefore requiring more controls to keep the
accuracy. This is certainly interesting when trying to ca-
pacity plan several applications running on different config-
urations prior to a migration to a cloud. In addition, trying
to simulate cloud computing workloads to develop new tech-
niques is also an issue; Moussa and Badir 2013 [14] explained
that the TPC-H [4] and TPC-DS [3] benchmarks are not de-
signed for Data Warehouses in the cloud, further adding to
the problem of developing and evaluating models.

3. EXPERIMENTAL SETUP
Given a description of an existing deployment, including

the Operating System, Database and Applications running
on that database (Activity), a collection of monitors on the
existing deployment that report on CPU, Memory, IOPS’s
and Storage, the goal is to develop models of the existing
configuration that contain enough information to allow reli-
able estimates to be made of the performance of a deploy-



Workload
Type

Workload Profile DBNAME(S) Workload Description Number of
Users

Duration
(hh:mi)

Avg Transac-
tion per sec

OLTP General usage RAPIDKIT
RAPIDKIT2
DBM01

General Online Application with updates, inserts and
deletes simulate working day

100
2000 (DBM01)

23:59 0.2

OLTP Morning Peak
Logon Surge

RAPIDKIT
RAPIDKIT2
DBM01

Morning Surge to simulate users logging on to the Online
Application with updates, inserts and deletes

100
1000 (DBM01)

2:00 0.2

OLTP Lunch Time
Peak Logon
Surge

RAPIDKIT
RAPIDKIT2
DBM01

Lunch Time Surge to simulate users logging on to the
Online Application with updates, inserts and deletes

100
1000 (DBM01)

1:00 0.2

OLTP Evening Time
Peak Logon
Surge

RAPIDKIT
RAPIDKIT2
DBM01

Evening Time Surge to simulate users logging on to the
Online Application with updates, inserts and deletes

100
1000 (DBM01)

5:00 0.2

Daily OLTP Hot Backup taken at 23:00

OLAP Data Warehouse
General Usage

RAPIDKIT
RAPIDKIT2
DBM01

General Data Warehousing Application with heavy Se-
lects taking place out of hours building Business Intel-
ligence data

5
400 (DBM01)

8:00 0.4

Daily OLAP Hot Backup taken at 06:00

Daily OLAP archivelog backups taken at 12:00,18:00,00:00

DM OLTP General
Usage

RAPIDKIT
RAPIDKIT2
DBM01

Combination of DML taking place during the business day
and heavy DML taking out of ours

200
1000 (DBM01)

23:59 0.2

DM OLTP Morning
Peak Logon
Surge

RAPIDKIT
RAPIDKIT2
DBM01

Morning Surge to simulate users logging on to the Online
Application with updates, inserts and deletes

100
500 (DBM01)

2:00 0.2

DM OLTP Lunch
Time Peak
Logon Surge

RAPIDKIT
RAPIDKIT2
DBM01

Morning Surge to simulate users logging on to the Online
Application with updates, inserts and deletes

100
500 (DBM01)

2:00 0.3

DM OLTP Evening
Time Peak
Logon Surge

RAPIDKIT
RAPIDKIT2
DBM01

Evening Time Surge to simulate users logging on to the
Online Application with updates, inserts and deletes

100
500 (DBM01)

5:00 0.3

DM OLAP Batch
Loads Peak

RAPIDKIT
RAPIDKIT2
DBM01

Evening Time Surge to simulate users logging on to the
Online Application with updates, inserts and deletes

5
400 (DBM01)

8:00 0.3

Daily DM Hot Backup taken at 06:00

Daily DM archivelog backups taken at 12:00,18:00,00:00

Table 1: Database Workloads

ment when it is migrated to a cloud platform that may in-
volve a Single Database, a Clustered Database or Standby
Databases. To meet this objective, we must find out if a
workload executed on one database is comparable to the
same workload running on the same database on a different
host.

Our approach to this question is by way of empirical eval-
uation. Using increasingly complex deployments, of the type
illustrated in Fig 2, and representative workloads, we estab-
lish the extent to which we can predict the load on a target
deployment based on readings on a source deployment. This
section describes the workloads and the platforms used in
the experiments.

3.1 Workloads
A Workload can be described as the activity being per-

formed on the database at a point-in-time, and essentially
is broken down into the following areas:

• Database - An Oracle database is a set of physical files
on disk(s) that store data. Data may be in the form
of logical objects, such as tables, Views and indexes,
which are attached to those tables to aid speed of ac-
cess, reducing the resources consumed in accessing the
data.

• Instance - An Oracle instance is a set memory struc-
tures and processes that manage the database files.
The instance exists in memory and a database exists
on disk, an instance can exist without a database and
a database can exist without an instance.

• Activity - The DML (Data Modification Language)/DDL
(Data Definition Language) i.e. SQL that is being exe-
cuted on the database by the application, creates load
consisting of CPU, memory and IOPS/s.

.

The monitors used to capture the data report on IOPS’s
(Physical reads and Physical Writes), Memory (RAM as-
signed to a database or host) and CPU (SPECINT’s). SPECInt
is a benchmark based on the CINT92, which measures the
integer speed performance of the CPU, (Dixit) [6]. The ex-
periments involve controlled execution of several types of
workloads on several configurations of database. Moussa
and Badir 2013 [14] describe how running of controlled work-
loads using TPC has not evolved for clouds, therefore we will
use a utility called swingbench (Giles)[8] to generate a con-
trolled load based on TPC-C [5]. The workload is generated
on several Gb’s of sample data based on the Orders Entry
(OE) schema that comes with Oracle 12C. The OE schema is
useful for dealing with intermediate complexity and is based
on a company that sells several products such as software,
hardware, clothing and tools. Scripts are then executed to
generate a load against the OE schema to simulate DML
transactions performed on the database of a number of users
over a period of Hour.

3.2 Outline of the Platforms
Three different types of workload were created (OLTP,

OLAP and Data Mart) as shown in Table 1. The Database
is placed in archivelog mode during each execution of the
workload further creating IO on the Host and allowing for
a hot backup to be performed on the database. The backup
acts as a ’houskeeping’ routine by clearing down the archivel-
ogs to ensure the host does not run out of storage space.
This type of backup routine is normal when dealing with
databases and each backup routine is executed periodically
depending upon the workload.

4. EXPERIMENTS AND ANALYSIS
A number of experiments were conducted to investigate

if a workload executed on one machine consumes similar
resources when the workload is executed on another envi-
ronment. The aim was to investigate what could cause dif-



VM Name OS Type CPU De-
tails

Memory Storage Database Type Products and Versions

Single Database Instance Configuration

Virtual Machine 1 OEL Linux
2.6.39

4 * 2.9 Ghz 32Gb 300Gb Oracle Single In-
stance Database
(RapidKit)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4),

Virtual Machine 2 OEL Linux
2.6.39

4 * 2.9 Ghz 32Gb 300Gb Oracle Single In-
stance Database
(RapidKit2)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4),

Clustered Database Instance Configuration

Clustered Com-
pute Node 1

OEL Linux
2.6.39

24 * 2.9
Ghz

96Gb 14Tb Oracle Clustered
Multi-tenant
Database Instance
(DBM011)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4,
• Grid Infrastructure (12.1.0.2),
• Oracle Automatic Storage Manager (12.1.0.2),

Clustered Com-
pute Node 2

OEL Linux
2.6.39

24 * 2.9
Ghz

96Gb 14Tb Oracle Clustered
Multi-tenant
Database Instance
(DBM012)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4,
• Grid Infrastructure (12.1.0.2),
• Oracle Automatic Storage Manager (12.1.0.2),

Standby Database Instance Configuration

Virtual Machine 3 OEL Linux
2.6.39

4 * 2.9 Ghz 32Gb 1Tb Oracle Sin-
gle Instance
Standby Database
(STBYRapidKit,
STBYRapidKit2)

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4),

Central Repository Details

Storage Repository OEL Linux
2.6.39

24 * 2.4
Ghz

32Gb 500Gb Oracle Single In-
stance Database
(EMREPCTA)

• Enterprise Edition (11.2.0.3),
• Enterprise Manager R4 including Webserver and

BIPublisher (12.1.0.4),
• Enterprise Manager Agent (12.1.0.4),

Table 2: Platform Outline

(a) Single Instance (b) Single Instances with Standby Databases (c) Two Node Clustered Database

Figure 2: Experiment Architecture: different database combinations used for experiments.

ferences in the consumption of resources between workloads.
The experiment focused on three types of database configu-
ration:

• Experiment 1 - Running three workloads (OLTP,OLAP
and DM) on a single instance database.

• Experiment 2 - Running the workloads (OLTP,OLAP
and DM) on a single instance database with a Physical
Standby Database.

• Experiment 3 - Running the three workloads (OLTP,OLAP
and DM) on a two node clustered database.

The database was always the same version between each
host, the data set was always the same size to start, the
workload was always repeatable in that the workload could
be executed, stopped, the database reset and the same work-
load replayed.

4.1 Experimental Methodology
The experiments involve an eclectic set of hardware con-

figured to run several different types of database as shown in
Table 2. An agent polls the database instance every few min-
utes for specific metrics namely; Database Instance Memory,
IOPS’s (physical Reads/Writes) and CPU per sec. The met-
ric results are stored in a central repository database, and
are aggregated at hourly intervals. The configuration of the
hardware, such as CPU Make model and SPECInt, and the
database configuration are also stored in a central reposi-
tory, which is then used as lookup data when performing
comparisons between the performance of one workload on
one database with the same workload on another database.

4.2 Experiment One - Single Database Instance
The first experiment was to execute three workloads on

one single instance database on a virtual host (VM1) and



then execute the same three workloads on another single in-
stance database on another virtual host (VM2) as shown in
Fig 2a. The database configurations were the same in In-
stance Parameters, Software Version and Patch Level. The
Hardware configurations were the same in OS Level, Kernel
Version, and memory configuration. Some differences exist
in the underlying architecture such as the Physical hardware
and the Storage as these where VM’s created on different
physical machines. We capture the metrics for each work-
load and analyse the extent to which physical properties are
consistent across platforms. This is shown graphically in Fig
3

4.3 Results and Analysis Experiment One -
OLTP Workload

The results for OLTP, covering Memory, CPU and IOPS/s
are shown graphically in Fig 3. These are simple line graphs
from the OLTP workload shown in Table 1. It was observed
that the OLTP workload from a CPU perspective had sev-
eral distinguishing features. It clearly shows that the work-
load starts off low until the beginning of the experiment
where a sudden jump takes place and the OLTP workload
begins. Then there is a general plateau that relates to the
24 hour periods and at various times from there on in there
are spikes.

• CPU utilisation - CPU over a 72 hour period was not
the same between the two databases but at it largest
peak (evening surge) there was a difference of approxi-
mately 300 SPECInts or +88% (day 24 hour 11) in its
utilisation. The difference in utilization between the
two workloads without the peaks was approximately
+20%.

• CPU Spikes (Backup) - There were several spikes in
CPU at 00:00 - 02:00 and relate to the daily hot RMAN
backup that is taken for the databases.

• CPU Spikes (Morning Surge) - A large CPU spike
was observed for several hundred users accessing the
database at 08:00.

• IOPS/s (general) - There is a large difference in IOPS
(day 23 hour 9) where the difference at peak is +88%.
The difference in general usage (i.e. without the peaks)
was +7%.

CPU, Memory and IOPS/s over a 72 hour period show
similar traits in that the workload begins and there is a
jump in the activity as the users logon. The first set of
results show that even when executed on similar platforms,
the metrics for the OLTP workloads can be substantially
different, especially in the CPU and IOPS utilisation.

4.4 Results and Analysis Experiment One -
OLAP Workload

The results for OLAP covering Memory, CPU and IOPS/s
are shown graphically in Fig 4. The difference between the
OLTP and OLAP workload is that the OLAP workload is
high in Select statements and the result set is larger. The
IO is representative of a Data Warehouse building cubes for
interrogation by a Business Intelligence reporting tool. The
execution times for the workload are also different; OLTP is
fairly constant in its usage, whereas OLAP is more concen-
trated out of normal working hours. It was observed that

the OLAP workload runs out of hours for a period of around
five hours and this matches the description shown in Table
1.

• CPU Spikes (General Usage) - CPU over a 72 hour
period was not the same for the two databases, but at
it largest peak there was a difference of only +1% (day
17 hour 05) in utilisation. Two workloads outside the
peaks were essentially the same.

• IOPS/s utilisation - IOPS over a 72 hour period had a
difference of approximately +50% in utilisation (Day
16 Hour 8); outside the peaks (Day 16 Hour 19) the
utilisation is 0%.

• IOPS/s Spikes (Backup) - There are four backups that
run during the 24 hours. Three of those backups are
used as housekeeping routines that backup and delete
the archivelogs; these backups are executed at 12:00,
18:00 and 00:00. One backup backs up the database
(level-0) and the associated archivelogs, and this is ex-
ecuted at 06:00. There was no spike for 18:00 because
the backup at 12:00 had removed the archivelogs and
thus there was nothing to backup.

The OLAP Memory chart also showed the same charac-
teristics as the IOPS/s and CPU charts in that there is a
uniform pattern to there being a plateau and a spike over
the 72 hours. Each of the databases had a memory con-
figuration of 3.5Gb, given the OLAP workload would have
had SQL requiring larger memory than 3.5Gb for sorting,
thus sorts would have gone to disk rather than memory, ac-
counting for the higher IOPS’s readings in Fig 4 than in Fig
3.

4.5 Results and Analysis Experiment One -
DataMart Workload

The results for the Data Mart covering Memory, CPU
and IOPS/s are shown in Fig 5. It was observed that the
Data Mart workload from a CPU perspective had several
distinguishing features. It clearly shows that the workload
starts off as the users connect and the workload is running,
a sudden jump takes place at Day 10 Hour 3 as the Batch
Loads are executed for approximately 6 hours, and this is
repeated twice more throughout the 72 hours. There are also
other peaks and troughs observed and these are consistent
with the workload described in Table 1.

• CPU utilisation - CPU over a 72 hour period between
the two databases and had a difference of approxi-
mately +64% during the normal day (Day 9 Hour 21).
When the batch loads ran (Day 11 Hour 05) the dif-
ference in utilisation was +1%.

• CPU Spikes (General) - generally, the CPU utilisation
between the two databases was the same, there is a
difference of +1% at peak times.

• IOPS/s Utilisation - IOPS at peak (Day 9 Hour 21)
had a difference of approximately +24%

• Memory utilisation - Memory was the same in general
footprint however there were differences at peaks times
of 300mb or +4%



(a) CPU 72 hours (b) IOPS’s 72 Hours (c) Memory 72 Hours

Figure 3: Results Single Instance OLTP: workload patterns for the 72 hour period.

(a) CPU 72 hours (b) IOPS’s 72 Hours (c) Memory 72 Hours

Figure 4: Results Single Instance OLAP: workload patterns for the 72 hour period.

(a) CPU 72 hours (b) IOPS’s 72 Hours (c) Memory 72 Hours

Figure 5: Results Single Instance Data Mart: workload patterns for the 72 hour period.

In general there is a difference in the VM’s at a CPU level.
The VM named acs-163 has a configuration of 16 Threads(s)
per core (based on the lscpu command) from the VM infra-
69 which only has 1 thread per core. We believe this ac-
counts for the difference in CPU for small concurrent trans-
actions in the OLTP workload. Each of the databases had
a memory (SGA) configuration of 3.5Gb, if the SQL state-

ment executed in the workload requires a memory larger
than 3.5Gb, which is more common in OLAP and Data Mart
workloads then sorts will go to disk. Database memory con-
figurations influence the database execution plans and opti-
misers and this sensitivity is reflected in the IOPS’s charts
shown in Fig’s 3b, 4b and 5b.



(a) Host Total IO’s Made 72 hours (a) Host CPU Load Avg (15Mins) 72 hours (b) Host CPU Utilisation 72 Hours

Figure 6: Results HOST Metrics OLTP: workload patterns for the 72 hour period.

4.6 Experiment Two - Single Instance Standby
Configurations

The Second set of experiments was to introduce a more
complicated environment executing one workload (OLTP)
on a single instance primary database with a physical standby
database kept in sync using the Data Guard technology (Or-
acle Data Guard [18]) across the two sites, as shown in Fig
2b. A key factor in this experiment is that the physical
standby database is always in a recovering state and there-
fore is not opened to accept SQL connections in the same
way as a normal (primary) database. Therefore the agent is
unable to gather the instance based metrics, so we capture
host based metrics to compare and contrast the workload:

• CPU load over 15mins - This is the output from the
“Top” command executed in linux, this measurement
is a number using or waiting for CPU resources. For
example if there is a 1, then on average 1 process over
the 15 min time period is using or waiting for CPU.

• CPU Utilisation Percentage - This is based on the
“MPSTAT -P ALL” command and looks at the per-
centage of all cpu’s being used .

• TotalIOSMade - This is the total physical reads and
total physical writes per 15 minute interval on the host.

• MaxIOSperSec - This is the Maximum physical reads
and physical writes per sec.

The two VM’s are located within the same site but in
different rooms, Data Guard is configured using Maximum
Performance mode to allow for network drops in the con-
nectivity between the two physical locations. The database
configurations were the same in Instance Parameters, Soft-
ware Version and Patch Level. The Hardware configurations
were the same in OS Level, Kernel Version and memory con-
figuration. We capture the metrics of each workload and
analyse the consistency of the metrics, as shown graphically
in Figure 6.

4.7 Results and Analysis Experiment Two -
OLTP Workload

The results for OLTP covering CPU and IOPS/s are shown
graphically in Figure 6. Relying on host based metrics has

a profound effect in the ability to compare and contrast
different CPU models, as there is no common denomina-
tor (SPECInt) calculated. It also becomes difficult if there
are multiple standby databases existing in the same envi-
ronment. When the workloads were compared between the
hosts, due to the nature of the physical standby and the pri-
mary behaving, as designed, in a completely different way,
the graphs clearly show that the standby database has a con-
siderably lower utilisation of CPU and IO resources. This is
for several reasons:

• A physical Standby Database is in recovery mode there-
fore is not open for SQL DML or DDL in the same
manner as a primary database is opened in normal
mode. Therefore processes are not spawned at OS
level/Database level, consuming resources such as Mem-
ory, CPU.

• A Physical standby applies“Archivelogs”and therefore
is much more dependent on Physical Writes as these
logs (changes) are applied on the standby from the
primary database, therefore less IO load is generated.

• The reduction in IOPS/s is also attributed to DML/DDL
is not being executed on the standby database in the
same manner as a primary database (e.g. rows are not
being returned as part of a query result set).

It was clear after the first experiment OLTP, that the
workloads would be profoundly different in their footprint
regardless of the workload being executed, so we have not
included the results of the other workloads namely, OLAP
and Data Mart.

4.8 Experiment Three - Clustered Database
(Advanced Configuration)

The final set of experiments was to execute three the work-
loads on a more advanced configuration, a two-node clus-
tered database running in an Engineered system (Exadata
X5-2 platform) [1], illustrated in Fig 2. During the experi-
ment, compute nodes are closed down to simulate a fail-over.
The database configurations were the same in Instance Pa-
rameters, Software Version and Patch Level. The hardware
configurations were the same in OS Level, Kernel Version
and memory configuration. A difference in this experiment



from the previous two is that the physical hardware and
database are clustered. In this experiment we leverage the
Exadata Technology in the IO substructure.

4.9 Results and Analysis Experiment Three -
OLTP Workload

The results for OLTP covering Memory, CPU and IOPS/s
are shown graphically in Fig 7. The OLTP workload was
amended to run from node 1 for the second 24 hours and
this is reflected in all three of the graphs, when the instance
DBM012 is very much busier than instance DBM011. The
workloads are then spread evenly for the following 48 hours.

• CPU utilisation - for the first 24 hours, the workloads
were executed fairly evenly across the cluster with a
workload of 2000 users connecting consistently with
peaks of 1000 users at peak times, and the CPU showed
similar patterns during the workload execution.

• CPU utilisation - When the workload ran abnormally
and all users (3000 users) ran from one node, in the
second 24 hours, then the CPU utilisation did almost
double in usage as expected. The increase was approx-
imately +99% (Day 7 Hour 15)

• IOPS/s - The IOPS’s utilisation for the first 24 hours
was similar, as expected, when the workloads were
evenly spread. However when the workloads were run
from node 2 in the second 24 hours the IOPS increase
significantly, as expected. The IOPS during the failure
period was as expected, an increase of +99% (Day 7
Hour 15).

• IOPS/S Spike - there are two major spikes occurring
at Day 7 Hour 2 and Day 8 Hour 2, these are Level 0
database backups than only run from node 1 (DBM011)

• Memory Consumption - The maximum memory utili-
sation across both instances was consistent during the
first 24 hours when the workload was evenly spread.
The memory configuration on DBM012 is sufficient to
handle the 3000 users during the failover period, al-
though the increase in memory used on DBM012 was
only +45%

In general, the conclusion from this experiment when ex-
ecuting the OLTP workloads was, it cannot be assumed
that when a workload fails over from one node (database
instance) to another node (database instance) the footprint
will be double in terms of Memory. The workload did double
for CPU and IOPS/s. The results show there is an increase
in IOPS/s, Memory and CPU. The difference during normal
running conditions (i.e. when workloads are evenly spread)
was the following: +31% (Day 7 Hour 3) CPU, +2% Mem-
ory (Day 6 Hour 21) and +1% (Day 6 Hour 12) IOPS. When
the workload failed over there was a difference of +97% (Day
7 Hour 9) CPU, +99% (Day 7 Hour 20) Memory and +99%
(Day 08 Hour 10) IOPS. There are two large spikes at Day 7
Hour 2 and Day 8 Hour 2; these are Level 0 RMAN backups
which account for the large IOPS readings. The database
instance was sufficiently sized to handle both workloads oth-
erwise we would of expected to see out of memory errors in
the database instance alert file.

4.10 Results and Analysis Experiment Three
- OLAP Workload

The results OLAP covering Memory, CPU and IOPS/s
are shown graphically in Fig 8. The OLAP workload was
amended to run from node 1 for the first 24 hours and this
is clearly reflected in all three of the graphs, as the instance
DBM011 is very much busier than instance DBM012 during
this period. The workloads are then spread evenly for the
following 48 hours.

• CPU utilisation - for the first 24 hours, node 1 ran the
whole workload of 400 users and thus the DBM011
instance is busier compared with the workload across
days two and three; as expected, utilization is effec-
tively doubled, at +99%.

• CPU utilisation - when the workload ran normally (400
users) across both nodes then the utilisation was sim-
ilar in its SPECint count with a difference of approxi-
mately +20%.

• IOPS/s - The IOPS’s utilisation for the first 24 hours
was busier on node 1, as expected, than node 2 given
that both workloads were executed from DBM011 in-
stance. The IOPS utilisation was almost double +99%
(Day 25 Hour 05) the amount from the second period
of time (Day 26 Hour 05) when the workloads were
spread evenly across both instances.

• Memory Consumption - The maximum memory util-
isation observed across both instances was consistent
with the workload, the first 24 hours when the work-
load ran from node 1 is as expected in that there was
sufficient memory to serve both workloads. However
there is a difference of +55% (Day 25 Hour 04) in mem-
ory between nodes 1 and 2. For the second 24 hours,
as the workloads reverted back to their normal hosts
I.E. spread evenly across both nodes, their utilisation
is similar with a difference of +1% (Day 26 Hour 04)
between the nodes in memory utilisation.

In general, the conclusion from this experiment when exe-
cuting the OLAP workloads was that it cannot be assumed
that when a workload fails over from one node (database
instance) to another node the footprint will be double in
terms of Memory. For the metrics IOPS and CPU the in-
crease was almost double; CPU had a difference of +99%
(Day 25 Hour 04) and IOPS +99% (Day 24 Hour 04). When
the workload was spread evenly across both nodes the differ-
ences between the nodes where CPU +20% (Day 26 Hour
3), Memory +2% (Day 26 Hour 3) and IOPS +1% (Day
26 Hour 4). The database instance was sufficiently sized to
handle both workloads otherwise we would of expected to
see out of memory errors in the database instance alert file.

4.11 Results and Analysis Experiment Three
- Data Mart Workload

The results are as follows for the Data Mart workloads
covering Memory, CPU and IOPS/s, as shown graphically
in Fig 9. The Data Mart workload was run normally for the
first 24 hours, which is reflected in the workloads being sim-
ilar for this period. A simulated failure of database instance
DBM011 is then performed and all connections then fail-
over to DBM012 on node 2 for the second 24 hours. This is



(a) CPU 72 hours (b) IOPS/s 72 Hours (c) Memory 72 Hours

Figure 7: Results RAC OLTP: workload patterns for the 72 hour period.

(a) CPU 72 hours (b) IOPS/s 72 Hours (c) Memory 72 Hours

Figure 8: Results RAC OLAP: workload patterns for the 72 hour period.

(a) CPU 72 hours (b) IOPS/s 72 Hours (c) Memory 72 Hours

Figure 9: Results RAC Data Mart: workload patterns for the 72 hour period.

reflected in all three of the graphs as the instance DBM012
becomes much busier than instance DBM011.

• CPU utilisation - For the first 24 hours, the workloads
were executed fairly evenly across the cluster with a
workload of 2700 users connecting at different times
from the two nodes and the SPECInt count was similar

with a average CPU difference of +15% (Day 2 Hour
04).

• CPU utilisation - When the workload ran abnormally
and all users (2700 users) ran from one node, in the
second 24 hours, then the CPU utilisation almost dou-
bled in usage as expected +99% (Day 3 Hour 04).



(a) Volatility of workload Peak (b) Volatility of workload Avg

Figure 10: Workload Impacts

• IOPS/s - The IOPS’s utilisation for the first 24 hours
was similar, as expected, when the workloads were
evenly spread with a difference on average of +17%
(Day 2 Hour 04). However, when the workloads were
run from node 2 in the second 24 hours the IOPS in-
creased significantly, rising to almost double at +99%
(Day 3 Hour 04).

• Memory Consumption - The maximum memory utili-
sation across both instances was as expected during the
first 24 hours, when the workloads were evenly spread,
showing a difference of +9% (Day 2 Hour 04). This
behaviour was not expected during the failover period
when all users execute their workload on DBM012 as
the utilisation difference is +60% (day 3 Hour 04). The
memory configuration on DBM012 is sufficient to han-
dle the 2700 users.

In general, the conclusion from this experiment when exe-
cuting the Data Mart workloads was, it cannot be assumed
that when a workload fails over from one node (database in-
stance) to another node the footprint will be double in terms
of memory, as it only increased by approximately +60%.
CPU and IOPS however, did double in its usage to approx-
imately +99%. When the workload was spread evenly the
average utilisation had a difference of CPU +15% (Day 2
Hour 04), Memory +9% (Day 2 Hour 04) and IOPS +17%
(Day 2 Hour 04).

5. CONCLUSIONS AND FUTURE WORK
From the experiments conducted and the model we pro-

posed, we conclude that capacity planning of databases that
employ advanced configurations such as Clustering and Standby
Databases is not a simple exercise. Taking the Average and
Maximum readings for each metric (CPU, Memory Utilisa-
tion and IOPS) over a period of 72 hours, the outputs are
volatile. One should not assume that a workload running
on one database instance configured in one type of system
will consume the same amount of resource as an another
database instance running on another system, regardless of
similarity; this is clearly shown in Fig 10 (a) (OLTP, OLAP,
Data Mart RAC Failovers). These charts show us that as
workloads become assimilated they completely change as the
difference grows, sometimes considerably. The differences

between the footprints based on configuration can vary be-
tween +10% (CPU OLAP RAC) in normal circumstances
shown in Fig 10 (b) to 99% (CPU OLAP RAC) as shown
in Fig 10 (a). Fig 10(a & b, OLTP Standby) also highlights
that configuration has a big impact on capacity planning
databases with advanced configurations, such as standby
databases.

In this paper we highlighted the problems that organisa-
tions are faced with over-estimation and under-estimation
when trying to budget on non-cloud compliant financial mod-
els such as capex or cloud compliant models, which are sub-
scription based. Accurate capacity planning can help in re-
ducing wastage when metrics are captured and the assump-
tion of workloads being the same is not employed. Capturing
and storing the data in a central repository, like the approach
we proposed, allowed us to mine the data successfully with-
out the labour intensive analysis that often accompanies a
capacity planning exercise.

The main points from this work are.

1. When capacity planning DBaaS, it should be done on a
instance-by-instance basis and not at a database level
- this is especially the case in clustered environments
where workloads can move between one database and
another or fail-over technology is employed.

2. Metrics need to be captured at different layers of the
infrastructure in advanced configurations, for example
in the storage layer, caching can mask IOPS causing
the workload to behave differently.

3. Hypervisors and VMManagers can influence capacity
planning as these tools allocate resource. For exam-
ple, a CPU can be dissected and allocated as a vcpu
(Oracle VM) [2]. How does one know that the CPU
assigned is a full CPU? The Oracle Software and the
database itself may assume that a full CPU was made
available, when in fact it was assigned 0.9 of a CPU
due to overheads.

4. CPU configuration (Thread(s) per core) within a VM
has a profound effect when capacity planning. We ob-
served in experiment one (OLTP and Data Mart) that
small concurrent transactions in the OLTP workload
executed on VM acs-163 were a lot more efficient than



the same workload executed on another VM with lower
thread(s) per core, and this is reflected in Figures 3, 4
and 5.

5. SPECInt benchmark is a valid benchmark when com-
paring one varient of CPU with another, especially
when trying to capacity plan databases with a view
to a migration or upgrade of the infrastructure.

6. Standby Databases presented a different footprint. A
standby database is always in a mounted state and
therefore is configured in a recovering mode by apply-
ing logs or changes from the primary. It should not be
assumed that the footprints are the same.

7. In environments that employ standby database con-
figurations, metrics that are available for collection on
the primary database are not available on the standby,
namely physical reads/writes, CPU and memory, thus
gathering accurate metrics is impractical. Metrics can
be gathered at a host level, however if multiple standby
databases are running on the same host this makes
reconciliation of which database is using what more
challenging.

8. In environments that employ clustered databases, if
a workload running on one node fails-over from an-
other node within the cluster, one should not assume
that the properties of the composed workload will fol-
low obviously from its constituents. Upon failover, the
workload from the failing node is assimilated, with the
result being the formation of a completely new foot-
print.

Future work is to conduct the same type of experiments
between different database versions, for example a workload
running on Oracle Database Version 10G/11G and Oracle
Database Version 12C, analysing if the internal database al-
gorithms have any influence and by how much. However
techniques already exist that go some way to answering this
question through the use of a product called Database replay
[7]. Being able to gather metrics from a standby database in-
stance for CPU, IOPS and Memory is critical for our model
as this would allow us to accurately analyse the CPU such
as SPECInt, Memory and IOPS’s. We could configure a cus-
tom metric to execute internal queries against the standby
database, and this is now in the design phase, but until then
capacity planning architectures with standby database will
need to rely on host metrics.
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ABSTRACT
When procuring or administering any I.T. system or a compo-
nent of an I.T. system, it is crucial to understand the compu-
tational resources required to run the critical business func-
tions that are governed by any Service Level Agreements.
Predicting the resources needed for future consumption is
like looking into the proverbial crystal ball. In this paper we
look at the forecasting techniques in use today and evaluate
if those techniques are applicable to the deeper layers of
the technological stack such as clustered database instances,
applications and groups of transactions that make up the
database workload. The approach has been implemented to
use supervised machine learning to identify traits such as
reoccurring patterns, shocks and trends that the workloads
exhibit and account for those traits in the forecast. An ex-
perimental evaluation shows that the approach we propose
reduces the complexity of performing a forecast, and accu-
rate predictions have been produced for complex workloads.
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1 INTRODUCTION
As enterprises strive to adopt cloud technologies, one of the
key drivers is agility. However, organisations often under-
estimate the costs that can emerge with pay-as-you-go sub-
scription based models. Prior to cloud, in organisations with
on-premises architectures, the administration teams would
provision environments. However, this was often seen as
slow and cumbersome, which elongated development life-
cycles to the detriment of the business. Cloud now addresses
the need for speed and agility, while potentially opening
the doors to unintended consequences in terms of cost. For
example, there may be a lack of a regulatory framework
within an organisation to oversee the acquisition of cloud
resources. This lack of financial and regulatory discipline is
not the sole cause of spiralling costs. For every environment
provisioned, a proportion of that provisioned resource will
probably never be used, therefore provisioning the correct
shape (in terms of CPU, Memory and Storage) of cloud re-
source is paramount. When done correctly, Cloud Financial
Management can deliver environments that scale in a way
that shows promise for increasing business agility.
For Cloud Service Providers (CSPs), a burning issue be-

comes one of stability for short, medium and long term re-
source allocation. Having enough resources to satisfy con-
sumer demand without compromising SLAs is paramount.
The paradigm for creating and maintaining infrastructure
has moved from the consumer (individual I.T. estates) to the
CSP, where the I.T. estates become mega-estates with data
centres dotted around the world that satisfy network delays.
This shift in responsibility, although attractive to the con-
sumer, comes at a revenue cost to the CSP’s who, it could
be argued, offset this cost back to the consumer. Therefore a



dance is created where capacity planning suddenly becomes
a focal point.

Most current work on cloud modelling is at the infrastruc-
ture level, building on modelling of virtual machines (VMs).
Forecasting at this level bundles a range of things together
because a workload can mask what is really going on at
the database level. For example, the sum of CPU being used
will be shown, but only some of that will be assigned to the
database. From a capacity planning perspective this means
we are accounting for CPU that the database is not using,
as it is being used at the VM level, and from a monitoring
persepctive we cannot decipher how much CPU is assigned
to the database and if the database CPU growth is specifically
increasing. Provisioning for DBaaS presents short and long
term challenges:

• short term - predicting when you will run out of re-
sources: proactive monitoring.
• long term - capacity planning, whether that is on-
premises, off-premises or non-cloud environments.

In this paper, we present techniques that are applicable to
different prediction durations, but the experiments focus on
short term capacity planning, with a view to minimizing
over provisioning through timely allocation of the necessary
resources.
There has been significant work on modelling and provi-

sioning for VMs and DBs. We are particularly interested in
time series analysis because recurring patterns and trends
are key features in both short and long term decision making
for DBaaS. Key features such as peaks, troughs and trends are
all exhibited when workloads are analysed over time. In this
paper we investigate the application of time series analysis
techniques to represent database workloads. For example,
OLTP and OLAP workloads tend to have different footprints
and exhibit different behaviours. Specifically, we investigate
the applicability of different time series modelling techniques
with differing levels of seasonality and growth.

The contributions of this paper are as follows:

• An investigation into the application of time series
modelling techniques such as ARIMA and HES to
workflow predictions for OLTP and OLAP workloads.
• A proposal for the self-selection and self-configuration
of models such as ARIMA and HES for use with a given
workload.
• An empirical evaluation with controlled workloads at
the database layers of the technological stack such as
Database Instances.
• A demonstration of the applicability of the approach
in real world workloads hosted by Oracle Advanced
Customer Services.

2 RELATEDWORK
In this section, we discuss related work of relevance to this
paper under the headings of workload modelling and predic-
tion in clouds.

Currently there is no standard for making predictions that
try to answer “how much resource do I need?/when will I
require more resource?” type questions. Some proposals sug-
gest that predictions should be done at a particular “layer”
of the technological stack such as a VM. Some propose that
this question should be answered as part of the “provision-
ing exercise”, when the size of the resource being requested
prior to being provisioned is known. Others propose that
predictions become important when monitoring or some
form of interaction is required as part of a Quality of Service
(QoS) agreement. Still others suggest that predictions are
important to costings and design of priorities. Jennings et
al. [16] performed an exhaustive study of 250+ papers on re-
source demand profiling and highlighted the different types
of models and techniques that are used to profile such de-
mand. They noted that the techniques used today model the
relationship between the resources used by an application
and that application’s performance, thus highlighting gaps
between the two.

2.1 Workload Modelling
Workload modelling provides a foundation for a variety of ac-
tivities, including demand prediction. Kraft et al. [18] looked
at particular storage metrics (such as IO) in the context of
data centres, focusing on how workloads influence each
other. This work was done in the context of consolidated
environments but focused on the VM layers of the stack.
Several techniques have been identified and borrowed from
other fields. For example, Gmach et al. [10] used linear re-
gression techniques to identify trends and use a bin packing
algorithm to group VMs together. Lorido-Botran et al. [21]
looked at how to scale workloads that require elasticising
in cloud environments. They focussed on the implications
at the IaaS level, but did use Time Series Analysis in the
prediction algorithm. In autonomic computing, Jiang et al
[17] used time series modelling techniques to dynamically
adjust power, scheduled labour and auxiliaries at the IaaS
level based on consumption, thus predicting power usage
and adapting accordingly. They use an ensemble of tech-
niques from Time Series Analysis such as Moving Average,
Auto regression, neural networks, Support Vector Machines,
etc., and apply this at hourly, daily and weekly granularities,
with daily granularity giving favourable results.

Workload modelling can be used to inform short term
adaptations or longer resource requirements. In terms of
short term actions, several proposals have focused on QoS,
using modelling techniques to identify problem workloads.



Carvalho et al. [6], Lorido-Botran and Tania [21] and Chaisiri
et al. [7] all looked at approaches that identified VMs that
could be a problem then taking action to adapt. Similarly,
Sakr and Liu [22] looked at satisfying SLAs and applied rules
to resources consumed by the workload. Gmach et al. [11]
used modelling techniques at the provisioning stage as part
of a capacity planning exercise with the aim of creating a just-
in-time methodology by analysing the patterns and trends
those VMs create and a weighting algorithm which moves
the workload to a new set of VMs that are less contentious.
Krompass et al. [19] and Schaffner et al. [23] also studied the
impact of workloads causing outages by migrating them to
a less used host (VM).
In terms of modelling at particular layers of the stack, as

discussed previously, most work focusses on the VM. How-
ever, modelling at this layer (VMs) masks the true usage of
a particular workload, as a natural smoothing of the data
points occurs. Duggan et al. [8] took a novel approach of
modelling the actual workload of a PaaS (Database) using
Concurrent Query Performance Prediction (CQPP). They
leveraged machine learning and linear regression techniques
to predict the performance of a query. It is not clear if the re-
gression techniques used were based on Time Series Analysis
techniques.
Calheiros et al [5] used the ARIMA (Auto Regressive In-

tegrated Moving Average) model to predict web requests at
the VM layer, where a VM is a represented as a standard
configuration of resources (CPU, memory and storage) and
its expected performance is assumed. If the predicted load
is likely to exhaust the expected performance, a new VM is
created, thus solving the scaling problem. Tran et al. [27]
focused on Time Series Analysis at an hourly level when
analysing VM workloads. They used Seasonal ARIMA, but
only at the VM level, and did not take into consideration
seasons within seasons, which computational resources in-
evitably exhibit. Heuristics in existing work are generally
based on greedy algorithms using simple rules. Carvalho et
al. [6] proposed prediction based techniques for cloud en-
vironments by looking at admission control and assuming
that capacity planning of resources has been done separately.
They use a quota-based approach. The prediction is created
based on heuristics and simple rules are applied to determine
if a workload is behaving predicted, using techniques such
as Exponential Smoothing (ETS) to exhaust the available
resources.
In this paper we use time series analysis techniques to

learn models of mainstream database workloads that in-
clude patterns such as trends and seasonality. We apply these
techniques to different metrics that can be captured from
databases. In the experiments, we evaluate the approach for
short term predictions (of the order of days), but we also have
some experience using them for longer term provisioning.

In so doing, we provide the most comprehensive evaluation
of time series based techniques for database workload mod-
elling to date. By understanding the “data” and its structures
well enough, it doesn’t matter what layer of the technologi-
cal stack or what part of the exercise; we should be able to
make predictions based no time series data with complex
characteristics.

2.2 Prediction in Clouds
Performing predictions of workloads in clouds is a relatively
new idea, but essential from both sides of the relationship
whether that is the CSP that provisions the resources or
the user who consumes the resources. The argument here
is one of elasticity and the pay-as-you-go nature of clouds.
Jennings et al. [16] identify that VM placement is a problem
but focus mainly on vector bin packing, such that the sum
of the resources requested do not exceed the size of the bin
in which they have been allocated. Jiang et al. [17] looked
at finding a suitable balance between reducing the power
cost and maintaining service levels by capacity planning
VM workloads based on usage and then assigning a priority
based on financial penalties to the provider.
There has been much work at the IaaS layer of clouds,

namely VMs, but whether in terms of placement, provision-
ing, monitoring or where the database resides, work on the
PaaS layer is scarce. Arguably themost resource consumptive
layer of the stack is the database layer. Given that databases
are multifaceted in the tasks they are asked to perform in
feature rich DBMSs such as Oracle, IBM, Amazon and Mi-
crosoft, Calheiros et al. [5] did an in-depth analysis of the
ARIMA technique, again focusing on the VM as a workload
but for QoS and solving the problem of dynamic provisioning
that CSPs currently experience. They predict the workload
behaviour and feed this into a queuing model for calculating
the VM provisioning. They run ARIMA models against Web
VMs at an hourly granularity with data points taken over a
month.

The goal of prediction in cloud environments can be to con-
solidate resources and this benefits both the consumer and
the provider. There may be several reasons for this, such as
cost, to meet SLA’s or to save energy. For example, Dynamic
Demand Response (D2R) is a project by the University of
Southern California to utilise smart grid architectures specif-
ically to address the supply and demand mismatch [24]. They
utilise time series analysis, and specifically ARIMA, as an
approach to predict power values based on time series data
from a kWh metric. They apply this technique across their
campus at the IaaS and PaaS layer. However, it is unclear if
they apply it specifically to one or both. We make a case that
the technique should be architecture independent such that



it should work for time series data regardless of architecture
or metric.

There has been somework on prediction for cloud databases.
For example, Sousa et al. [26] looked at the MySQL database
cluster in an Amazon EC2 cloud and used ARIMA to predict
the workload. However, the environment is a simple one
unlike our environment: an Oracle Exadata database clus-
ter running several TPC workloads. Our aim is to evaluate
enterprise workloads that reflect our customers’, and as our
experiments will show we have evolved the time series tech-
nique to encompass ARIMA with Exogenous and Fourier
terms to understand the complex structures within the time
series data and make predictions.

3 PROBLEM DEFINITION
This section provides more detail on the problem to be solved.
The problem can be described as follows.

Given a time series m that provides monitoring
information about a workload w, generate a pre-
diction z for a period following on from that of
w. The prediction should account for external
influences on w.

The time series m is a trace or log of data in a time series
format, as illustrated in Figures 2 and 3. The time series
captures specific features of w, such as CPU, memory or
logical IOs, but the techniques proposed are generic to any
metric that has a time series format: [x1, ...,xn]. The time
series is associated with the frequency of the monitoring,
such as hourly, daily, weekly or monthly. The frequency of
the prediction matches the frequency of m. The prediction
z consists of the predicted values and associated error bars.
The external influences on the prediction are events such
as batch jobs and backups that routinely and sporadically
occur in computational workloads, and which do not always
follow a uniform pattern.

4 TIME SERIES ANALYSIS FOR
DATABASE WORKLOADS

Time Series Analysis is a family of techniques that is widely
used in applications that require forecasting, such as eco-
nomics, sales, budgeting and market trading. Alysha et al
[20] found that many time series exhibit complex seasonal
patterns and applied a combination of Box-Cox transfor-
mation, Auto-Regressive Moving Average (ARMA) errors,
Trend and Seasonal components (TBATS). Accounting for
these complex data structures, Skorupa [1] suggests using
a combination of varieties of the ARMA method to handle
seasons within seasons to solve econometric problems—an
interesting idea relative to our goal of making predictions
from computational workloads that also show these traits.
The main mode of operation for time series analysis is to

understand the underlying forces that are reflected in the
observed data, and to fit a model for forecasting. Both of
these goals require that the pattern observed is identified.
Once this takes place, we can then interpret and integrate
the pattern with other data and then forecast if events will
happen again. For example, does computational resource
consumption over time have a trend? Is there is a pattern to
these observations? Is it recurring?
Time Series are complex because each observation is de-

pendant upon the previous observation that will likely be
influenced by more than one observation. Applied to a com-
putational problem where resources are assigned and work-
loads can be volatile, a workload can spike at particular
times during a day and these spikes can repeat periodically
or randomly. These influences are called autocorrelation —
dependant relationships between successive observations.
Time Series Analysis is broken down into two main areas
with a view to uncovering patterns that can lead to the identi-
fication of a suitable model for predicting the future resource
consumption of a workload:
• Time Domain - ARIMA uses techniques such as Box-
Jenkins and Dicky-Fuller to detect if the data is station-
ary, trending or requires an element of differencing.
• Frequency Domain - Techniques such as Fast Fourier
Transform (FFT) to analyse data that is complex in a
time domain.

This section reviews the main time series modelling and
forecasting techniques, starting with techniques for station-
ary data and moving on to consider techniques for dealing
with increasingly complex data. We also discuss how each
approach can be used to capture features that are typical of
database workloads.

4.1 Models
ARIMA is a class of models that capture the subtle structures
of time series data. It was developed by Norbert Wiener et al.
in the 1930’s and 1940’s [28]. Statisticians George Box and
Gwilym Jenkins further developed these models for Business
and Economic data in the 1970’s, hence the name Box-Jenkins
[2]. Computational resource utilisation is time series data
and also exhibits structures such as trends, seasonality and/or
complex multiple seasons, where a season within a season
is exhibited. For example, variations may occur in the data
at specific times, hourly, daily, weekly or monthly. These
variations often repeat cyclically.

Such patterns are relevant to capacity planning for com-
putational resources, where the goal is to answer the ques-
tion what resources are we likely to consume in the future?
We therefore investigate how to answer this question via
ARIMA typemodels. Seasonal ARIMA (SARIMA)models also
encapsulate seasonality, and are available in mathematical



(a) Correlograms (ACF/PACF) (b) SARIMAX Model Decomposition (c) Differencing Data (Trend)

Figure 1: Visualising Time Series Data

packages for R and Python. Here we cover multiple seasons,
and have leveraged supervised Machine Learning to learn
the past behaviours of a time series and forecast the future
requirements for both long and short term predictions.
Time series models are typically characterized by their

parameters. For ARIMA, the parameters are as follows:

• p is the number of autoregressive terms (AR) and can
be found by using the Autocorrelation Function (ACF)
or Partial Autocorrelation Function (PACF), as shown
in Figure 1(a), and discussed in more detail in Section
4.3.
• d is the number of nonseasonal differences needed for
stationarity, and
• q is the number of lagged forecast errors in the predic-
tion equation.

The following additional parameters are required to handle
the seasonal components:

• P is the order of the seasonal AR component (p),
• D is the seasonal differences needed for stationarity,
• Q is the seasonal order of the moving average terms
(lagged forecast errors), and
• F is the frequency, for example 12 months, 24 hours.

Thus the SARIMA parameters are (p,d,q,P,D,Q,F), which en-
ables the model to handle both seasonal and non-seasonal
workloads. We discover the seasonality of the data by de-
composing it using library functions (in particular statsmod-
els.tsa.seasonal in python), as shown in Figure 1(b). When
we decompose the data we visualise the traits as shown in
Figure 1(a) and (b). For example, does the data have trend
and seasonal patterns, and does it need to be differenced. If
the data does have trend and seasonality then we can reduce
the effects by differencing the data, as shown in Figure 1(c).
This highlights the trend, and by differencing the data once
we stablise it. Exogenous variables (Section 4.2) and Fourier
Terms (Section 4.4) are leveraged to create more accurate

forecasting models that can be executed on time series data
at a server, database and transaction level.
From a simple regression model, as shown in formula

(1), we see that y (t ) = {yt ; t = 0,±1,±2, ...} is a sequence
of numbers (CPU, memory or IO), that is indexed by time
t. We can see an observable signal sequence x (t ) = {xt }
and an unobservable noise sequence ε (t ) = {εt } that has
independant variables that are random in nature.

y (t ) = x (t )β + ε (t ) (1)

When the ARMA model is employed the (p,q) parameters
are represented as:

Yt =

p∑
i=1

ϕiYt −i + at −
q∑
j=1

θ jat −j (2)

which is often reduced to:

ϕp (B)Yt = θq (B)at (3)

where ϕ1, ...,ϕp are the autoregressive parameters to be es-
timated, θ1, ...,θq are the moving average parameter to be
estimated and a1, ...,at are a series of unknown random er-
rors (or residuals) that are assumed to follow a normal dis-
tribution. This is commonly referred to as ARMA(p,q). B
is the trend often found in time series data. However most
computational time series data will probably introduce an
element of stationariness. A stationary process is a stochastic
process whose unconditional joint probability distribution
does not change when shifted in time (i.e., in the future when
performing a forecast). Consequently, parameters such as
mean and variance also do not change in time.

When applied to our problem of capacity planning or short
term monitoring, there is often an element of trend (incline
or decline). Therefore, to make the data stationary we need to
difference it, and for this we utilise Box-Jenkins to introduce
parameter d:



(a) CPU Workload (b) Memory Workload (b) Logical IOPS Workload

Figure 2: Key Metrics: Workload Descriptions - Experiment One OLAP

(a) CPU Workload (b) Memory Workload (b) Logical IOPS Workload

Figure 3: Key Metrics: Workload Descriptions - Experiment Two OLTP

ϕp (B) (1 − B)dYt = θq (B)at (4)
Thus (3) becomes (4) and creates the d that is the order of
differencing. ReplacingYt in the ARMAmodel with the differ-
ences creates the ARIMA(p,d,q) model. However, seasonality
(patterns in the data) must be accounted for, to give:

ϕp (B)Φ(P ) (B
s ) (1 − B)d (1 − Bs )DYt = θq (B)ΘQ (B

s )at (5)

p, d and q are as defined earlier, andwe introduce s as a known
number of seasons (hourly, weekly, monthly, yearly). D is
the order of differencing (this usually should not be greater
than 2). P and Q are the autoregressive and moving averages
when accounting for the seasonal shift. With analysis from
the autocorrelation and partial autocorrelations (for which
functions are available in python [4]) we can pre-populate
the (p,d,q,P,D,Q,F) parameters that give a list of SARIMA
models that are the most accurate for the data analysed.

4.2 Exogenous Variables
Exogenous variables are external parameters that convert the
model ARIMA(p,d,q) to SARIMAX(p,d,q,P,D,Q,F ) by including
the linear effect that one or more external parameters has on

the overall process; for example, a shock1. Computationally,
examples could be a batch job, backup or fail-over that would
seriously influence the computational resource consumption.
Therefore Equation (2) extends to

Yt =

p∑
i=1

ϕiYt −i +
r∑

k=1
βkXtk + εt +

q∑
j=1

θ jat −j (6)

Here we see the exogenous variable being held in r with
time varying predictors t and coefficients denoted by β . It is
possible to have multiple exogenous variables applied to a
model, thus covering behaviours that many systems exhibit
today. For example, a system that has a backup, batch jobs
and that periodically fails over with trends and reoccurring
patterns of usage could be covered by the SARIMAX model,
as long as the exogenous variables (shocks) are understood
and accounted for.

4.3 Exponential Smoothing Models
ARIMA type models work by transforming a time series to a
stationary series, studying the nature of the stationary series
1SARIMAX is a variant of the SARIMA method that includes exogenous
variables.



through autocorrelation (ACF) and partial autocorrelation
(PACF) and then accounting for the auto-regressive or mov-
ing average if it is present. The key point with ARIMA is
that the past observations are weighted equally. Exponential
Smoothing is the other side of the coin, to accommodate miss-
ing values in the data or fixed drift. Fixed drift is where the
forecast of tomorrow’s values is today’s values plus a drift
term. Some cases can be confusing because computationally
the data may be cyclical in behaviour (peaks and troughs)
yet exhibit no trend. This is because the cycles are not of a
fixed length, so before we observe the series we cannot be
sure where the peaks and troughs of the cycles will be. In
exponential smoothing, recent observations are given more
weight than older observations, so forecasting is based on
weighted averages of past observations. The weights decay
exponentially as the observations get older. The exponen-
tial smoothing methods were proposed in the late 1950s by
Hyndman et al. and Brown [3, 15]:
• Simple exponential smoothing (SES), suitable for data
with no clear trend or seasonal pattern,
• Holt’s linear trend (HLT) [13], extended HES to allow
data with trend, and
• Holt-Winters seasonal method [30], extended to in-
clude seasonality.

Complex seasonal patterns, such as multiple seasonal peri-
ods, high frequency seasonality, non-integer seasonality and
dual-calendar effects cannot be included in the above models.
A new framework, incorporating Box-Cox transformations,
Fourier representations with time varying coefficients and
ARMA error correction, was introduced for data exhibit-
ing complex patterns forecasting as suggested by Skorupa
[25]. The new model is named TBATS, which stands for
Trigonometric seasonality Box-Cox ARMA Trend Seasonal
components. TBATS improved BATS by modeling seasonal
effects using a Fourier series based trigonometric representa-
tion. This change allows non-integer length seasonal effects
to be captured.

model :

y (λ)
t = lt −1 + Φ · bt −1 +

T∑
i=1

s (i )t −mi
+ dt (7)

lt = lt −1 + Φ · bt −1 + α · dt (8)

bt = Φ · bt −1 + β · dt (9)

dt =

p∑
i=1

φi · dt −i +
q∑
i=1

θi · et −i + et (10)

where,
T is the number of seasonalities

mi is the length of the ith seasonal period
y (λ)
t is time series (Box-Cox transformed) at time t

s (i )t is ith seasonal component
lt is the level
bt is the trend with damping effect
dt is ARMA(p,q) process for residuals
et is Gaussian white noise
Φ - trend damping coefficient
α ,β - smoothing coefficients
φ,θ are ARMA(p,q) coefficients

seasonal part :

s (i )t =

ki∑
j=1

s (i )j,t (11)

s (i )j,t = s
(i )
j,t −1 · cos (λi ) + s

∗(i )
j,t −1 · sin(λi ) + γ

(i )
1 · dt (12)

s∗(i )j,t = −s
(i )
j,t −1 · sin(λi ) + s

∗(i )
j,t −1 · cos (λi ) + γ

(i )
2 · dt (13)

λi =
2 · π · j
mi

(14)

where,
ki is the number of harmonics for the ith seasonal
period
λ - Box-Cox transformation
γ (i )
1 ,γ

(i )
2 - seasonal smoothing (two for each period)

The TBATSmodel has the following parameters:T ,mi ,ki ,λ

α ,β ,ϕ,φi ,θi ,γ
(i )
1 ,γ

(i )
2 . This leads to the question: how is the

final model chosen? TBATS considers various alternatives
and fits the models:
• with Box-Cox transformation and without it,
• with and without Trend,
• with and without Trend Damping,
• with and without ARMA(p,q) process used to model
residuals,
• with a non-seasonal model, and
• with various amounts of harmonics used to model
seasonal effects.

The final model will be chosen using the Akaike information
criterion (AIC), which adds a penalty to the complexity of
the model; the best model is the one having the lowest cost.
The Python implementation was used in the experiments
[25].

The reduced forms of TBATS are equivalent ARIMA mod-
els [20] generating the same forecast values. A TBATS model
allows for dynamic seasonalitywhereas theARIMA approach
is that the seasonality is forced to be periodic as demon-
strated by Hyndman [14].



4.4 Fourier Terms
SARIMAX deals with seasonality. However it has one major
draw back, data with multiple seasonality. For example, data
that exhibit trends and patterns that occur regularly such as
every hour in a day or every day in a week or every week
in a month. Such seasonal patterns are modeled through the
introduction of Fourier terms, which are used as external
regressors. In our analysis we look at computation data with
hourly, daily, weekly or monthly seasons (P1, P2, P3, Pm).
Thus we have different Fourier series. Consider Nt as the
ARIMA process:

yt = a +
M∑
i=1

Ki∑
k=1

[αsin( 2πkt
Pi )

) + βcos (
2πkt
Pi )

)] + Nt (15)

In the example shown in equation (5) we look at two sea-
sons, P1 running over a 24 hours period and P2 running over
a weekly period. Thus for each of the periods, Pi , the number
of Fourier terms (ki ) are chosen to find the best SARIMAX pa-
rameters, and then ordered appropriately and selected based
on which gives the best root mean squared error (RMSE). We
determine the granularity of data required from the Makri-
dakis Competition results [29]; for example, for an effective
hourly forecast 700 hourly data points (circa 29 days) are
required. In our solution we apply Fourier analysis if we
detect time series data with multiple seasonality.

5 APPROACH
This section describes how the time series analysis tech-
niques from Section 4 are applied to support capacity plan-
ning for DBaaS. This section also details how we propose to
use machine learning to automate the forecasts, and algorith-
mically how we are able to discover the models, removing
the need for the user to have an intrinsic understanding of
the complexities of time series analysis, which is a field in
its own right.

5.1 Overview
Our approach was to execute is to capture key metrics (CPU,
IOPS and Memory) that are applicable to monitoring and
capacity planning via an agent. The Agent specifically exe-
cutes commands on the hosts that retrieve the metric values
from the database and polls these metrics at regular intervals.
The values from the metrics are then stored, centrally, in a
repository where they are aggregated into hourly values.
This cycle continues for a period of 30 days in the experi-
ments. The Algorithms shown in Figure 4 are then executed.
The first stage of the algorithm gathers the data and checks
for any missing values. It is possible that the agent may
have been at fault and may not have executed or polled the

value from the database target; this can happen in live envi-
ronments due to maintenance cycles or faults. If this is the
case, a linear interpolation exercise is carried out to fill in
the gaps based on known data points. We then begin the
Machine Learning task and split the data into a training set
and a testing set. Depending on whether the user chooses
Holt-Winters Exponential Smoothing (HES) as discussed in
section 4.3 or SARIMAX, a different branch of the algorithm
will be followed. If SARIMAX is selected the algorithm then
analyses the time series data for the metric being predicted
and computes the ACF/PACF to determine which models
are probably a good fit for the data selected. As the flow
continues, the data characteristics are understood, such as
stationarity, seasonality, multiple seasonality and shocks,
where each model is then computed to obtain an RMSE. The
model with the best RMSE is the most accurate. That model
is then stored in a central repository and used for a period of
one week or until the model’s RMSE drops to a point where
it is rendered useless. The same approach is executed for the
HES algorithm in that it is kept for one week and the RMSE
is continually monitored.

5.2 Machine Learning Algorithm
Time Series Analysis lends itself to a supervised learning
approach for several reasons. We take historical data with
known relationships between the observations captured over
historical time points. The output is a numerical value (pre-
diction) of what we think the future resource consumption
of a metric is, therefore it is a regression problem. There is
no need to continuously compute the ACF/PACF (Lags), add
exogenous or find the Fourier terms. We simply re-train on
the data unless the number of observations increases signifi-
cantly or the time since the last use of the models lengthens
beyond a certain period. We have determined that a model
becomes stale over time and thus will need to be recomputed
after a week, as shown in Figure 4. Depending on the type
of time series technique used (HES or SARIMAX), the fu-
ture prediction length also has a bearing on how the data is
treated in the ML algorithm, as shown in Table 1, which is
based on Makridakis [29].



Figure 4: Algorithms: ESM/SARIMAX with FFT and Exogenous Workflow.

Table 1: Machine Learning Breakdown and Observa-
tions

Forecast Obs Train Set Test Set Prediction
SARIMAX Hourly 1008 984 24 24 (Hours)
SARIMAX Daily 90 83 7 7 (days)
SARIMAX Weekly 92 88 4 4 (Weeks)
HES 1 Hourly 1008 984 24 24 (Hours)
HES 1 Daily 90 83 7 7 (days)
HES 1 Weekly 92 88 4 4 (Weeks)

6 EXPERIMENTAL SETUP
6.1 Experimental Environment
The environment we created is based on an N-tier architec-
ture, in that workloads are executed on an Oracle clustered
database and through an application server that serves a
web-based application; for example, transactions resulting
from a sequence of clicks on a webpage. The load is shared
between the nodes of the clustered database to keep an even
balance of activity, as shown in Figure 5.

6.2 Experimental Workloads
Several Database workloads where used to run prediction
models against as identified in our previous work [12]. To
truly evaluate our full algorithm and the models, the work-
loads needed to exhibit several key characteristics, such as

1Table Footnote - Holt-Winters Exponential Smoothing

Figure 5: Experimental Architecture: Typical cus-
tomer N-tier Architecture.

seasonality (repeating patterns). We produced two experi-
ments running against a clustered database. Workload OLAP
is a simple one that reflected seasonality, which can be de-
picted graphically via a chart as spikes in a workload that
are surges in usage, for example users logging on at peak
times. This is clearly identified for the key metrics in Figure
2. Trends (non-stationarity) that show the load growing—for
example the data set becomes bigger and thus code execu-
tion times lengthen—or its resource utilisation increases and
decreases again, are also visible in Figure 2. Workload two
is a more complicated workload (OLTP), in that it exhibits
a trend uniformly across all three metrics, as is shown in



Figure 3. Users log on in surges at peak times to reflect typi-
cal usage of OLTP type systems, and this produced multiple
seasonality. We also introduce shocks in the form of a backup
which produces the large spike in logical IOPS, shown in
Figure 3(c). The second experiment is to try and produce a
prediction line that also grows in line with the trend, taking
into consideration growth, multiple seasonality and shocks.

6.3 Experimental Models
Once the workloads had been executed, the relevant metrics
captured and stored in a central repository, we ran the mod-
elling routines. This consisted of exhaustively learning all
the permutations of the models across the three techniques.
As shown in the correlogram diagram examples in Figure
1(a), we measure the data over 30 lags, so each lag has a
maximum of 22 models. For example, for Lag 1, the model
combination is (1,0,0)(0,0,1,24) ,..., (1,1,2)(1,1,1,24), making
the total number of models evaluated at over 6000 across the
two experiments for one clustered database residing on two
nodes.

The three techniques and the number of models are:
• ARIMA p,d,q = 180 models per instance (totalling 360
models)
• SARIMAX p,d,q,P,D,Q,F = 660 models per instance (to-
talling 1320 models)
• SARIMAXp,d,q,P,D,Q,F + Exogenous (4)+ Fourier Terms
(2) = 666 models per instance (totalling 1332 models)

We measure the accuracy of every model against the RMSE
and then choose the top model from each of the three meth-
ods. When we have the top model combination for each of
the three methods, we then compare the accuracy of the
results, as detailed in Table 2. There are several shocks in
the form of backups that run every 6 hours (4 exogenous
variables), and the FFT is made up of sine and cosine waves
that are then added to the model with the best RMSE to see if
it can be further improved in accuracy, again determined by
the RMSE. This creates a huge number of models. In practice,
we could reduce the number of models by tuning. We do
this by looking at the correlogram shown in Figure 1(a), and
looking at where the data points intersect with the shaded
areas, as this gives an indication of a model that is likely
to be suitable, thereby reducing the thousands of potential
models considerably. For the purpose of empirical evalua-
tion we compared over 6000 thousand models across two
experiments, based on the RMSE.

7 EXPERIMENTS AND ANALYSIS
The experiments have been designed to investigate the ex-
tent to which the approach from Section 6 can address the
following challenges in workoads:

C1 : Reoccurring patterns (seasonality).

C2 : Trends and Stationariness.
C3 : Multiple patterns (overlapping seasonality).
C4 : Shocks.

Our approach to this question is by way of empirical eval-
uation. Using increasingly complex deployments with rep-
resentative workloads, we establish the extent to which we
can predict the future load based on past load. This section
describes the workloads and the platforms used in the exper-
iments.

7.1 Experiment One - Simple OLAP
Workload

Overview. Experiment one investigates Challenges C1 and
C4, it uses an OLAP workload with a modest number of 40
OLAP users connecting across the cluster. In this scenario,
users connect to a clustered database and perform OLAP
activities that are high in IO and execute for long periods
of time; the tasks carried out are similar to those in TPC-H
[9]. IO is generated via SQL activity and data manipulation
language (DML) is executed via updates, inserts and deletes.
This workload shows repeating patterns (seasonality), some
growth (trend) and it did not exhibit multiple seasonality.
A shock is introduced via a Backup that is run to perform
housekeeping routines such as keeping the database logs
(archivelogs) from filling up the disc drives in the operating
system (OS). This is a routine that many database systems
employ as some form of disaster recovery architecture, thus
is a representative configuration. This produced a workload
represented graphically in Figure 2. The dataset grew by
several GB per hour.

Results. Examples of the predictions from Experiment one
are shown in Figure 6, for CPU, for ARIMA, SARIMAX and
SARIMAX with Exogenus Variables and Fourier Terms. The
shaded area (blue) shows the data used by the algorithm
for learning the behaviour of the workload. The recurring
pattern (Challenge C1) is shown in each of the figures. The
yellow section of the charts shows the prediction, which
displays the continued pattern the algorithm has learnt. The
results show that the peaks and troughs have been captured
successfully by all three approaches to time series modelling.
A similar behaviour is shown for the other metrics, namely
Logical IO and Memory for each of the instances, and is not
shown here for lack of space. Logical IO is a better metric
for displaying complex data structures such as seasonality,
and this is shown in Experiment 2, however, for the purpose
of variety, forecasting a different metric such as CPU in
Experiment 1 was chosen.
A deeper dive into the accuracy of the models is shown

in Table 2(a). We tested the accuracy using three methods,
which are Root Means Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE) and Mean Absolute Percentage



Accuracy (MAPA). The results show that SARIMAX with
Exogenous variables and FFT is consistently more accurate
and reduces the error across the threemetrics of CPU, Logical
IO and Memory, as shown in Table 2(a). The results also
show that there is a significant jump in accuracy when the
seasonal component of the data is taken into consideration
when modelling Logical IOPS’s. We only focus on the RMSE
which shows a considerably lower number between the three
models. With an error of 52879.49 logical IOPS (for instance,
cdbm012 in Table 2a), the RMSE is based on values of of 2.3
million logical IOPS per hour throughput at the workloads
peak. Thus the error rate is acceptable.

Given the nature of OLAPworkloads working in an N-Tier
architecture, the results of Experiment One were promising
given the added complexity of the structures the data pro-
duced. ARIMA models do well in predicting the pattern, but
it is expected to do well given that the workload exhibits
simple structures and patterns. The SARIMA and SARIMAX
models took into consideration any traits, seasonality and
trend and improved the scores a little more. This is the reason
why the RMSEs are lower in SARIMA than ARIMA. There
was a backup task (cbdm011) that was executed from Node 1
at midnight every night, which also contributed to IO, CPU
and Memory, thus creating an exaggerated pattern. Overall
the SARIMAX with FFT and Exogenous variables was the
most accurate model. This raises the question as to whether
SARIMAX with FFT and Exogenous would give similar re-
sults on workloads that are much more complicated, such as
OLTP?

7.2 Experiment Two - Complicated OLTP
Workload - Seasonality and Growth

Overview. Experiment Two introduces another layer of
complexity with the introduction of trends and multiple sea-
sonality via an OLTP workload, thus presenting challenges
C1, C2, C3 and C4 in a single scenario. In this experiment a
workload was executed with users connecting to a clustered
database, mirroring an OLTP type system, and we allow the
user base to grow per day. The workload is similar to TPC-E
[9]. IO is generated via SQL, including updates, inserts and
deletes. Memory is consumed as the user connects and ex-
ecutes the SQL, as is CPU via the normal database internal
memory and optimiser management systems. This activity
runs for a period of 30 days, and metrics are captured every
15 mins via an agent and stored in a central repository. Ag-
gregation then takes place over the hour between the four
captured metrics. Multiple seasonality is introduced because
the number of users is growing every day and there is a
pattern of growth. Trend is introduced by increasing the
user base by 50 users per day across the database cluster,
thus growing the dataset and the consuming more resources.

Surges in users are introduced twice daily at 07:00am of 1000
users for a period of 4 hours and again at 9am for another
1000 users for a period of 1 hour. These introduce several
factors of multiple seasonality and a shock. A further shock
is introduced by means of a Recovery Manager backup that is
employed as a database housekeeping routine that prevents
the database redo logs from filling up the disc drives on the
OS. This is standard procedure for any RDBMS architecture
that employs disaster recovery and thus is a relevant config-
uration. This produced the workload depicted graphically in
Figure 3 a, b and c.

Results. Results of the prediction are shown graphically
in Figure 7. The results show that the prediction line grows
with the trend line and it captures the seasonality, including
multiple seaonsonality. In these charts we show that SARI-
MAX with Exogenous variables and Fourier terms across
three metircs of CPU, memory and Logical IOPS for one data-
base instance provides a prediction line that reflects the past
behaviours. In the Logical IOPS, Figure 3(c), the model takes
into consideration the introduction of a shock (Backup). This
is encouraging as the shock is a backup which significantly
increases in IO, therefore the model is able to handle aspects
that reflect the true nature of computational workloads and
still be accurate. The repeating patterns shown in each of
the figures are also reflected in the prediction lines. We have
not added all the charts (CPU and Memory) due to there not
being enough space in the paper.

A deeper dive into the accuracy of the models is provided
in Table 2(b). We tested the accuracy using three methods,
which are Root Means Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE) and Mean Absolute Percentage
Accuracy (MAPA). The results show that SARIMAX with Ex-
ogenous variables and FFT is consistently more accurate, and
reduces the error across the three metrics of CPU, Logical IO
and Memory. The results also show that there is a significant
jump in accuracy when the seasonal component of the data
is taken into consideration when modelling Logical IOPS, but
it also maintains the accuracy when we add in complex data
structures such as multiple seasonality and shocks. Figure
7(c) clearly shows the multiple seasonality being predicted
in the orange line as two large spikes (7:00am - 10am), re-
flecting a surge of 2000 users, and several smaller spikes
(shocks) occurring at 00:00 in the form of a backup task. The
trend (incline) is achieved by increasing the user base by 50
users per day. You can see the orange prediction line taking
this complex workload structure into consideration in its
prediction.

The results of Experiment Twowere very promising, given
the added complexity of the data introduced throughmultiple
seasons, significant trend and shocks. Therefore, the models



(a) Experiment Results - OLAP

Forecast &
Model

Metric Root
Mean
Squared
Error
(RMSE)

MAPE
%

Instance

ARIMA (13,1,1) CPU 8.93 96.1 cdbm011
SARIMAX
(13,1,2)(1,1,1,24)

CPU 8.4198 97 cdbm011

SARIMAX FFT
Exogenous
(13,1,2)(1,1,1,24)

CPU 8.4195 97.06 cdbm011

ARIMA (4,1,1) CPU 44.78 97.28 cdbm012
SARIMAX
(4,1,2)(1,1,1,24)

CPU 47.95 97.1 cdbm012

SARIMAX FFT
Exogenous
(4,1,2)(1,1,1,24)

CPU 38.89 97.64 cdbm012

ARIMA (13,1,2) Memory 135.79 99.02 cdbm011
SARIMAX (1,1,1) Memory 183.22 98.93 cdbm011
SARIMAX FFT
Exogenous
(1,1,2)(1,1,1,24)

Memory 130.42 99.14 cdbm011

ARIMA (13,1,2) Memory 90.10 99.86 cdbm012
SARIMAX
(1,1,1)(1,1,1,24)

Memory 61.30 98.91 cdbm012

SARIMAX FFT
Exogenous
(1,1,2)(1,1,1,24)

Memory 53.53 99.92 cdbm012

ARIMA (15,1,2) Logical
IOPS

39695 4533.01
-%

cdbm011

SARIMAX
(4,1,1)(1,1,1,24)

Logical
IOPS

15833.36 950.92 -
%

cdbm011

SARIMAX FFT
Exogenous
(4,1,2)(1,1,1,24)

Logical
IOPS

15112.06 734.62
-%

cdbm011

ARIMA (15,1,2) Logical
IOPS

151278.451375 -
%

cdbm012

SARIMAX
(4,1,1)(1,1,1,24)

Logical
IOPS

52965.44 213.67 -
%

cdbm012

SARIMAX FFT
Exogenous
(4,1,2)(1,1,1,24)

Logical
IOPS

52879.49 210.71
-%

cdbm012

(b) Experiment Results - OLTP

Forecast &
Model

Metric Root
Mean
Squared
Error
(RMSE)

MAPE
%

Instance

ARIMA (25,1,1) CPU 10.89 88.8 cdbm011
SARIMAX
(27,1,2)(1,1,1,24)

CPU 8.94 9.16 cdbm011

SARIMAX FFT
Exogenous
(27,1,2)(1,1,1,24)

CPU 6.02 90.25 cdbm011

ARIMA (22,1,1) CPU 22.54 56.31 cdbm012
SARIMAX
(2,1,1)(1,1,1,24)

CPU 12.22 86.08 cdbm012

SARIMAX FFT
Exogenous
(2,1,1)(1,1,1,24)

CPU 7.38 86.54 cdbm012

ARIMA (26,1,2) Memory 551.07 97.08 cdbm011
SARIMAX
(6,1,1)(1,1,1,24)

Memory 341.56 98.02 cdbm011

SARIMAX FFT
Exogenous
(6,1,1)(1,1,1,24)

Memory 359.44 97.66 cdbm011

ARIMA (21,1,1) Memory 47.62 98.42 cdbm012
SARIMAX
(27,1,2)(1,1,1,24)

Memory 0.12 99.47 cdbm012

SARIMAX FFT
Exogenous
(27,1,2)(1,1,1,24)

Memory 94.77 98.81 cdbm012

ARIMA (21,1,1) Logical
IOPS

8192.55 78.91 cdbm011

SARIMAX
(14,1,2)(1,1,1,24)

Logical
IOPS

6628.97 80.14 cdbm011

SARIMAX FFT
Exogenous
(14,1,2)(1,1,1,24)

Logical
IOPS

4579.14 82.1 cdbm011

ARIMA (15,1,2) Logical
IOPS

8218.81 85.83 cdbm012

SARIMAX
(1,1,1)(0,1,1,24)

Logical
IOPS

1964.54 86.18 cdbm012

SARIMAX FFT
Exogenous
(4,1,2)(1,1,1,24)

Logical
IOPS

2373.86 87.33 cdbm012

Table 2: Table of Results

were able to predict a trend and reflect all the traits of a
complex computational model accurately.



(a) Exp 1 - ARIMA (b) Exp 1 - SARIMAX (c) Exp 1 - SARIMAX With Exog and Fourier Terms

Figure 6: Experiment 1: Prediction charts Comparing Three ARIMA Techniques

(a) Exp 2 - CPU (b) Exp 2 - Logical IOPS (c) Exp 2 - Memory

Figure 7: Experiment 2: Prediction Charts Using SARIMAX with Exogenous and Fourier Terms

8 DATABASE CAPACITY PLANNING IN
PRACTICE

Oracle Advanced Customer Services has incorporated the
work from this paper into its monitoring and assessment
services that chart time series data. Figure 8 shows an early
design of the UI and how the time series data is displayed
across a clustered database instances. The user can select
between SARIMAX or HES, as we have shown that these
two models cover most nuances shown in computational
workloads we studied.

The model has been found to be applicable in several use
cases:

• Short term monitoring: within the next few days, what
will resource usage look like across my technology
estate?
• Medium to Long Term Capacity Planning: do I need to
find extra capacity for my estate?
• Migration: If I need to migrate to a new platform, such
as a Cloud architecture, what resource capacity do I
need in the next 6 months to a year?

The approach is being applied across several thousand cus-
tomers, covering 1000’s of workloads involving different

components in the technological stack. It has been applied to
the following scenarios, as we can capture the metric usage
via agents and store results in a central repository for time
series analysis:
• Groups of clicks that make up a transaction in a web
page.
• In conjunction with OATS, the Oracle Applications
Testing Suite, we can predict if a transaction is begin-
ning to slow down to aid pro-active monitoring of the
application layer.
• Application containers such as weblogic can also be
monitored as they are also a source of time series data.
• Network layers of storage, such as Network Attached
Storage and SAN Volume Controllers, that are critical
to the database instance are also monitored to display
if the database is likely to suffer performance bottle-
necks.
• Capacity Planning and mapping of different architec-
tures to aid migrations to cloud technologies from
on-premise.

We also intend to investigate the idea of applying this time
series analysis approach with other learning techniques to
act or make changes dynamically.



9 CONCLUSIONS
In conclusion, the use of machine learning has greatly in-
creased the ability of these models to be utilised on compu-
tational workloads that exhibit diverse patterns over time.
Manually creating a forecast is cumbersome, requires a de-
gree of expertise in how the models work and understanding
of the data to which the model is being applied. Forecasting is
susceptible to mistakes, rendering the forecast inaccurate or
wildly off when compared to actual findings because of these
risks. Computational workloads are sometimes unsuitable
for forecasting as the time series data is often unstable in
that it has many variables (external and internal) that influ-
ence its behaviours; for example, system backups, batch jobs
that aggregate data, or reports that consume vast amounts
of resource infrequently or periodically. The data is also cap-
tured at different levels of granularity (polled every minute,
hourly or daily) which also displays nuances or complex
structures that often confuse forecasting models. When all
of these challenges are aggregated, paired with the need for
expertise and understanding from the person performing the
forecast, manual forecasting of system workloads becomes
impractical.
By automating the process and applying Machine Learn-

ing to continually assess the models performance, we re-
duce many of the costs and barriers. We reduce the risks
of applying the wrong model as we continually assess the
performance through Machine Learning to account for new
behaviours the data (system) may adopt because the learning
engine moves forward as the system moves forward, organ-
ically working together. We also don’t relearn unless the
model becomes unsuitable or the system (data) has changed
significantly (shocks or new behaviours). Only at that point
do we adjust to these new behaviours that all systems ex-
perience as new functionality is introduced throughout the
systems life-cycle.

We also have performance tuned the algorithm by reduc-
ing the number of models we evaluate by automating the
ACF and PACF functions. When we ran the experiments on
a workload we evaluated several thousand models running
on a two node database. If the clustered database resided on
four nodes then the number of models needed to be evalu-
ated across two experiments would be nearly 24000 and this
is unmanageable, especially when faced with the challenge
of providing analysis against thousands of workloads from
thousands of customers routinely. Gains are also achieved
by parallel processing the models. We only use HES or SARI-
MAX with Exogenous and Fourier terms.

Using established techniques such as SARIMAX with Ex-
ogenous variables to account for the nuances exhibited in
computational workloads, we have improved the user expe-
rience of resource charts. Historically a chart would advise

(a) Single Instance With Exogenous Selection

Figure 8: Proposed User Interfaces: Model Selections
and Predictions. ©Oracle Corporation

on past or present usage of a workload, in terms of metric
based consumption such as CPU, IO, Memory or network
bandwidth, and the user then had to interpret what that chart
indicated about the future behaviour. By using this approach,
we can now advise users on what we think may happen to
their workloads. This gives a way to mitigate the responsibili-
ties system administrators face when monitoring critical and
important systems, rather than the “old” threshold-based
monitoring approach, that often led to a reactive way of
working when system outages took place. For example, con-
sider a performance problem that begins weeks earlier but
suddenly hits a threshold, becoming non-compliant relative
to the SLA. The approach proposed in this paper could ad-
vise through a prediction that there is likely to be an issue
soon, and therefore recommend refocussing some resources
to avoid an outage. Providing this early warning capability
to system administrators can only be a good thing.
Where this approach has its challenges is when a sys-

tem is unstable or in a period of fault, for example frequent
crashes as the Learning Engine then relearns to adopt new
behaviours. In our algorithm we account for this by suggest-
ing that the event needs to happen more then 3 times for it
to be a behaviour, which can be changed manually. It is per-
fectly plausible that the system fails over to a new site to test
disaster recovery. Therefore if a system crashes we discard
it, however if the system continually crashes the learning
engine will see it as a behaviour and account for it in its
forecast. Live systems rarely continually crash but they do
crash, therefore manual override is needed to accommodate
systems that are in-fault as we suggest that forecasting will
not be a true reflection of the system when stable.

There is still a need for threshold based monitoring. Utilis-
ing these techniques to predict when a threshold is likely to
be breached is an advisable way to implement this approach
for proactive monitoring and capacity based questions; we
don’t see our approach as a complete replacement for thresh-
olds just yet.



REFERENCES
[1] 2019. Forecasting Time Series with Multiple Seasonalities using TBATS

in Python. https://medium.com/intive-developers/forecasting-
time-series-with-multiple-seasonalities-using-tbats-in-python-
398a00ac0e8a

[2] George E. P. Box. 2008. Time series analysis forecasting and control
(fourth edition. ed.). Hoboken, N.J.

[3] RG Brown. 1959. Statistical forecasting for inventory control. http:
//documents.irevues.inist.fr/handle/2042/28540.

[4] Jason Brownlee. 2014. Machine learning mastery. URL:
http://machinelearningmastery. com/discover-feature-engineering-
howtoengineer-features-and-how-to-getgood-at-it (2014).

[5] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. 2015. Workload
Prediction Using ARIMA Model and Its Impact on Cloud Applications
in QoS. IEEE Transactions on Cloud Computing 3, 4 (Oct 2015), 449–458.
https://doi.org/10.1109/TCC.2014.2350475

[6] M. Carvalho, D. MenascÃľ, and F. Brasileiro. 2015. Prediction-Based
Admission Control for IaaS Clouds with Multiple Service Classes. In
2015 IEEE 7th International Conference on Cloud Computing Technology
and Science (CloudCom). 82–90. https://doi.org/10.1109/CloudCom.
2015.16

[7] S. Chaisiri, B. Lee, and D. Niyato. 2010. Robust cloud resource provi-
sioning for cloud computing environments. In 2010 IEEE International
Conference on Service-Oriented Computing and Applications (SOCA).
1–8. https://doi.org/10.1109/SOCA.2010.5707147

[8] Jennie Duggan, Olga Papaemmanouil, Ugur Cetintemel, and Eli Upfal.
2014. Contender: A Resource Modeling Approach for Concurrent
Query Performance Prediction.. In EDBT. 109–120.

[9] Dominic Giles. 2019. SwingBench 2.2 Reference and User Guide.
[10] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. 2007. Capacity Man-

agement and Demand Prediction for Next Generation Data Centers.
In IEEE International Conference on Web Services (ICWS 2007). 43–50.
https://doi.org/10.1109/ICWS.2007.62

[11] D. Gmach, J. Rolia, L. Cherkasova, andA. Kemper. 2007. WorkloadAnal-
ysis and Demand Prediction of Enterprise Data Center Applications. In
2007 IEEE 10th International Symposium on Workload Characterization.
171–180. https://doi.org/10.1109/IISWC.2007.4362193

[12] Antony Higginson, Norman W. Paton, Suzanne M. Embury, and Clive
Bostock. 2017. DBaaS Cloud Capacity Planning - Accounting for Dy-
namic RDBMS System that Employ Clustering and Standby Architec-
tures. In Proceedings of the 20th International Conference on Extending
Database Technology, EDBT. 687–698. https://doi.org/10.5441/002/edbt.
2017.89

[13] CE Holt. 1957. Forecasting seasonals and trends by exponentially
weighted averages.

[14] Rob. J. Hyndman. 2014. TBATS with regressors. https://robjhyndman.
com/hyndsight/tbats-with-regressors.

[15] Rob J. Hyndman, George Athanasopoulos, and OTexts.com. 2014 2014.
Forecasting : principles and practice / Rob J Hyndman and George
Athanasopoulos (print edition. ed.). 291 pages ; pages.

[16] Brendan Jennings and Rolf Stadler. 2015. Resource Management in
Clouds: Survey and Research Challenges. Journal of Network and
Systems Management 23, 3 (01 Jul 2015), 567–619. https://doi.org/10.

1007/s10922-014-9307-7
[17] Y. Jiang, C. Perng, T. Li, and R. Chang. 2012. Self-Adaptive Cloud

Capacity Planning. In 2012 IEEE Ninth International Conference on
Services Computing. 73–80. https://doi.org/10.1109/SCC.2012.8

[18] Stephan Kraft, Giuliano Casale, Diwakar Krishnamurthy, Des Greer,
and Peter Kilpatrick. 2013. Performance models of storage contention
in cloud environments. Software & Systems Modeling 12, 4 (01 Oct
2013), 681–704. https://doi.org/10.1007/s10270-012-0227-2

[19] Stefan Krompass, Harumi Kuno, Umeshwar Dayal, and Alfons Kemper.
2007. Dynamic Workload Management for Very Large Data Ware-
houses: Juggling Feathers and Bowling Balls. In Proceedings of the 33rd
International Conference on Very Large Data Bases (VLDB ’07). VLDB
Endowment, 1105–1115. http://dl.acm.org/citation.cfm?id=1325851.
1325976

[20] Alysha M. De Livera, Rob J. Hyndman, and Ralph D. Snyder. 2011.
Forecasting Time Series With Complex Seasonal Patterns Using Expo-
nential Smoothing. J. Amer. Statist. Assoc. 106, 496 (2011), 1513–1527.

[21] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. 2014. A
Review of Auto-scaling Techniques for Elastic Applications in Cloud
Environments. Journal of Grid Computing 12, 4 (01 Dec 2014), 559–592.
https://doi.org/10.1007/s10723-014-9314-7

[22] S. Sakr and A. Liu. 2012. SLA-Based and Consumer-centric Dynamic
Provisioning for Cloud Databases. In 2012 IEEE Fifth International
Conference on Cloud Computing. 360–367. https://doi.org/10.1109/
CLOUD.2012.11

[23] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner, and A. Zeier.
2011. Predicting in-memory database performance for automating
cluster management tasks. In 2011 IEEE 27th International Conference
on Data Engineering. 1264–1275. https://doi.org/10.1109/ICDE.2011.
5767936

[24] Yogesh Simmhan, Saima Aman, Alok Kumbhare, Rongyang Liu, Sam
Stevens, Qunzhi Zhou, and Viktor Prasanna. 2013-07. Cloud-Based
Software Platform for Big Data Analytics in Smart Grids. Computing
in Science Engineering 15, 4 (2013-07), 38,47.

[25] Grzegorz Skorupa. 2019. TBATS implementation in Python. https:
//github.com/intive-DataScience/tbats.

[26] Flavio R. C. Sousa, Leonardo O. Moreira, JosÃľ S. Costa Filho, and
Javam C. Machado. 2018. Predictive elastic replication for multi-tenant
databases in the cloud. Concurrency and Computation: Practice and
Experience 30, 16 (2018), e4437. e4437 cpe.4437.

[27] V. G. Tran, V. Debusschere, and S. Bacha. 2012. Hourly server workload
forecasting up to 168 hours ahead using Seasonal ARIMA model. In
2012 IEEE International Conference on Industrial Technology. 1127–1131.
https://doi.org/10.1109/ICIT.2012.6210091

[28] Norbert Wiener. 1950. Extrapolation, interpolation, and smoothing of
stationary time series: with engineering applications. http://hdl.handle.
net/2027/uc1.b4062686

[29] Wikipedia contributors. 2019. Makridakis Competitions — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?
title=Makridakis_Competitions&oldid=903376442 [Online; accessed
1-August-2019].

[30] PRWinters. 1960. Forecasting sales by exponentially weighted moving
averages. In Management Science, Management Science (Ed.).



5.3. PLACEMENT OF WORKLOADS FROM ADVANCED RDBMS ARCHITECTURES INTO COMPLEX CLOUD INFRASTRUCTURE121

5.3 Placement of Workloads from Advanced RDBMS
Architectures into Complex Cloud Infrastructure

Antony Higginson, Clive Bostock, Norman Paton, Suzanne Embury

In Proceedings of the 25th International Conference on Extending Database
Technology (EDBT),

Published by OpenProceedings.org,
March 29-1st April 2022,
Edinburgh, UK,
Pages 687 - 699,
ISBN: 978-3-89318-086-8,
https://10.5441/002/edbt.2017.01,
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Summary: This final paper creates and evaluates vector bin-packing solutions
following the First-Fit Decreasing (FFD) method. In this paper we execute the bin-
packing algorithms against real world target cloud configurations from real world N-
Tier architecture and real world use cases taken from Oracle ACS customers. This
novel idea resulted in a Patent being filed in the US and EU.

Approaches: Given our understanding from papers one and two, our approach to
bin-packing was several fold. Firstly, we chose the simplest and easiest technique,
being First-Fit Decreasing (FFD) rather than more complex bin-packing algorithms,
such as Best-Fit or Next-Fit. We had identified that existing vector bin-packing rou-
tines do not take into consideration clustered or pluggable workloads thus the question
to be answered was: can the FFD technique, place workloads from complex database
architectures, being clustered and pluggable workloads after our extension? Secondly,
we must place in a current available cloud specification, which we chose to be Ora-
cle OCI of a bare metal configuration and its specification. This involved creating a
templated approach that can handle increasing the vector to cover metrics other IO,
CPU and Memory. Finally, could we identify any wastage when the workloads were
placed that could assist in elasticising the target cloud architecture to achieve savings
in terms of cost (Resources or Monetary) that could be reassigned elsewhere to the
cloud consumer.
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validated the main approach, conducted an empirical evaluation, provided and anal-
ysed results, investigated related work, all graphics, participated in the entire writing
processes and addressed any comments. I created the environments, wrote any code
in the form of python bin-packing models. I configured any operating systems and
databases as required and acted as the DBA to monitor the environments as the experi-
ments ran. Specific python code was written to cover with the help of Oracle Software
Engineer (Clive Bostock) to ensure we followed Oracle SDLC. My supervisors Nor-
man Paton and Suzanne Embury also contributed to the idea, experiment design, litera-
ture research and analysis. Norman helped with the Mathematics and specific notation
required to extend the FFD algorithm. They also proof read the paper and approved
the final submission. They also guided the whole research process.

Key Contribution: From Section 1.9.3 and 6.1.
Reflection: One reflection of this particular piece of work that requires specific

mention, was the awareness of other bin-packing techniques compared with the simple
one we evaluated (FFD). Part of this research identified that no bin-packing routine
placed workloads that were siblings of each other. In traditional vector bin-packing
routines, each vector is treated separately or in isolation, for example a VM is a vector
of resource. When in fact, under certain constraints, such as a clustered or pluggable
deployments, they should, as we show in the paper be treated as ’related’. That is, all
sibling vectors must be placed before we say any one workload has been placed. Ex-
tending the algorithms to achieve this was considerable, and thus to then evaluate these
extensions to other bin-packing routines, such as Best-Fit and Next-Fit or Harmonic fit
algorithms would of been considerable. To evaluate our bin-packing extensions from
First-Fit Decreasing to Next-Fit, Best-Fit, Worst-Fit or Harmonic (Harmonic-k, Re-
fined or Modified) would have elongated the research of this thesis outside of the remit
originally outlined. Bin-packing routines are extensively used, which we only touched
on the simplest algorithm to evaluate complex clustered and pluggable workloads.
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ABSTRACT
Capacity planning is an essential activity in the procurement and
daily running of any multi-server computer system. Workload
placement is a well known problem and there are several solu-
tions to help address capacity planning problems of knowing
where, when and how much resource is needed to place work-
loads of varying shapes (resources consumed). Bin-packing algo-
rithms are used extensively in addressing workload placement
problems, however, we propose that extensions to existing bin-
packing algorithms are required when dealing with workloads
from advanced computational architectures such as clustering
and consolidation (pluggable), or workloads that exhibit complex
data patterns in their signals, such as seasonality, trend and/or
shocks (exogenous or otherwise). These extentions are especially
needed when consolidating workloads together, for example, con-
solidation of multiple databases into one (pluggable databases)
to reduce database server sprawl on estates. In this paper we
address bin-packing for singular or clustered environments and
propose new algorithms that introduce a time element, giving a
richer understanding of the resources requested when workloads
are consolidated together, ensuring High Availability (HA) for
workloads obtained from advanced database configurations. An
experimental evaluation shows that the approach we propose
reduces the risk of provisioning wastage in pay-as-you-go cloud
architectures.

1 INTRODUCTION
When employing I.T. to satisfy requirements, regardless of the
type, combination or configuration, one thing has always been
prevalent, which is the question of consumption, whether it is
prior to a migration, re-platform, upgrade or installation. Under-
standing what resources are required over a period of time is
key to the management of all I.T. systems. As hardware specifi-
cations increase, for example, in performance and capacity, the
actual physical infrastructure decreases but with the adoption
of virtualisation, the problem of server sprawl, arguably stays
the same. The trade off between system separation conflicts with
true consolidation that requires the workloads to be combined
together or share the same infrastructure. Knowing how best
to fit workloads together is a problem that has always been an
important problem to solve.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-086-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Bin-packing is a well understood concept and used extensively
in many fields of business. In computing, bin-packing can be
used to place smaller workloads into larger infrastructure to
establish how resources should be assigned to a set number of
tasks. However, bin-packing requires additional constraints when
dealing with advanced system architectures such as clustering
and elasticising workloads once placed.

In this paper, we tackle placement of different workloads from
advanced databases configurations into complex cloud architec-
tures, and make the following contributions:

• We identify the challenges and opportunities presented by
advanced architectural features, when placing database
workloads into complex cloud infrastructrures.

• We present a new bin-packing algorithm for provisioning
database workloads that takes into account fine-grained
monitoring information and advanced architectures such
as clustered Oracle databases that enable High Availability
(HA).

• We evaluate the algorithms in experiments that involve
the placement of diverse workloads into real world-cloud
architectures.

2 PROBLEM DESCRIPTION
This section provides more detail on the problem to be solved,
which is multifaceted. When the placement problem is broken
down it becomes apparent that these facets are inter-related, that
is to say, all parts of the problem need to be addressed together,
rather than just individual elements. Before describing the prob-
lem, we provide some details on how workloads are executed
on complex advanced database architectures and the relevent
metrics.

Clustering. Clusters are groups of servers (also known as nodes)
that are managed together, participating to act as one system,
usually to provide high availability, as shown in Fig 1. These clus-
ters reduce downtime and outages by allowing another server
to take over should an outage occur or maintenance be required.
Database clustering is the running of a database across multiple
servers while accessing shared storage, for example, database
datafiles that are stored on a SAN (Storage Area Network), NAS
(Network Attached Storage) or a disk array. In Fig 1 we can see
that the user’s wish to access the HR, Sales or Call Centre ap-
plications from any web server. The Net Services layer of the
technology stack, handles client access and directs users connec-
tions to the node where the service is running, for example, Sales
is directed to run from node 2. A heartbeat between the nodes en-
sures cluster integrity, should one of the nodes no longer react or



produce a heartbeat, the service fails over and user connections
are handled by the remaining nodes. This type of architecture
facilitates a 24*7 SLA and is common in enterprises today.

Figure 1: Oracle Database with Oracle RAC Architecture
[6]

Workloads. Workloads consist of collections of tasks submitted
by users. These tasks can be small units of work or individual
pieces of SQL such as Data Modification Language statements
(DML) that perform inserts, updates and deletes, that serve a
web application, for example by way of an Online Transaction
Processing system (OLTP). Other workloads consist of larger
units of work such as batch jobs that aggregate information in
the database periodically, for example, aggregation of sales data
from hourly into daily, weekly or monthly, which is a common
feature in data warehousing (OLAP). Another type of workload
is a Data Mart that can be described as somewhere in-between
OLTP and OLAP. Data marts consist of a combination of smaller
DML OLTP units of work with medium OLAP type aggregations.
Data Marts can be a subset of a large data warehouse that are
subject-orientated such as sales, HR or Call Centre that are an
aggregation of days and weeks rather than months or years.

Figure 2: Oracle Database Multitenant Architecture [5]

These units of work vary in the amounts of resources con-
sumed, and when analysed in a time series format, the task often

dictates when the consumption of resources consumed to satisfy
the task takes place. When these tasks are analysed via a trace
we see those tasks exhibiting different patterns in their resource
consumption. For example, in Fig 3 we have four workloads for
CPU side by side. The first task, OLTP, shows a progressive trend
with subtle repeating patterns (Seasonality). The next two tasks
are OLAP showing a more definitive pattern of repeating tasks
with little trend.

When placing workloads, we must treat each workload sep-
arately by extracting the peak values of each metric from each
database instance on each node in each time interval, placing
them on the target node. This is simple enough as long as the
workloads are singular (independent of each other, and run on a
single node). When the workload is clustered it becomes more
complicated because, when placement commences, wemust place
the workloads while ensuring that we do not compromise HA.
Therefore, for one clustered workload to be placed all workloads
in the cluster must be placed. If we place a clustered workload
without its sibling, we risk reducing a clustered workload to
a singular workload, the consequence being that we lose high
availability, thus compromising SLA’s. The same understanding
is required for pluggable databases [5], where a database may
be detached from a singular database instance and plugged into
another clustered database instance. This highlights that simple
bin-packing routines are not suitable.

Consolidation. Consolidation can be described as running sev-
eral workloads on a shared collection of nodes. There are several
drivers for consolidation, such as system simplification or reduc-
ing server sprawl, whether that is the number of servers, clusters,
databases or workloads. Server spawl can be described as a sit-
uation where servers are not being used to their full capacity,
leading to significant wastage in terms of space, power and cool-
ing, which can end up costing organizations substantial amounts
of money.

Consolidation of databases has become easier with the devel-
opment of pluggable databases where a database can be detached
from a singular or Clustered Container Database (CDB), and
plugged into another container DBMS that already has multi-
ple plugged in databases. Detaching and attaching pluggable
databases allows the pluggable database (and its associated data
files) to be relocated to another server and bemanaged by another
database instance (DBMS). This is shown in Fig 2, adding a fur-
ther layer of abstraction when working in conjunction with HA.
Each node in the cluster also houses a clustered container and
within each clustered container there are pluggable databases.
This architecture removes the support overhead of the database
instance serving one database when one database instance can
serve multiple plugged in databases while achieving HA. How-
ever, extracting the metric consumption on an instance with
multiple pluggable databases residing together is challenging as
the metric consumption is cumulative to the container. In this
pluggable architecture, one must first separate the resource con-
sumption for each pluggable, treating the pluggable database as
a singular database workload.

Problem Statement. The problem to be solved can be consid-
ered as follows. Assume we are given a collection ofWorkloads,
some of which are clustered, and a collection of computational
Nodes. Each workload has a time-varying demand for resources
defined using several metrics, and each server has a capacity de-
fined using the same metrics. The task is to assign the Workloads
to the Nodes, such that the demands placed by the workloads



Figure 3: CPU Usage: Complex data structures.

are always within the capacity of the nodes, while respecting the
constraints imposed by the clustered workloads.

3 RELATEDWORK
Resource allocation or workload(s) placement in cloud environ-
ments is awell understood problem and there have been extensive
studies and surveys undertaken as Hameed, Khoshkbarforoushha
et al [16] and Bhavani and Guruprasad [4] both allude to in their
survey’s from 2014. Furthermore Singh and Chana [22] produced
an extensive survey in 2016 that concluded that resource pro-
visioning is a challenging job and there is a need for more re-
search into optimal resource usage as this leads to improving
the resources consumed with the aim of reducing wastage. This
problem is ever more apparent in cloud computing with users
accessing any shape of resources (vectors) from anywhere with
the requirement of still being optimised. Vectors can be described
as multiple metrics making up a shape rather than one singular
metric. Most research has looked at consolidation from a Virtual
Machine (VM) perspective to satisfy Quality of Service (QoS),
and these are often single dimensions not vector dimensions.
For example, placing workloads based on priority or assigning
workloads to a VM via a migration to move problematic work-
loads should they exhaust a pool of resources as suggested by Yu,
Wui et al [24]. In this survey, they identify several key problems
of trying to figure out which applications can be consolidated
together. Bin-packing algorithms do not take into consideration
the divergent types of applications assigned to singular servers.

Other authors such as Sen, Ramachandra [21] and Zhang, Mar-
tin et al [25] view database workloads as controllable through the
internal features of the database system via resource managers.
However, they highlight the difficulties of the approach on cloud
platforms where the resources are shared in the infrastructure.
Halfpap and Schlosser [15] used an heuristic linear programming
model to solve a placement problem by dissecting a database and
where appropriate, replicating the data across multiple nodes. In
doing so, this placement technique shared the workload from
being cumulative on one node to being distributed between mul-
tiple nodes while keeping response times of the requests from
said database optimum.

Most computing placement problems seem to centre on the
provisioning of a VM (IaaS or PaaS) and not a workload SaaS

or DBaaS. We identified in our previous work [18] that VM’s
mask the true signal of what the workload is actually consuming
and that forecasting future resource requirements with a view
to provisioning requires careful consideration of the nuances
within the signal. Masdari and Khoshnevis in their 2019 survey
[20] identified the techniques used to perform accurate forecasts
of the resources being consumed as a precursor to provision-
ing. However, they stopped short of proposing how to place the
workloads together once the forecasted future requirements are
obtained.

When it comes to vector placement, using the bin-packing
approach, several proposals have been put forward on prevalent
customer use cases. For example, Wang, Hayat et al [23] looked at
the scenario of a customer havingmultiple applications that make
up a system. They propose a collection of algorithms based on a
customers SLA as an important requirement to ensure business
continuity. As application code or SQL is executed, and response
times elongate this invariably lead to outages, provisioning the
applications optimally by keeping these application response
times as low as possible. Aydin, Muter et al [2], looked at another
use-case for a VM placement problem with an added dimension
of time. They looked for efficiencies in the power consumed by
VM’s fire-ups, with the aim of reducing energy consumption
of data centres by minimising the number of servers and their
fire-ups.

A current common theme with placement in a cloud setting is
server sprawl and provisioning VM’s. Doddavula, Kaushik and
Jain [12], suggested reducing server sprawl with the introduction
of a vector packing algorithm. In their novel approach, they
classify vectors based on resource consumption, and then through
Matrix multiplication determine the possible combinations. By
then applying rules, either the workload is full or a magnitude
of full determine where the workload should reside with other
workloads until the maximum of the target server threshold is
reached. However, in a clustered environment this approach will
face challenges as it’s possible that several workloads running on
the same cluster are full or a combination of classifications that
could break their algorithm. Clustered workloads that required
enforced SLA’s where workloads of differing priority may run
from x node in the cluster as explained in Section 2.



Figure 4: Nodes: Resource capacity.

Figure 5: Workloads: Resource demand.

4 BIN-PACKING
The basic bin-packing problem is the process of taking items
of differing volumes and packing them into a finite number of
bins in a way that minimises the number of bins used. The bin-
packing problem is NP-complete as described by both Garey [13]
and Korte et al [19], and thus approximate, heuristic, algorithms
are often used in practice. There are many approaches to bin-
packing, such as First-Fit Decreasing (FFD), Next-Fit (NF) and
Best-Fit (BF) as discussed by Carter and Bays [3]. We look at First
Fit Decreasing, and therefore, we treat all workloads being pro-
visioned as having equal priority. Elastic Resource Provisioning
(ERP) is assigning all workloads into one bin and elasticising the
bin to fit around the workloads being placed, as described by Yu,
Qiu et al. [24]. Our approach is to enhance FFD to tackle com-
plex architectures such as clustered workloads and empirically
evaluate them experimentally.

4.1 First Fit Decreasing Placement (FFD)
The notation used to describe bin-packing in this paper is listed in
Table 1 and illustrated in Figures 4 and 5. The available resource
is represented as a set of Nodes, each of which has a Capacity
defined using a set of Metrics, that can include CPU, memory
usage, logical IOs per second, etc. The bin-packing task is to
assign a set ofWorkloads to the nodes. The Demand associated
with each workload is defined in terms of the same metrics that
are used to describe the nodes, but the Demand varies over a
set of Times. The time-varying demand may be based on mea-
sured or predicted loads; our earlier work has explored the use
of time series analysis techniques to model database workloads
for capacity planning [18].

Sorting Workloads. First fit decreasing sorts workloads such
that they can be assigned largest-first, and hence we need a
notion of size; here we define order in terms of the demand
across different metrics, normalising according to the total usage
for each metric.

Overall demand for each metric (CPU, IOPS, MEMORY, STOR-
AGE) is obtained from the demand of each workload:

Notation Interpretation
𝑁𝑜𝑑𝑒𝑠 = {𝑛1, ..., 𝑛𝑛} Computational Nodes.
𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠 = {𝑤1, ...,𝑤𝑤} Workloads.
𝑀𝑒𝑡𝑟𝑖𝑐𝑠 = {𝑚1, ...,𝑚𝑚} Metrics (CPU, IOPS, etc).
𝑇𝑖𝑚𝑒𝑠 = {𝑡1, ..., 𝑡𝑡 } Time intervals.
𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 (𝑛𝑖 ) →𝑊 The set of workloads𝑊 ⊆𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠

assigned to 𝑛𝑖 .
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑛𝑖 ,𝑚 𝑗 ) The maximum capability of node 𝑛𝑖

in relation to metric𝑚 𝑗 .
𝐷𝑒𝑚𝑎𝑛𝑑 (𝑤𝑖 ,𝑚 𝑗 , 𝑡𝑘 ) The peak demand that workload𝑤𝑖

has for resource of type𝑚 𝑗 during
time interval 𝑡𝑘 .

𝑖𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 (𝑤𝑖 ) True if𝑤𝑖 is in a clustered workload.
𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝑤𝑖 ) The set of workloads 𝑠 ⊆𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠𝑠

in the cluster of which𝑤𝑖 is a member.
Table 1: Notation for workload assignment.

𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑑𝑒𝑚𝑎𝑛𝑑 (𝑚) =
∑︁

𝑛𝑖 ∈𝑁𝑜𝑑𝑒𝑠

∑︁
𝑤𝑗 ∈𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠∑︁

𝑡𝑘 ∈𝑇𝑖𝑚𝑒𝑠

𝐷𝑒𝑚𝑎𝑛𝑑 (𝑤 𝑗 ,𝑚, 𝑡𝑘 ) (1)

Then the normalised demand of a workload 𝑤 is the nor-
malised sum of its demand over all metrics:

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑_𝑑𝑒𝑚𝑎𝑛𝑑 (𝑤) = (
∑︁

𝑚 𝑗 ∈𝑀𝑒𝑡𝑟𝑖𝑐𝑠

∑︁
𝑡 𝑗 ∈𝑇𝑖𝑚𝑒𝑠

(𝐷𝑒𝑚𝑎𝑛𝑑 (𝑤,𝑚 𝑗 , 𝑡𝑘 )/𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑑𝑒𝑚𝑎𝑛𝑑 (𝑚𝑘 )) (2)

Then the workloads can simply be sorted by their normalised
demand. In practice, when assigning clustered workloads, clus-
ters are considered in the order of the demand of their most
demanding workloads, and then the workloads within a cluster
are also sorted locally.

Node Capacity. The capacity of a node 𝑖 for a metric𝑚 at time
𝑡 is the original capacity of the node minus the resource usage of
the workloads assigned to the node:

𝑛𝑜𝑑𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑛,𝑚, 𝑡) = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑛,𝑚)−
(

∑︁
𝑤𝑖 ∈𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 (𝑛)

𝐷𝑒𝑚𝑎𝑛𝑑 (𝑤𝑖 ,𝑚, 𝑡)) (3)

Fitting. A workload 𝑤 can be added into a node 𝑛 if there is
capacity for all the metrics at all times.

𝑓 𝑖𝑡𝑠 (𝑤,𝑛) = ∀𝑚 ∈ 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 ∀𝑡 ∈ 𝑇𝑖𝑚𝑒𝑠

𝐷𝑒𝑚𝑎𝑛𝑑 (𝑤,𝑚, 𝑡) ≤ 𝑛𝑜𝑑𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑛,𝑚, 𝑡) (4)

A clustered workload, 𝑖𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 from Table 1, consists of
database instances (workloads) that are siblings of each other as
shown in Fig 1. The node is the number of nodes on which𝑊𝑖 is
to be run, and 𝑤 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 is the set of workloads
that need to be assigned to the target nodes discretely. A rule is
enforced where all 𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 must be packed into discrete target
nodes before the cluster is said to be packed. If at any point one
of the 𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 fails to pack into a discrete target node then all



siblings are rolled back and the resources are released back to
𝑛𝑜𝑑𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦.

5 APPROACH
Using techniques based on First Fit Decreasing (FFD) and the
definitions from Section 4, our aim is to place database workloads
into a target Oracle Cloud Infrastructure (OCI) [7] that supports
clustered workflows. The aim is to achieving savings in costs,
both financial (pay-as-you-go) and to release resources back to
the cloud pool for utilisation elsewhere.

5.1 Workload Placement Algorithm
A high level description is shown in Algorithm 1. One of the
major challenges of workload placement in computing estates
that have adopted clustered configurations, is accounting for
clustered workflows, that must be placed in their entirety or not
at all. Identifying the workload is clustered and on how many
nodes is key to placing the workload in the target cloud OCI
configuration.

Algorithm 1: FitWorkloads
Input: Workloads (from Table 1)
Nodes (from Table 1)
Result: Assignment(n) (from Table 1)
NotAssigned

1 Assignment(n) = ∅ for all 𝑛 ∈ 𝑁𝑜𝑑𝑒𝑠

2 NotAssigned = ∅
3 foreach𝑤 ∈𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠 ordered by 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑_𝑑𝑒𝑚𝑎𝑛𝑑

(Equation 2) do
4 assigned = false
5 foreach 𝑛 ∈ 𝑁𝑜𝑑𝑒𝑠 do
6 if 𝑖𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 (𝑤𝑖 ) then
7 if 𝑤𝑖 not already added to Assignment with

cluster or included in NotAssigned then
8 assigned =

FitClusteredWorkload(Siblings(𝑤𝑖 ),
Nodes, Assignment, NotAssigned)

9 if assigned then
10 break
11 else if fits(w,n) then
12 Add𝑤 to 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 (𝑛)
13 assigned = true
14 reduce node 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (Equation 3) by

𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
15 break
16 if (not assigned) then
17 Add𝑤 to NotAssigned

18 Report on Workloads Assigned, NotAssigned and Nodes
Capacity

Firstly we extract key information as inputs, ordering work-
loads by demand. Key configuration data is stored in a central
repository [8] that stores whether a workload is clustered or not.
If a workload is part of a cluster then we set a flag for that partic-
ular workload (represented by 𝑖𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 in Table 1), and the
full set of workloads with which it is clustered can be obtained
using 𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 in Table 1.

When placing workloads, if the workload𝑤 is from a single
database instance then we simply check if the workload 𝑓 𝑖𝑡𝑠

(Equation 4) into an available node, and if so, add it to𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
for that node. We report back to the user all workloads that have
been fitted (by way of 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ), and any that have not (by
way of 𝑁𝑜𝑡𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑).

If, however, the workload is clustered we extract the related
𝑆𝑖𝑏𝑙𝑖𝑛𝑔 workloads in the cluster from a central repository; as we
use the Oracle Enterprise Manager system [8] and the OEM in-
telligent agent to capture all performance and configuration data
relating to the database instances. OEMutilises a database schema
to hold information relating to the workloads, and databases in-
stances, and we handle this via a Global Unique Identifier (GUID).

5.2 Fitting Clustered Workloads
The fitting of clustered workloads, aims to enforce high avail-
ability by placing all workloads in a cluster before it can report
back that the workloads are fitted. For example, if the clustered
workload has three nodes with a database instance running on
each node as described in Fig 1, then it must place the workloads
on three discrete target nodes or it will roll back what has already
been placed. We show this in Algorithm 2.

Firstly we understand how many nodes make up the cluster
(1,2,..,N) nodes, which gives an indication of how many target
nodes are required. We cannot fit a clustered workload from
three nodes into two target nodes, therefore, we perform a test
to ensure that the requisite number of target nodes are available.
If there are not enough target nodes then we stop otherwise we
loop through all of the workloads ensuring that the siblings of
the cluster are assigned to discrete target nodes. Each time an
assignment takes place the amount of resource of the target node
is reduced by the vector of the workload. Finally, we report on
what workloads are assigned to each target node.

5.3 Evaluating the Placement
Once the workloads from all database instances have been as-
signed and placed in their target nodes.We overlay eachworkload
by the time frequency (Hourly), allowing an understanding of the
existing data signals (peaks and troughs) when the workloads are
consolidated together. A simple groupby (

∑
) per hour and per

metric shows the newly consolidated data signal. In traditional
bin-packing exercises, the max_value of a metric is taken and
then bin-packing is based on that value, however, if a peak is
singular, for example, without pattern then the prospect of over
provisioning becomes apparent. When the new trace is displayed
over an X,Y (Stacked), which we show in Section 7.2 and Fig 7. We
can clearly see the consolidated workloads exhibit their complex
traits such as seasonality, trend and shocks against the threshold
limit of the bin. This simple approach allows us to understand
and where possible, perform or feed into further elastication ex-
ercises that can be performed on the bin to fit the consolidated
workloads more tightly.

6 EXPERIMENTAL SETUP AND
WORKLOADS

Firstly we execute a selection of workloads (OLTP, OLAP and
Data Mart) on different Oracle database configurations of vary-
ing versions (10g, 11g and 12C) on a Oracle Enterprise Linux
Operating System or Oracle Exadata (clustered workload) [9].
Executing the workloads for 30 days allows key database fea-
tures such as optimisers and caching to be warmed up or routine
backups to take place, which all consume resources and influence



Table 2: Table of Experiments

Experiment Workloads Target Bins
Basic Single Database Instance 10 Workloads (10 OLTP, 10 OLAP and 10 DM) 4 * OCI Bare Metal equal size
Basic Clustered Workloads 10 Workloads (10 RAC OLTP (5*2 Exadata nodes)) 4 * OCI Bare Metal equal size
Basic different sized target bins 10 Workloads (10 OLTP, 10 OLAP and 10 DM) 4 * OCI Bare Metal unequal size
Moderate Combined (Clustered and Sin-
gle Instance)

20 Workloads (4 * 2 node clustered + 5 OLTP, 6 OLAP and
5 DM)

4 * OCI Bare Metal unequal size

Moderate scaling 50 Workloads (10 * 2 node clustered + 10 OLTP, 10 OLAP
and 10 DM

4 * OCI Bare Metal equal size

Moderate different sized target bins 20 Workloads (4 * 2 node clustered + 5 OLTP, 6 OLAP and
5 DM

6 * unequal OCI Bare Metal

Complex (Scaling & different sized bins) 50 Workloads (10 * 2 node clustered + 10 OLTP, 10 OLAP
and 10 DM

16 * unequal OCI Bare Metal

Algorithm 2: FitClusteredWorkload
Input: ClusteredWorkload, including sibling data (from

Algorithm 1)
Nodes (from Table 1)
Assignment(n) (from Table 1)
NotAssigned (from Algorithm 1)
Result: assigned

1 foreach𝑤 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ordered by
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑_𝑑𝑒𝑚𝑎𝑛𝑑 (Equation 2) do

2 assigned = false
3 if target_nodes are <= source_nodes then
4 foreach 𝑛 ∈ 𝑁𝑜𝑑𝑒𝑠 do
5 if fits(w,n) then
6 Add𝑤 to 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 (𝑛)
7 assigned = true
8 reduce node 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (Equation 3) by

𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
9 break

10 if (not assigned) then
11 Remove all members of ClusteredWorkload

from Assigned
12 Add all members of ClusteredWorkload to

NotAssigned
13 increase node 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (Equation 3) by

𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
14 break
15 not enough nodes to fit

16 Report on Workloads Assigned and NotAssigned
17 return assigned

the bin-packing routines by way of providing a different met-
ric values between a cold and warm database. We also monitor
the workloads to ensure the workloads are running smoothly
without error. The workloads are executing Data Manipulation
Language (DML) statements such as inserts, updates and deletes
while performing large data aggregations, for example Business
Intelligence (BI) reports through a Java environment consisting
of a web container, giving us an N-Tier architecture using the Or-
acle load generator Swingbench [14]. This environmental setup
is reflective of Database Management systems in use today.

We utilise the Oracle Enterprise Manager [8] system to exe-
cute and capture all performance and configuration data via an
Intelligent Agent, which captures metrics such as CPU, IOPS,
Memory and Storage used. The agent executes commands to
retrieve the max_values of key metrics such as sar, iostat, and
memory on the host and metrics specifically from the database
are also obtained such as storage used, memory used, CPU %
used and logical read/writes. The agent captures these metrics
at 15 minute intervals and stores the values in a central repos-
itory. Aggregations on the data captured every 15 minutes are
then performed providing a max_value for each metric for each
database instance and host hourly, daily, weekly or monthly.

Storing the values in a central repository this way, enables
the ability to align the metrics uniformly over consistent ob-
servations such as hourly in an overlay manner, allowing an
easy comparison of all database instances. Using python open
source libraries such as numpy and pandas we then executed
the algorithms and empirically evaluated the placement of the
workloads into target bins. We could use average_values from
the metrics captured but we choose max_values for the simple
reason of provisioning on an average will usually be lower than
a max_value and if a VM hits 100% utilised it will panic and may
cause an outage. Therefore, we always place on a max_value
from a metric.

Each workload generates complex data traces as shown in
Fig 3, highlighting repeating patterns (seasonality), trend and
shocks. Shocks are reflective of large IO operations, for exam-
ple online database backups, and this can be seen in the metric
IOPS. In Fig 3 we have displayed four workloads side-by-side
for CPU usage that highlights these complex patterns, which are
indicative of systems employed by most enterprises today. As
workloads become larger in size, arguably the result is slower
execution times and this is shown by the workloads exhibiting
trend. Each experiment increases in complexity and scale as the
number of workloads increase, which is described in Table 2.
Each experiment and its results are discussed in detail in Section
7 where we produce charts that highlight the workloads consoli-
dated together after being placed on a particular node. The target
configuration is Oracle Cloud Infrastructure (OCI) [7] using the
Bare Metal Configuration as shown in Table 3.

In the experiments we are only testing the database placement
algorithms, as they are orthogonal to modelling. The placement
algorithms do not know if the traces being inserted as inputs to
the algorithms are actual or modelled, however, it is perfectly
plausible that the inputs have first been predicted to obtain an



estimate of future resource consumption to model what a place-
ment design may look like, which is a common planning exercise
in any estate migration. Once the workloads are placed we also
evaluate the consolidated workloads assigned to the target nodes
to identify if there is any wastage that can be further eliminated
by, for example, an elastication exercise.

Table 3: OCI Target Bin Configuration
(BM.Standard.E3.128) [7]

Shape Metric Comments

Compute Shape
128 OCPU
2048 GB’s Memory
Block Storage

Equivalent to
980 SPECInts [10]
per bin

Block Storage
Shape

32 * 4TB Volumes
35,000 IOPS per vol

Equivalent to
1,120,000 IOPS per bin
128000GB Physical
Storage

Network Shape 2* 50Gbps throughput
Max 128 VNICS 65 per physical NIC

7 EXPERIMENTS AND ANALYSIS
We conducted several experiments that start off simple and then
grow in complexity providing a detailed evaluation of the algo-
rithms that reflect use cases of estates employed by customers
today. For the purposes of saving space in the paper we have
only included some of the most prominent charts and results that
are interesting. Furthermore we do not describe all experiments
listed in Table 2 to save space in the paper. The experiments we
do show highlight the algorithms working to their full potential.
We aim to answer the following questions:

(1) Minimum targets needed - What is the minimum number
of target bins needed to fit all workloads across all vectors
(metrics)?

(2) First Fit Decreasing Simple Placement - How do we place
the workloads equally across equal sized bins?

(3) First Fit Decreasing Clustered Placement - If there are
clustered workloads can we ensure that all clustered work-
loads are placed without compromising High Availability?

(4) Evaluating the placement - Once the workloads are placed
(consolidated) together can we identify wastage with the
aim to resize the target nodes, obtaining a tighter fit, re-
ducing over provisioning?

We have included sample outputs from each experiment and
the reader will note that these are not uniform in their outputs
and this is because we wish to only highlight prominent outputs
that answer questions the experiments pose. If we are to supply
full sample outputs for each experiment we would quickly ex-
haust space in the paper. Also, we have used sample outputs as
opposed to full UI screenshots, also saving space and showing
the algorithms working. In our opinion, UI design although an
important feature of any application is not as important, to this
paper, as the algorithms working.

In all of our experiments we executed our algorithms multi-
ple times with both adequate and inadequate target nodes and
resources to ensure that the algorithms would place and reject
workloads appropriately. In the experiments we report in this
paper we took the average number of workloads we expect cus-
tomers to provision per Oracle Cloud Architecture, i.e., customers

Can we fit all instances into minimum sized
bin for Vector CPU?

===== list

List of workloads
['DM_12C_1': 424.026, 'DM_12C_2': 424.026,
'DM_12C_3': 424.026, 'DM_12C_4': 424.026,
'DM_12C_5': 424.026,'DM_12C_6': 424.026,
'DM_12C_7': 424.026,'DM_12C_8': 424.026,
'DM_12C_9': 424.026, 'DM_12C_10': 424.026]

Target Bins 0
['DM_12C_1': 424.026, 'DM_12C_2': 424.026,
'DM_12C_3': 424.026, 'DM_12C_4': 424.026,
'DM_12C_5': 424.026,'DM_12C_6': 424.026]

Target Bins 1
['DM_12C_7': 424.026, 'DM_12C_8': 424.026,
'DM_12C_9': 424.026, 'DM_12C_10': 424.026]

Figure 6: Sample output: Minimum Number of
Nodes CPU

mostly provision a 1-to-1 relationship of an instance per VM.
However, consolidation of workloads is rising as the technology
allows; for example combining database workloads together is
more achievable with the introduction of Pluggable databases
[5] where one database can be detached from one instance and
’plugged’ into another instance. An instance includes the memory
structures and optimiser that serves the database. The instance is
then shared across multiple VM’s that make up a physical cluster
thus bin-packing multiple instances together is becoming more
apparent.

7.1 Experiment (Basic) - Placement of Single
Database Workloads (OLTP, OLAP & DM
Workloads)

Overview. The first experiment involves placing 10 OLTP, 10
Data Mart and 10 Data Mart workloads from a source configu-
ration of Oracle single database instances as described in Table
2, into four equally sized target OCI bins of a configuration de-
scribed in Table 3. For the purpose of savings space in the paper
have not shown these charts here. We show the sample outputs
from the command line which we discuss in detail in results.

Results. In the sample outputs shown in Fig 6, we represent
one metric (CPU) in the vector, although in our outputs, we cover
all metrics in the vector. Each of the max_values taken from the
hourly time period are listed as one list and then placed into
the minimum number of bins. Each bin is represented within
square brackets ’[]’. In Fig 6, each workload is labelled by us-
ing a precursor to the value. For example workload DM_12C_1
identifies, DM representing the type of workload thus Data Mart,
12C representing the version of Oracle database the workload
was executed with, and 1..10 being that actual workload. The
values after the ’:’ in Fig 6 is the max_value. As we show in Fig
6, we have successfully answered question 1, treating all work-
loads heuristically, what is the minimum number of target nodes
required to fit my workloads?



(a) CPU OLTP RAC Workloads (b) CPU OLTP RAC Wastage

Figure 7: RESULTS: Consolidated placed workloads & Potential Wastage

How many of the instances (Database Workloads)
can we get in 4 equal sized bins?

bin packed it looks like this
Target Bins 0
{'DM_12C_9': 424.026, 'DM_12C_5': 424.026,
'DM_12C_10': 424.026}
Target Bins 1
{'DM_12C_8': 424.026, 'DM_12C_4': 424.026,
'DM_12C_1': 424.026}
Target Bins 2
{'DM_12C_7': 424.026, 'DM_12C_3': 424.026}
Target Bins 3
{'DM_12C_6': 424.026, 'DM_12C_2': 424.026}

Figure 8: Sample output:Workloads placed equally
across targets (CPU)

In Fig 8 we answer question 2, which is can we place the
workloads equally across the target nodes? In the sample output
shown in Fig 8 the target nodes are represented by brackets
’{}’. Question 3 is not answered in this experiment as there are
no clustered workloads however, we will answer this question
in other experiments. Question 4 we ask in each experiment;
evaluating the target nodes after placement can we resize the
bins to obtain further savings? We have not shown these charts
for this experiment due to the space available. We discuss this
question in detail in Section 7.2 from charts a & b in Fig 7.

7.2 Experiment (Basic) - Placement of 10
Clustered workloads (RAC)

Overview. In this experiment, from Table 2, we focus on clus-
tered workloads of a type OLTP, which are executed on an Oracle
two node Exadata Machine [9]. There are 10 workloads, which
equates to five two node clusters executed on an Oracle 11G ver-
sion database. The workloads exhibit complex data structures as
shown in Fig 3 such as seasonality, trend and exogenous shocks.
In this experiment we are answering Question 3 of the first fit
decreasing placement algorithm with the aim of enforcing High
Availability. All workloads in a cluster must be placed or no

workloads from the cluster will be placed as described in algo-
rithm 2. The target bins are of type equal sized Oracle Cloud
Infrastructure [7] and covered in Table 3.

Results. In the sample output shown in Fig 9, which we have
cropped for ease of reading and space within the paper, we show
the algorithm’s command line output. This output is available
in all experiments but we focus particularly on clustered work-
loads to highlight our placement algorithms working clearly. The
target bin configurations are displayed along with the databases
instances and their max_values for a given time period. The first
block in Fig 9 titled ’Cloud Configurations’, lists the target OCI
bin vectors and their available space named OCI0,..,OCI6. The
next block in Fig 9 titled ’ Database instance / resource usage:’,
lists the source RAC database instances and their vectors, which
we have also cropped for space within the paper by only showing
four clustered databases instances (8 workloads).

We inform the user of the instances we are intending to place
and as the algorithm is executed, providing a real-time decision
of each instance being placed however, we have not shown this
output here. Once executed we provide a summary of workloads
placed, refused or rolled back, for example, if an workload from
a clustered database instance has been placed but a sibling was
not placed. It will require a rollback and the counter ’rollback
count’ increments as shown in the block titled ’Summary’ in Fig
9. We observed in our tests that once an instance is rolled back,
the resources are released and made available again, allowing a
smaller vector size to be placed. We also provide a list of work-
loads that failed to fit due to lack of resources, reporting a list
of failed instances to the user. In the block titled ’Cloud Target :
DB Instance mappings:’, we provide a mapping of the clustered
workloads that were placed and their siblings, including which
target node they are placed, note that no two instances from the
same cluster are ever placed in the same target node; they are
always placed discretely.

Evaluating the target nodes after placement, can we resize the
bins to obtain further savings (Question 4)? Charts a & b in Fig 7
show several interesting points. Chart 7a shows an external shock
that caused a spike and the FFD algorithm takes this max_value
when placing workloads. When the workloads are consolidated
together we can see trend as the line gradually rises. The avail-
able, target, resources are shown by the blue line and the large
spike fits below the line. However, Chart 7b displays the poten-
tial CPU resources that will not be utilised (orange). Therefore,



Cloud configurations:
OCI0 OCI1 ... OCI11 ... OCI16

metric_column
cpu_usage_specint 2728 2728 ... 2364 ... 681.25
phys_iops 1120000 1120000 ... 560000 ... 280000
total_memory 2048000 2048000 ... 1024000 ... 512000

Database instances / resource usage:
RAC_1_OLTP_1 RAC_1_OLTP_2 RAC_2_OLTP_1 RAC_2_OLTP_2 RAC_3_OLTP_1 RAC_3_OLTP_2 RAC_4_OLTP_1 RAC_4_OLTP_2

metric_column
cpu_usage_specint 1,363.00 1,363.00 1,363.00 1,363.00 1,363.00 1,363.00 1,363.00 1,363.00
phys_iops 16,341.00 16,341.00 16,341.00 16,341.00 16,341.00 16,341.00 16,341.00 16,341.00
total_memory 13,822.00 13,822.00 13,822.00 13,822.00 13,822.00 13,822.00 13,822.00 13,822.00
USED_GB 53.47 53.47 53.47 53.47 53.47 53.47 53.47 53.47

SUMMARY Cloud Target : DB Instance mappings:
======= ===================================
Instance success: 8. OCI0 : RAC_1_OLTP_1, RAC_2_OLTP_2
Instance fails: 12. OCI1 : RAC_2_OLTP_1, RAC_3_OLTP_2
Rollback count: 0. OCI2 : RAC_3_OLTP_1, RAC_4_OLTP_2
Min OCI targets reqd: 10 OCI3 : RAC_4_OLTP_1, RAC_1_OLTP_2

Original vectors by bin-packed allocation:
OCI0 RAC_1_OLTP_1 RAC_2_OLTP_2

metric_column
cpu_usage_specint 2728 1,363.31 1,363.31
phys_iops 1120000 16,340.62 16,340.62
total_memory 2048000 13,822.21 13,822.21

Figure 9: Sample output: 10 RACWorkloads First Fit Decreasing High Availability Enforced

elasticising the target cloud node, and reassigning the resources
would reduce wastage. In this experiment we have successfully
placed clustered workloads proving our placement algorithms
(Algorithm 2) and evaluated the consolidated workloads in their
target nodes, successfully identifying potential wastage that may
occur.

7.3 Experiment (Complex) - Placement of
combined workloads (Clustered & Single
Instance), varying sized bins at scale

Overview. This experiment is the most complex of all of the
experiments we conducted. In this experiment we are answering
the question of scale by placing a large number of workloads of
varying size into different sized target nodes. The target nodes
reduced in their available resources, which arguably, reflects
the use case most customers face today when undertaking a
migration exercise that involves procuring and placing workloads
from on-premises advanced configurations such as clustering
into cloud configurations. We tackle this experiment by running
a combination of algorithms which are the following: -

• What is the minimum number of target nodes I require
based on the size of my vectors?

• What is the maximum number of workloads I can fit into
the available target nodes while keeping the integrity of
the clustered workloads?

• Can we work at scale, which is a plethora of eclectic work-
loads into varying sizes of targets?

Firstly we obtained an estimate on the minimum number of
target nodes based on the max_values obtained for each metric
within the vector from each workload. Taking the configura-
tions based in Table 3, the number of nodes needed to place 50
workloads was: -

• CPU - On this metric the advice was 16 target bins
• IOPS - On this metric the advice is 10 target bins
• Storage - On this metric the advice is 1 target bin
• Memory - on this metric the advice is 1 target bin

From analysis of the workloads we identified that some of
our workloads are CPU and IOPS heavy, therefore, allowing
the algorithms to utilise 16 available target nodes was key to
meeting the demands of the experiment bearing in mind it is a
question of scale. Utilising 16 target nodes of OCI configurations
of varying sizes, these being 10 target bins 100%, 3 being 50%
and 3 25% available resource from Table 3. In Fig 9 under Section
"Cloud Configurations", which we have cropped to aid viewing
we show OCI11 (50%) and OCI16 (25%). Placing our workloads
heuristically on a first fit decreasing method, all workloads are
treated equally, but focusing on enforcing High Availability as
there is a combination of both single and clustered workloads.

Results. The results of this experiment were very much the
same as the previous experiments in that the algorithms (Algo-
rithms 1 and 2) worked as expected. All the algorithms fitted their
workloads in a First Fit Decreasing manner. All the Algorithms
evaluated the nodes once placement of the workloads took place
to identify further efficiencies. However, what we wish to focus



Rejected instances (failed to fit):
metric_column cpu_usage_specint phys_iops total_mem
RAC_1_OLTP_1 1,363.31 47,982.17 13,882.21
RAC_7_OLTP_1 1,241.99 47,982.17 12,723.78
RAC_9_OLTP_2 1,241.99 47,982.17 12,723.78
RAC_9_OLTP_1 1,241.99 47,982.17 12,723.78
RAC_8_OLTP_2 1,241.99 47,982.17 12,723.78
RAC_1_OLTP_2 1,241.99 47,982.17 12,723.78
RAC_8_OLTP_1 1,241.99 47,982.17 12,723.78
RAC_10_OLTP_1 1,241.99 47,982.17 12,723.78
RAC_7_OLTP_2 1,241.99 47,982.17 12,723.78
RAC_10_OLTP_2 1,241.99 47,982.17 12,723.78

Figure 10: Sample output: Experiment 4 RAC workloads
failed to fit

on in this experiment was the instances that failed to fit as shown
in Fig 10.

From the sample output shown in Fig 10 it would suggest
there is a random nature to the instances not being fitted and
this is explained because of the following. When we first list the
instances, their workloads, vectors and the amount of resource
consumed we order them in descending order with the largest
single instance being first then the largest RAC instances. By
optimally sorting on size we avoid the algorithm rolling back
already placed instances as the available target nodes exhaust
their resources with siblings not been placed. We must treat the
siblings of the clusters equally then sort order based on the size
of the total cluster.

8 CONCLUSIONS AND FUTUREWORK
Summary. In this paper we evaluated the technique of Vector

Bin-Packing utilising the First-Fit Decreasing algorithm against
databases that employ advanced technologies such as cluster-
ing and pluggable databases with a view to fitting a variety of
workloads into complex target cloud configurations such as Ora-
cle Cloud Infrastructure with a Bare Metal configuration. When
placing workloads into Cloud configurations because most cloud
providers provision on multiple dimensions such as IOPS, Stor-
age, CPU and Memory, a vector approach is required. If the Cloud
Consumer is also a Cloud Provider then the vectors are likely
to increase in number, covering other areas of cloud technol-
ogy, for example Network throughput, Bandwidth or Virtual
Network Interface Cards (VNIC) configuration to name but a
few. The approach adopted provides the ability to place work-
loads on scaleable vectors, by increasing the number of metrics
[𝑚1, ..,𝑚𝑚].

We wanted to understand once the workloads were placed
could we make further efficiencies? Given placement algorithms
only take the max_value of a metric that is associated with its
workload over time, once a workload migrates architectures,
the signal changes, especially when analysed in a time series
format as described from our earlier work [18]. Therefore, over-
provisioning is possible without understanding if there are re-
peating patterns or trends within the signal. The charts in Fig’s
7a and 7b, indicated by the colour orange shows that what, was
initially, provisioned may not be used. Our approach identified
this wastage.

• What is the maximum number of target nodes needed to
consolidate my workloads?

• What size do I need those target nodes to be?
• How should thoseworkloads be placed in the target nodes?
• Is the target node adequately sized once placement of the
workloads takes place?

• Will placement of the workloads compromise my SLA’s?
Given the popularity of advanced database features such as

high availability and consolidation we had to extend the existing
FFD bin-packing algorithms rather than simply mapping a data-
base instance as a 1-to-1 mapping to a VM. By consolidating the
workloads together, gave us additional complexities to take into
consideration. For example, pluggable databases are still attached
to a global database memory structure consuming resources. By
treating a pluggable database as a single instance workload we
were able to reduce complexity within the algorithms, allowing
us to place pluggable databases. Our algorithms needed to be
multi-faceted in that they can place simple, complex and very
complex vectors attributed to any database workload regardless
of the source database configurations. By treating pluggable and
standby databases as a single instance workload allowed us to
perform workload placement without introducing further no-
tation in our formulas. A standby database will usually be in
recovery mode applying all archivelogs from all nodes in the
primary cluster therefore, a standby is a single instance which
is more IO resource intensive than memory or CPU as we have
shown in our earlier work [17].

Central Repository. Using an intelligent agent capable of Mon-
itor Analyse Plan and Execute (MAPE) (Arcaini et al [1]) to iden-
tify, capture, store metric and configuration data centrally, al-
lowed us to align the time series data of the workloads uniformly.
An intelligent agent executes a command for example sar or IO-
STAT at a particular time with the command results being stored
in a central repository within a database schema. Aggregations
are performed on the metric data to an hourly value and while
this has the negative affect of smoothing the signal (averaging
the time points) it allowed us to compare the workloads at any
given time period easily, as shown in Fig 5, reducing the amount
of data wrangling in the application layer by python libraries
such as Pandas, Numpy etc.

Benchmarks. Comparing Servers with different performance
speeds such as IOPS or CPU is a challenge and there we utilised
benchmarks. SPECInt 2017 [10] was used to compare the work-
load consuming CPU on one architecture compared with another
chip architecture. Storage benchmarks were also provided based
on Transaction Processing Performance Council [11] benchmarks.
However, RDBM systems utilise complex memory algorithms
that often bypass fetch operations of the database therefore, logi-
cal reads were taken as the metric. However, given our approach
and algorithms allows placement on a vector that is scaleable,
other Metrics such as physical IOPS could be used if one chooses
to do so.

Automation. With the manual approach of performing a work-
load placement exercise, technicians tend to adopt a spreadsheet
approach when placing workloads into clouds. This approach can
be cumbersome, for example, manually researching, converting
the CPU (SPECint), IO speeds and Memory between the source
and target architectures, so creating the spreadsheet is time con-
suming. Often these spreadsheets build in complexity and are
bespoke to individual customers resulting in inflexibility, result-
ing in ’expert friendly’ analysis that only the author understands.
We wanted to automate this process with the aim of reducing the



level of effort technicians spend manually building spreadsheets,
reducing errors from miscalculations that may occur in bespoke
spreadsheets and reduce the time to complete a placement plan
from weeks/months to hours/days.

When we execute our algorithms we are effectively retrieving
the configuration and performance data from a central repository.
For example, extracting the CPU make, model and its SPECInt
value that is obtained by the intelligent agent, therefore perform-
ing a comparison rather than manually researching this data. The
Algorithm can then quickly place and store the placement design
of the workloads as a ’plan’ in a normalised database schema,
rather than having complex sets of bespoke spreadsheets. This
approach worked well, allowing us to execute the placement
algorithms in minutes rather than days or weeks.

Conclusion. In conclusion, we believe that there is a need for ac-
curate workload placement especially when provisioning services
such as IaaS, PaaS, DBaaS or SaaS, whether that is on-premise,
remote or hybrid clouds. However, knowing which algorithm or
collection of placement algorithms to use is key as one simply
can not utilise a standard approach or an off-the-shelf technique
when advanced workload configurations such as clustering are
employed as our experiments show. We focused on the First-Fit
Decreasing bin-packing method on advanced databases archi-
tectures such as Clustering and Pluggables and found that we
needed to extend the FFD algorithm to accommodate sibling
workloads within the cluster, especially when the cluster is con-
suming resources unevenly.

Future Work. During our experiments we found curious be-
haviour causing us to extend our new FFD Algorithm further, and
this was attributed to ordering the workloads prior to placement,
something we did not expect. The result was to insert steps 1
and 3 of algorithms 1 and 2 to include ordering in descending
order with the largest workload being the first to be placed while
also ordering the largest available resource target nodes being
first. However, we did not account for the siblings when ordering
clustered workloads. Therefore, we had to order the workloads
and their siblings together. The reasoning for this is to account
for the siblings in a cluster that consume resources unevenly.
When clustered instance workloads are listed individually one
workload within a cluster can be located considerably down the
pecking order compared with its sibling if a simple ordering ex-
ercise takes place. Eventually the target nodes are exhausted of
their resources and placement ceases. If the target node runs out
of available resources before the sibling is placed then a rolling
back exercised is performed.

Therefore, it is critical to order on the cluster and its siblings
in descending order. This is more of a work around really rather
than a solution. We are working on a solution to this problem but
the likely answer will be to take the cumulative approach of the
total amount of resources consumed per cluster and order based
on number of nodes then resources consumed. We also intend to
enable a user defined priority assignment function. Assigning a
user defined priority to a workload allows for separation between
live systems as some systems may be more critical than others.
In our earlier work we leveraged Machine Learning (Supervised)
coupled with Time Series Analysis [18] to predict future resource
consumption of a workload and we see a combination of those
techniques and placement to create a more informed choice when
one is making decisions on what systems can be placed based on
their future resource consumption.
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Chapter 6

Concluding Remarks

Boss: I just heard that light travels

faster than sound. I’m wondering if I

should shout when I speak, just so my

lips appear to sync-up with my

words.

Dilbert (thought): A little knowledge

can be a ridiculous thing.

Scott Adams (Creator of Dilbert)

This chapter provides the overall conclusions of the thesis, outlines the most no-
table limitations of the work undertaken and discusses future work.

6.1 Conclusions

On paper, Capacity Planning seems a simple exercise - obtain and compare the re-
source estimates against the available or future resource demand. In practice, however,
it is perhaps, considerably, a more challenging discipline to perform regardless of in-
dustry as Bakke and Hellberg [BH93] suggested as far back as 1993 in their study on
the challenges of capacity planning. Resource Capacity Planning, when broken down,
involves a deeper understanding of:

• The topology of technology layers that make-up a wider system and its architec-
ture (N-Tier or cloud) either on-premises, remote or hybrid.

• Monitoring the appropriate attributes of the system at the correct frequency for
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periods long enough to perform meaningful data analysis.

• Using the correct forecasting techniques and applicable models capable of per-
forming accurate forecasts on the data, taking into consideration complex data
patterns in their signals.

• Place the workloads together in target environments (Cloud) in such a manner as
to maximise efficiency without overloading the nodes to starve other workloads
or reducing any SLA, SLOs or QoS the system is legislated to adhere to.

In the absence of techniques, expertise and tooling available to perform capacity plan-
ning in an efficient and accurate manner, we broke the problem down into three main
areas of work relating to database workloads, however, with an eye on the application
of this work for other types of workload, such as applications (SaaS). We noticed, early
on that a workload is the consumption of resources over a period of time that satisfies
a set of tasks. Therefore a workload can be taken from any layer or component within
a system where resources are consumed, such as applications, storage or a network
switch.

DBaaS Cloud Capacity Planning - Accounting: Database systems are one of the
most critical elements of many I.T. system as they communicate information related
to the business readily. If the database is unavailable, arguably, the business, in what-
ever shape, rapidly diminishes or ceases to exist. Data, for example, in the form of
customers, transactions, items and the criticality of decisions based on said data is a
tangible asset in the value of a business. Therefore database management systems have
grown in their complexity, employing a myriad of features to ensure they are running
at their most optimum and are truly 24*7, 365 days per year with stringent SLAs,
SLOs and QoS assigned to them. Migration, Upgrades and re-platforming of complex
critical database architectures are decisions, C-level executives do not take lightly, and
that require complete focus to ensure success.

The first piece of work as described in paper titled ”DBaaS Cloud Capacity Plan-

ning - Accounting for Dynamic RDBMS System that Employ Clustering and Standby

Architectures”, was understanding the make-up of a workload. How we account for
complex database architectures, what metrics should be captured, where in the technol-
ogy stack those metrics should be obtained and under what conditions do workloads
change? The challenge was examined through the availability of benchmarks, there-
fore SPECInt and TPC were the logical choices to adhere to. The metrics chosen had
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to map to metrics in a cloud environment, therefore CPU per sec can be interpreted to
SPECInts, which is uniform regardless of architecture (on-premises N-Tier or Cloud),
Physical reads/writes are the metric used by TPC and are also mappable to storage met-
rics of cloud environments as throughput, and Memory is RAM. Using an intelligent
agent to execute and gather commands is advantageous as it stores the data centrally in
a repository as opposed to manually extracting metric data from the individual internal
database AWR repositories, however if no intelligent agents are available then one has
no choice but to extract data this way.

Our work showed several things that provided a useful foundation for further work.
Most recently, research has started to look at the SaaS layer specifically, as described
by Stauffer et al 2021 [SMS21]. In their study they highlighted that cloud capacity
planning tends to focus on the initial placement of a workload into/or a VM at an IaaS
level. Their primary focus centred on elasticity management with the aim of adjusting
capacity of instances of SaaS applications. They also highlight that key capacity met-
rics are to be obtained of the SaaS workload such as CPU, memory and disk storage. In
their solution they use these metrics specifically to determine by how much the capacity
should be increased by the consumption of the SaaS query. As we have also concluded,
metrics need to be obtained at the right layer, for example at the database instance not
the VM, especially if there are multiple instances running in a consolidated environ-
ment. Metrics obtained at the VM layer masks where the metric is utilised between
multiple databases, therefore it is inappropriate for capacity planning to take place at a
VM level without avoiding the inclusion of metrics consumed by all databases. Hyper-
visors mask what is assigned and what is actually provisioned, as some of the CPU is
directed as support overhead and this needs to be accounted for. Operating system con-
figurations have a profound affect on how a workload is executed, for example metrics
such as Thread(s) per core improve the efficiency of an OLTP workload and thus OS
configuration of CPU metrics needs to be accounted for. Advanced database features
such as standby databases do not work as an active open running database. Standby
databases are in a recovery mode applying activity (Redologs) from the primary and
thus some key database metrics will not be available for extraction, resulting in metrics
being obtained at the OS layer. In a clustered database environment, metrics should
be obtained at the instance level of each node, as nodes can run unevenly with con-
nections being routed through one node above another. Also, in the event of clustered
node failover a workload should not assume that the properties of the workload on one
node will follow obviously, it will assume a new ’consolidated’ workload resulting a
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new database instance resource footprint. Arguably, it can be said given the current
gaps, that analysis is taking place at the VM (IaaS) because it is so difficult to extract
the key data from individual workloads.

One of the aims of this thesis, as described in Section 1.9.1, was to identify the cur-
rent database footprint including any advanced features such as Standby, clustering and
Pluggable databases. Identify any understandings that are required and the key met-
rics needed to assist that understanding. By performing experiments on a plethora of
database configurations we have contributed to this aim by listing the key metrics that
make up a workload, and under what conditions do those workloads change that can
influence the accountability of metrics with a view to performing a capacity planning
exercise.

Database Workload Capacity Planning using Time Series Analysis and Machine
Learning: Building on the first piece of work, a critical function of any capacity
planning exercise is the ability to form a prediction of future resource consumption.
We extracted metric data stored from a central repository and prior to a forecast, one
must understand the nuances and traits exhibited in the data signal. Upon analysis we
noted from our first piece of work that particular metrics (IOS and CPU) are more
granular, exhibiting more pounced peaks and troughs than other metrics (memory),
which seem more static when displayed over a time series. We also observed from
our first piece of work that depending upon the workload type (OLTP, OLAP and
Data Mart), different nuances and intricacies where exhibited in the data signal such
as reoccurring patterns reflecting surges in users logging on, or resource consumption
growth as the data set gets bigger. A simple Ordinary Least Square Regression (OLS)
algorithm would be insufficient, and more complex forecasting models were required.
The only techniques available that could accommodate complex data patterns was time
series analysis and specifically ARIMA, TBAT type models. However, these complex
models require a deep understanding of the data via additional techniques such as
Autocorrelation plots to determine the stationariness and trend of the data. Not only
did this inflate the expertise need to execute and understand these models but it often
influenced the parameters that make up a time series model. This presented us with a
conundrum of how to filter the models that are more likely to be more accurate than
others reducing the overall number. It became apparent that for one metric running on
one clustered 8 node instance an issue of scale arose. Also, that the time to crunch a
particular model was inordinately long. We looked to Machine Learning for a solution
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and a higher level of automation in removing the understanding needed to correlate the
models of the data from the ACF/PACF mechanism.

Figure 6.1: Correlograms (ACF/PACF)

Our contributions were several fold, if we remind ourselves from the objectives as
described in Section 1.9.1, which was to perform short and long term capacity plan-
ning via a forecast of what the future resource consumption will be. We introduced and
empirically evaluated multiple time series models and concluded that given the com-
plex data patterns exhibited in volatile metric data, such as IO and CPU, and given that
systems perform a myriad of tasks that can be influence externally via batch jobs or
backups, time series analysis and SARIMAX is a suitable approach to perform a fore-
cast. We chose this approach because there are very few random variables in the data
otherwise a stochastic approach could of been more favourable. We also concluded
that by adding a Fourier Transform we can handle the most complex data patterns
identified in our study of real-life workloads, which consisted of over-lapping or mul-
tiple seasonality. We also automated the Autocorrelation function (ACF) and Partial
Autocorrelation Function (PACF) to filter the number of SARIMAX models by pre-
determining the models that are an intersection of the ’dotted line’, resulting in great
reduction in the number of models that needed to be processed. Consider Figure 6.1,
which was discussed in the paper titled ”Database Workload Capacity Planning using
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Time Series Analysis and Machine Learning”. This correlogram, shows a visualisation
of both ACF and PACF of a time series data. We can see the number of models from
0 - 30 and that there is a shaded area. Where the shaded area best intersects with the
models highlights the p and P of the SARIMAX group of models that are more likely
to be accurate. In this example it would be model 26 (ACF) or models 3,8,..,29 for
PACF.

Reducing the ’crunch’ time was achieved by leveraging supervised machine learn-
ing to learn the signal and after a period of 7 days or the Root Mean Squared Error
was reduced to an unacceptable level; prompting the model to be reevaluated reduced
the computational requirements, satisfying the scale question. To compute RMSE, we
calculate the residual (difference between prediction and truth) for each data point,
computing the norm of residual for each data point, compute the mean of residuals,
and then take the square root of that mean. RMSE is commonly used in supervised
learning applications, as RMSE uses and needs true measurements at each predicted
data point. In machine learning, it is extremely helpful to have a single number to
judge a model’s performance, which we show in our results section within the paper.
Root mean square error is one of the most widely used measures for producing a sin-
gular scoring number. It is a proper scoring rule that is intuitive to understand. One
drawback of Mean Application Percentage Error (MAPE) is that forecasts that involve
high numbers, which is routine when dealing with IO counts there is no upper limit,
hence values greater than 100% are seen in the result table. One technique to counter
this would be to use Mean Absolute Scaled Error (MASE), Symmetric Mean Absolute
Percentage Error (sMAPE) or Mean Directional Accuracy (MDA).

This work resulted in a patent being filed by the Oracle Corporation for this work.
It is currently road mapped to be introduced into the Oracle ACS Pulse Software. We
also noticed that we have changed a user’s experience of how they consume charts of
metric information. Typically, when a user is presented with metric consumption over
a time series format, the user is presented with historical data and the present, often
prompting the user to formulate the future on their own. By providing the user with a
prediction of the future we advise the user on the criticality of what is being shown. For
example, if the resources to be consumed are predicted to result in a potential outage in
the next 24 hours causing it to be flagged as critical, potentially feeding into anomaly
detection routines.

Most recently, research has focused on using time series analysis as a prediction
technique in federated clouds as described by Keshavarzi et al 2021 [KHB21]. In this
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research they focus on the QoS needs of the user in multi-clouds and using a hybrid
approach utilising ARIMA models in conjunction with minimum description length
(MDL) algorithms to identify patterns in the QoS data. The ultimate goal is to predict
resource consumption to determine the best QoS of a given SLA in multi-clouds. They
do not focus on any layer of the cloud such as IaaS, PaaS, DBaaS or SaaS, instead opt-
ing to focus on the prediction technique. Kwilinksi et al 2021 [KLK+21] also looked
at time series analysis for prediction in the digital economy such as cryptocurrency,
highlighting that predictions techniques such as ARIMA type models is valid in other
industries other than Cloud Computing.

Placement of Workloads from Advanced RDBMS Architectures into Complex
Cloud Infrastructure: Obtaining a forecast of future consumption leads into work-
load placement for cloud architectures. Firstly, a vector of metrics are selected from
a template, which the algorithm uses as parameters to place. Placement of all metrics
must take place otherwise a failure to place is given. We took this approach because
if the user wishes to place on a particular metric then it would suggest that it is of im-
portance to the system or the application is particularity sensitive, for example elapsed

time based metrics. Also, allowing the algorithm to place on user defined metrics al-
lows the algorithm to scale for other parts of the cloud infrastructure, such as network
throughput metrics. Secondly, an extraction of the max values from the prediction, if
one is performed, for each workload that has been selected as a candidate for place-
ment. Max values are obtained over average values because if a system hits 100%
utilised then it will panic. An average is a middle number in a set of numbers and
is often lower than a max value. The max value is taken from a trace of metric data
from the central repository which stores the data from the agent. We observed that,
currently, bin-packing routines treat workloads as singular workloads as do vector bin-
packing therefore an extension is required to place complex workloads obtained from
clustered, standby or consolidated pluggable databases, which we provide and evalu-
ate. We also have a requirement that advanced databases are complex, therefore by
their very nature suffer from bottlenecks at various points, for example. We needed to
utilise a vector approach and be able to place on multiple dimensions of metrics. Thus
we extended the mathematic notation to include ’metrics’ as well as instances.

The problem to solve was multi-faceted, that is to say all parts of the problem
needed to be tackled at the same time, rather than one individual piece; how to place
complex database architectures into complex cloud architectures? A standby database
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is always a single instance even if it is a clustered standby because it applies trans-
action logs, in the form of database redologs, from all nodes in the primary cluster.
The difficulty seemed to be focused on placement of pluggable databases that are of a
consolidated nature of many smaller, isolated databases within a container or umbrella

instance. Treating a pluggable database in the same manner as a single instance al-
lowed us to place it more easily. Because a pluggable can be singular database within
a container instance or reside with other sibling databases. It can also be a Clustered
Pluggable Database shared across multiple nodes adding further complexity. Treating
a pluggable and standby database as single instances, reduced the complexity of the al-
gorithm. Clustered databases also need to be treated as one entity yet all the instances
in the cluster are treated separately; a cluster can run multiple clustered databases too,
creating a many-to-many relationship. We treated clustered databases running on a
node as a separate instance therefore the term instance acts like a logical normalisa-

tion key to remove the many-to-many relationships.

There was also one final complexity, which the issue of SLAs, SLOs and QoS
enforced by High Availability configurations. We noted that current bin-packing solu-
tions, because, they treat workloads in a singular fashion. Can give rise to a scenario
where placement of all nodes in a cluster can be assigned to one target node as long as
there is available resources. This effectively removes the QoS, SLA or SLO by placing
all source clustered instances into one target cloud node. Therefore, we maintain High
Availability by ensuring, through the algorithm, two things.

• The target cloud architecture must have the same as or more nodes than the
source configuration.

• All workloads must be placed or no workloads are placed thus a rollback func-
tion is enforced.

During our experiments we found curious behaviour, causing us to extend the First-
Fit Decreasing Algorithm further and this was attributed to ordering the workloads
prior to placement, something we did not expect. The result was to insert an ordering
routine (steps 1 and 3) of algorithms 1 and 2 listed in Section 5.1 of the paper titled
”Placement of Workloads from Advanced RDBMS Architectures into Complex Cloud

Infrastructure”. This ordering routine ordered the instances in descending order with
the largest workload being the first to be placed while also ordering the largest available
resource target nodes being first. Therefore it is critical to order on the cluster and its
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siblings in descending order. This novel approach to workload placement of complex
workloads has resulted in another patent being filed by the Oracle Corporation.

Our final aim of the thesis from Section 1.9.1 was to place the workloads in a target
cloud configuration without compromising SLAs, SLOs or QoS. Could the mechanism
chosen, exercise high automation reducing the manual level of effort (LoE) currently
experienced by technical professionals. Could the bin-packing routines work on ad-
vanced complex database architectures that are currently in play today, something that
was achieved in our experiments and testing of our use cases. Recently bin-packing
routines have been used in emerging technologies such as Internet Of Things (IOT) as
described by Tyagi et al [TMBJ21]. In this research they looked to a Modified First-Fit
decreasing (MFFD) to deal with network traffic throughput of a Cloud Radio Access
Network (CRAN) from smart meters attached to households and businesses. The aim
of the FFD algorithm is to place items based on meeting a deadline which they achieve
with favourable results. Sridharan and Domnic [SD21] looked to an evaluation of sev-
eral bin-packing algorithms such as First-Fit Decreasing and First-Fit Increasing to
address a problem of elasticated VMs created in IaaSs of Data Centres. They devel-
oped a Policy and Elastic Aware Placement (PEAP) algorithm that is an extension of
existing scheduling policies. As VM requests are received into the Data Centre they
are labelled as new, migrating and incremental VM requests of elasticity each with a
vector of resource. Utilising their PEAP algorithm, they influence the processing of
requests by assigning a cost to the request, and then placement of the request takes
place. When assessed against FFI and FFD they found that their PEAP was more opti-
mal when it comes to processing VM vector requests in Data Centres, adding weight to
our argument that heuristic placement algorithms such as FFD are too simplistic when
dealing with vectors in complex cloud architectures.

Measurements where not taken on the performance of the algorithms themselves.
This thesis does not evaluate the performance of the algorithms, in terms of speed,
being executed. In the second paper we used a supervising learning algorithm to help
reduce the execution time in producing the prediction. That is to say, being able to
perform predictions on many metrics for customers, and their systems at the same time
(scale). The algorithms produced, where new and required protection through legal
patents thus were unique in solving the problem, and not how efficient it is in solving
the problem. However, that could be future work to improve the efficiency of the
algorithms to work at their most optimum.

This thesis does not claim that the challenges to capacity planning advanced database
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architectures for cloud adoption are complete. It identifies gaps and weaknesses in ex-
isting techniques currently in practice, when performing a capacity plan exercise on
complex database architectures. The thesis highlights issues such as, what are the
key metrics that make up a workload, which metrics are mappable from on-premises
to cloud architectures, and how workloads can be influenced depending on their sys-
tem configuration, which are dependant upon the tasks these systems are asked to
perform. The thesis identifies the challenges in forecasting the future resource con-
sumption, short term and/or long term, of the workloads that exhibit complex patterns,
which can be subtle but important. Finally, placement of complex workloads from ad-
vanced database architectures into complex target cloud architectures is an NP-Hard
and NP-Complete problem that existing algorithms require significant extension or
new algorithms to solve. This thesis potentially gives informed insight and tackles
these issues on real-world configurations, for which there is no standard practice avail-
able. This thesis has shown several novel approaches such as forecasting and workload
placement of which research shows is still a problem with academics utilising several
approaches with varying combinations of techniques to address. As clouds become
ever more complicated and widespread, as this thesis addresses, historic simplistic ap-
proaches are not applicable and new thinking is required, which we have gone some
way in pursuing.

6.2 Limitations and Future Work

Some of this work (Forecasting and Workload Placement) has been placed on the
roadmap of future Oracle Products, such as Oracle Pulse for the Oracle Managed Cloud
Services portfolio that Oracle Advanced Customer Services offers their customers via
the Oracle Pulse product. [Cor21j]. The work on creating, configuring and control-
ling workloads is used for testing monitoring software development in the Engineering
function of Advanced Customer Services. Testing consumption based charting is dif-
ficult because it requires load to be placed on the database. By creating a repeatable,
controllable and observable set of workloads we can properly test and populate graphs
as workloads can be set off and increased/decreased by adding users to create spikes
under a controlled environment, therefore testing the resource consumption charts is
now much easier from this work. The Workload Placement algorithms are currently
being evaluated with development teams within Oracle

Our approach to forecasting does have some challenges, such as when a system is
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unstable or in a period of fault, for example, due to frequent crashes, as the Learning
Engine then relearns to adopt those new behaviours. In our algorithm we account for
this by suggesting that the event needs to happen more then 3 times for it to be a
behaviour, which can be changed manually. It is perfectly plausible that the system
fails over to a new site to test disaster recovery. Therefore if a system crashes we
discard it, however if the system continually crashes the learning engine will see it as
a behaviour and account for it in its forecast. Live systems rarely continually crash but
they do crash, therefore manual override is needed to accommodate systems that are
in-fault as we suggest that forecasting will not be a true reflection of the system when
stable. There is still a need for threshold based monitoring. Utilising these techniques
to predict when a threshold is likely to be breached is an advisable way to implement
this approach for proactive monitoring and capacity based questions; we don’t see our
approach as a complete replacement for thresholds just yet.

Our approach to workload placement is also not without its challenges, especially
when placing siblings of clusters, for which we implemented a work-around of order-
ing the workloads and their siblings in descending order. A solution to this problem
could be to take the cumulative approach of the total amount of resources consumed
per cluster and order based on number of nodes resources consumed. furthermore en-
abling a user defined priority assignment function would be advantageous. Assigning a
user defined priority to a workload allows for separation between live systems, as some
systems may be more critical than others. In our earlier work we leveraged Machine
Learning (Supervised) coupled with Time Series Analysis to predict future resource
consumption of a workload and we see a combination of those techniques and place-
ment to create a more informed choice when one is making decisions on what systems
can be placed based on their future resource consumption. Extending the approach to
other algorithms such as best or next-fit seem a logical progression path including a
search or optimisation strategy as we only focused on simple heuristic first-fit algo-
rithms.

The work in this thesis was used on Oracle technology. It was not produced on
Microsoft, Amazon, IBM or a hybrid combination of vendors. Arguably, one could
question if the prediction or placement algorithms would work in agnostic environ-
ments rather than homogeneous to Oracle. However, the prediction utilises Python
libraries on time series data. The data is extracted using MAPE [ARS15] agent tech-
nology, which is stored in a central repository. The placement algorithms also utilise
Python too. Thus we are confident that our work is vendor agnostic even if it was not
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tested on hybrid vendor cloud configurations. Future work could be to evaluate the
algorithms on hybrid vendor and cloud configurations.
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Appendix B

The Nuts and Bolts

This Appendix presents main aspects of software used to perform experiments,
capture data, crunch data. It also provides snippets of SQL.

B.1 Workloads

The following section will describe in detail, workloads used and how they were
configured and executed including the mechanisms to do so.

B.1.1 Swingbench Parameters for Swingbench

To avoid error ’Error occurred during initialization of VM Could not reserve enough

space for 2097152KB object heap’ navigate to the swingbench

launcher

launcher.xml and change the following xml, however this is dependant upon the avail-
able memory on the server where Swingbench is to be executed. On a Server with
16Gb of memory we made this change

<jvmargset id="datagenerator.jvm.args">

\textbf{\textit{<jvmarg line="-Xmx2048m"/>}}

<jvmarg line="-Xms512m"/>

</jvmargset>

TO

<jvmargset id="datagenerator.jvm.args">
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<jvmarg line="-Xmx1024m"/>

<jvmarg line="-Xms512m"/>

</jvmargset>

B.1.2 Swingbench - Creation Commands

Execute the following as the oracle user on the operating system, ensuring that the
environment variables are set using the ’.oraenv’ command.

NOTE: The hostname (acs-163.us.oracle.com), port (1521) and instance (Rapid-
Kit) as the dba user (-dbap) this will create the Sales Order Entry (SOE) at an initial
size of 10G (-scale 10) and use 64 threads to do so (-64) in a verbose (-v) manner to
capture any details of failure errors.

./oewizard -cl -create -cs //host:1521/(SID) -dbap pmdev -scale 10 -tc 64 -v

./shwizard -cl -create -cs //host:1521/(SID) -dbap pmdev -scale 10 -tc 64 -v

B.1.3 Swingbench - Execution commands (Crontab Configurations)

Swingbench is initiated via the in-built Linux Scheduler cron

Single Instance OLTP : The following cron entry shows an OLTP entry with spikes
and surges at particular times

#################################################################################

# OLTP - create a normal 8 hour load to simulate 200 users running on a

database and spikes of 300 users at busy times of the day

# activate this line if you want a OLTP load for 200 user for 8 hours

#

#0 8 * * * /u01/../soe_bench.sh RapidKit -rt 23:55 -uc 200 >> /../daily.log 2>&1

#

# create a spike that for 2 hours simulates a surge in users at

# special times of the day 08:00-10:00, 12:00-13:00 and 17:00-20:00

#

#0 8 * * * /u01/../soe_bench.sh RapidKit -rt 2:00 uc 100 >> /../morning.log 2>&1

#0 12 * * * /u01/../soe_bench.sh RapidKit -rt 1:00 uc 100 >> /../lunchtime.log 2>&1
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#0 17 * * * /u01/../soe_bench.sh RapidKit -rt 5:00 uc 100 >> /../evening.log 2>&1

#################################################################################

Backup and Housekeeping The following cron entry shows how an online RMAN
backup of the database is conducted - the cron entry must be done on all nodes for
general housekeeping, however the backup is executed from one node.

#################################################################################

# backup the database with a level 0 compressed and remove

old backups and archivelogs generate IO on server

# perform a archivelog backup that will clear down redo every 6 hours

#

0 04 * * * /u01/../backup_all.sh >> /tmp/backup.log 2>&1

0 08 * * * /u01/../archivelog_all.sh >> /../archivelog_backup.log 2>&1

0 12 * * * /u01/../archivelog_all.sh >> /../archivelog_backup.log 2>&1

0 16 * * * /u01/../archivelog_all.sh >> /../archivelog_backup.log 2>&1

0 20 * * * /u01/../archivelog_all.sh >> /../archivelog_backup.log 2>&1

0 00 * * * /u01/../archivelog_all.sh >> /../archivelog_backup.log 2>&1

#################################################################################

#################################################################################

# housekeeping routine to keep on top of log files generated by workloads

#

0 8 * * * /u01/../housekeeping.sh >> /../housekeeping_routine.log 2>&1

0 16 * * * /u01/../housekeeping.sh >> /../housekeeping_routine.log 2>&1

#

#################################################################################

RAC Instance OLTP - Linear Growth The following cron entry shows an OLTP
entry with spikes and surges at particular times for a RAC database - the cron entry
must be done on all nodes

#################################################################################

# OLTP - create a normal 8 hour load to simulate x users running on a

database this create a trend we then add in some spikes to create

# seasonality - i.e. there is a pattern that every day users spike -

to create seasonality within seasonality we then add in further surges

#

# linear growth every day by 25 users
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59 23 08 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 50 >> /../day1.log 2>&1

59 23 09 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 75 >> /../day2.log 2>&1

59 23 10 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 100 >> /../day3.log 2>&1

59 23 11 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 125 >> /../day4.log 2>&1

59 23 12 * * /u01/v/soe_bench.sh pdb01 -rt 23:55 -uc 150 >> /../day5.log 2>&1

59 23 13 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 175 >> /../day6.log 2>&1

59 23 14 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 200 >> /../day7.log 2>&1

59 23 15 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 225 >> /../day8.log 2>&1

59 23 16 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 250 >> /../day9.log 2>&1

59 23 17 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 275 >> /../day10.log 2>&1

59 23 18 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 300 >> /../day11.log 2>&1

59 23 19 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 325 >> /../day12.log 2>&1

59 23 20 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 350 >> /../day13.log 2>&1

59 23 21 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 375 >> /../day14.log 2>&1

59 23 22 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 400 >> /../day15.log 2>&1

59 23 23 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 425 >> /../day16.log 2>&1

59 23 24 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 450 >> /../day17.log 2>&1

59 23 25 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 475 >> /../day18.log 2>&1

59 23 26 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 500 >> /../day19.log 2>&1

59 23 27 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 525 >> /../day20.log 2>&1

59 23 28 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 550 >> /../day21.log 2>&1

59 23 29 * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 575 >> /../day22.log 2>&1

# futher spikes to show seasonality wihtin seasonality

0 7 * * * /u01/../soe_bench.sh pdb01 -rt 4:00 -uc 100 >> /../morning1.log 2>&1

0 9 * * * /u01/../soe_bench.sh pdb01 -rt 1:00 -uc 100 >> /../morning2.log 2>&1

#

# create an OLTP spike every 09:00-10:00 12:00-14:00 and 17:00-21:00

with a general useage with a general usage throughout the day

#59 23 * * * /u01/../soe_bench.sh pdb01 -rt 23:59 -uc 50 >> /../daily.log 2>&1

#0 7 * * * /u01/../soe_bench.sh pdb01 -rt 2:00 uc 500 >> /../morning.log 2>&1

#0 12 * * * /u01/../soe_bench.sh pdb01 -rt 2:00 uc 1000 >> /../lunch.log 2>&1

#0 17 * * * /u01/../soe_bench.sh pdb01 -rt 2:00 uc 1000 >> /../evening.log 2>&1

#################################################################################

RAC Instance OLAP The following cron entry shows an OALP entry with spikes
and surges at particular times for a RAC database - the cron entry must be done on all
nodes
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#################################################################################

# OLAP - create a load that simulates a batch load running every night to do some

data crunching at 22:00

# activate this line if you want OLAP load for 500 users for 8 hours which

simulates OLAP (Data Warehouse)

#

#0 22 * * * /u01/../sh_bench.sh pdb01 -rt 8:00 uc 10 >> /tmp/daily.log 2>&1

#################################################################################

RAC Instance DataMart The following cron entry shows an DataMart entry with
spikes and surges at particular times for a RAC database - the cron entry must be done
on all nodes

#################################################################################

# OLAP Data Mart - create a load that simulates a data mart every day and night

for hours with spikes etc

#

#0 09 * * * /u01/../soe_bench.sh pdb01 -rt 23:55 -uc 200 >> /../daily.log 2>&1

#0 8 * * * /u01/../soe_bench.sh pdb01 -rt 2:00 uc 100 >> /../morning.log 2>&1

#0 12 * * * /u01/../soe_bench.sh pdb01 -rt 1:00 uc 100 >> /../lunchtime.log 2>&1

#0 17 * * * /u01/../soe_bench.sh pd01 -rt 5:00 uc 100 >> /../evening.log 2>&1

#0 22 * * * /u01/../sh_bench.sh pdb01 -rt 8:00 uc 5 >> /../daily_OLAP_dml.log 2>&1

##################################################################################

0 15 * * * /u01/../soe_bench.sh RapidKit -rt 23:59 -uc 200 >> /../daily.log 2>&1

|--------| |------------------| |------| |--------||------| |------------| |---|

NOTE: Ensure that the first column is not an astrix ’*’ as this means execute the
prevailing command every minute and you will consume all resources...

B.1.4 Database Parameters for Swingbench

Several configuration steps are required specifically for the execution of the Swing-
bench application prior to any experiments for example the correct number of pro-
cesses, Memory configuration and Redo logs are required to ensure a smooth execution
of workloads. Create a tablespace to store the data into:

sqlplus / as sysdba
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alter system set processes=3000 scope=spfile;

alter system set job_queue_processes=64 scope=spfile;

alter system set db_recovery_file_dest_size=100G scope=spfile;

alter system set sga_max_size=3500M scope=spfile;

alter system set sga_target=3500M scope=spfile;

alter system set "_ORACLE_SCRIPT"=true;

set lines 200

column member format a100

SELECT b.MEMBER,a.GROUP#, a.THREAD#,a.SEQUENCE#,a.bytes/1024/1024,

a.status, b.type

FROM v$log a, v$logfile b

WHERE a.GROUP#=b.GROUP#;

Alter database add logfile group 4(’<redo_location>/redo04.log’) size 100m;

Alter database add logfile group 5(’<redo_location>/redo05.log’) size 100m;

Alter database add logfile group 6(’<redo_location>/redo06.log’) size 100m;

alter database drop logfile group <number_from_query>;

sqlplus / as sysdba

create tablespace soe

datafile ’/<file_location>/soe01.dbf’ size 10000M,

’/<file_location>/soe02.dbf’ size 10000M autoextend on;

create tablespace sh

datafile ’/<file_location>/sh01.dbf’ size 10000M,

’/<file_location>/soe02.dbf’ size 10000M autoextend on;

Note: It is advisable that a general DBA level of expertise is required in making
these changes and thus it is probable that multiple datafiles be created and assigned to
a tablespace. If the database is a clustered database then changes have to be made on
each instance in the cluster and datafiles will be stored in a diskgroup of ASM.

Ensure the database is in archivelog mode as this is essential if the system is run-
ning a standby database. Archivelogs are shipped between the two instances via the
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Oracle Product DataGuard [Cor21b].

SQL> shutdown immediate;

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> startup mount;

ORACLE instance started.

Total System Global Area 5027385344 bytes

Fixed Size 2298736 bytes

Variable Size 1040190608 bytes

Database Buffers 3976200192 bytes

Redo Buffers 8695808 bytes

Database mounted.

SQL> alter database archivelog;

Database altered.

SQL> alter database open ;

Database altered.

Archivelogs will now be written to the server file system in the location of the
db recovery file dest parameter. The more activity is generated the more archivelogs
are created (IO) thus it is imperative that housekeeping routines are employed to clear
down the archivelogs routinely. Once they have been applied to any standby database.
RMAN [Cor21l] archivelog backup is the preferred mechanism to perform this task
and was employed in our experiments.
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B.1.5 Workloads Dataset Sizes - Tables and Indexes

To find the size of the data set one must log into the database with DBA privileges
and execute the following SQL

set lines 200

set pages 200

column owner format a5

column segment_type format a15

column segment_name format a35

compute sum of GB on report

break on report

select owner, segment_name, segment_type, bytes/1024/1024/1024 GB

from dba_segments

where owner=’SOE’

and segment_type in (’TABLE’,’INDEX’)

order by segment_type, 4;

The above SQL provides a sample output of the following, NOTE: the sample
output has been cropped for the purpose of saving space in the thesis thus the ’sum’
does not reflect the correct value because a number of tables and indexes have not been
added in the sample output.

OWNER SEGMENT_NAME SEGMENT_TYPE GB

----- ----------------------------------- --------------- ----------

SOE WAREHOUSES_PK INDEX .000976563

SOE PROD_CATEGORY_IX INDEX .000976563

SOE PROD_SUPPLIER_IX INDEX .000976563

SOE PROD_NAME_IX INDEX .000976563

SOE CUSTOMERS TABLE 1.29394531

SOE ADDRESSES TABLE 1.32421875

SOE ORDERS TABLE 1.55078125

SOE ORDER_ITEMS TABLE 2.72167969

----------

sum 14.7597656



170 APPENDIX B. THE NUTS AND BOLTS

B.2 Operating Software and Database Products

The following section will describe the operating system and database products
used and their versions during the main pieces of work, which was to execute, run the
workloads, gather and store the metric data.

OS Type Products and Versions
Single Database Instance Configuration

OEL Linux 2.6.39
• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4),

OEL Linux 2.6.39
• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4),

Clustered Database Instance Configuration
OEL Linux 2.6.39

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4,
• Grid Infrastructure (12.1.0.2),
• Oracle Automatic Storage Manager (12.1.0.2),

OEL Linux 2.6.39
• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4,
• Grid Infrastructure (12.1.0.2),
• Oracle Automatic Storage Manager (12.1.0.2),

Standby Database Instance Configuration
OEL Linux 2.6.39

• Enterprise Edition (12.1.0.2),
• Data Guard (12.1.0.2),
• Enterprise Manager Agent (12.1.0.4),

Central Repository Details
OEL Linux 2.6.39

• Enterprise Edition (11.2.0.3),
• Enterprise Manager R4 including Webserver and BIPublisher

(12.1.0.4),
• Enterprise Manager Agent (12.1.0.4),

Table B.1: Operating System & Database Products
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B.3 Automatic Workload Respository - (AWR)

Setting the retention policy of the AWR repository is done by executing the follow-
ing procedure in the database:

BEGIN

DBMS_WORKLOAD_REPOSITORY.modify_snapshot_settings(

retention => 43200, -- Minutes (= 30 Days). Current value retained if NULL.

interval => 60); -- Minutes. Current value retained if NULL.

END;

/

The changes to the settings are reflected in the DBA HIST WR CONTROL view.
Typically the retention period should capture at least one complete workload cycle. If
the system has monthly archive and loads a 1 month retention time would be more
beneficial than the default 7 days. An interval of ”0” switches off snapshot collection,
which in turn stops much of the self-tuning functionality, hence this is not recom-
mended. Automatic collection is only possible if the STATISTICS LEVEL parameter
is set to TYPICAL or ALL. If the value is set to BASIC manual snapshots can be taken,
but they will be missing some statistics.

B.3.1 AWR Execution

To gather a snapshot of database statistics one can execute the following command:

EXEC DBMS_WORKLOAD_REPOSITORY.create_snapshot;

To query which particular snapshots are available? One can query the dba hist snapshot

view as a user with dba privileges execute the following SQL:

select snap_id,

instance_number,

snap_level,

cast(begin_interval_time as date) date_time

from dba_hist_snapshot

order by snap_id asc;
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SNAP_ID INST_NUMBER SNAP_LEVEL DATE_TIME

------- ----------- ---------- -------------------

26987 1 1 05/11/2021 01:00:01

26988 1 1 05/11/2021 02:00:06

26988 2 1 05/11/2021 02:00:06

26989 1 1 05/11/2021 03:00:10

26989 2 1 05/11/2021 03:00:10

26990 1 1 05/11/2021 04:00:15

26990 2 1 05/11/2021 04:00:15

26991 2 1 05/11/2021 05:00:19

26991 1 1 05/11/2021 05:00:19

There are two SQL scripts supplied that reside in the $ORACLE HOME of the
host. This is the location where the Database software is installed and located. In this
example it is located /u01/app/oracle/product/12.1.0.2/dbhome 1

@\$ORACLE_HOME/rdbms/admin/awrrpt.sql

@\$ORACLE_HOME/rdbms/admin/awrrpti.sql

The AWR scripts will prompt the user to enter the report format (html or text), the
start snapshot id, the end snapshot id and the report filename. The resulting report can
be opened in a browser or text editor accordingly.

SQL> @$ORACLE_HOME/rdbms/admin/awrrpti.sql

Specify the Report Type

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

AWR reports can be generated in the following formats.

Please enter the name of the format at the prompt.

Default value is ’html’.

’html’ HTML format (default)

’text’ Text format

’active-html’ Includes Performance Hub active report
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Enter value for report_type: text

Type Specified: text

Instances in this Workload Repository schema

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

DB Id Inst Num DB Name Instance Host

------------ -------- ------------ ------------ ------------

3063321339 2 CDBM03 cdbm032 brmex2adm08v

m03.acs.orac

le.com

* 3063321339 1 CDBM03 cdbm031 brmex2adm07v

m03.acs.orac

le.com

Enter value for dbid: 3063321339

Using 3063321339 for database Id

Enter value for inst_num: 1

Using 1 for instance number

Specify the number of days of snapshots to choose from

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Entering the number of days (n) will result in the most recent

(n) days of snapshots being listed. Pressing <return> without

specifying a number lists all completed snapshots.

Enter value for num_days: 1

Listing the last 2 days of Completed Snapshots

Snap

Instance DB Name Snap Id Snap Started Level

------------ ------------ --------- ------------------ -----

cdbm031 CDBM03 27058 08 Nov 2021 00:00 1
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27082 09 Nov 2021 00:00 1

27083 09 Nov 2021 01:00 1

27084 09 Nov 2021 02:00 1

Specify the Begin and End Snapshot Ids

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Enter value for begin_snap: 27083

Begin Snapshot Id specified: 27083

Enter value for end_snap: 27084

End Snapshot Id specified: 27084

Specify the Report Name

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

The default report file name is awrrpt_1_27083_27084.txt.

To use this name, press <return> to continue,

otherwise enter an alternative.

Enter value for report_name: cdb031_awrrpt.txt

B.3.2 AWR Report - Example

Understanding and interpreting an AWR report is the responsibility of the Database
Administrator. This thesis is not intended to provide detailed interpretation of the AWR
report or present performance tuning findings. The reason why this AWR example re-
port is publish is to raise awareness of how database statistics on performance and
configuration metrics that one would analyse for the purposes of monitoring or per-
forming a capacity planning exercise.

WORKLOAD REPOSITORY report for

DB Name DB Id Instance Inst Num Startup Time Release RAC

-------- ---------- -------- -------- --------------- ----------- ---

CDBM03 3063321339 cdbm031 1 14-Mar-21 16:17 12.1.0.2.0 YES

Host Name Platform CPUs Cores Sockets Memory(GB)
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---------------- ----------------- ------- ---- ----- ------- ----------

brmex2adm07vm03. Linux x86 64-bit 16 16 1 63.03

Snap Id Snap Time Sessions Curs/Sess Instances CDB

--------- ------------------- -------- --------- --------- -----

Begin Snap: 27083 09-Nov-21 01:00:33 110 1.6 2 YES

End Snap: 27084 09-Nov-21 02:00:37 110 1.6 2 YES

Elapsed: 60.08 (mins)

DB Time: 7.04 (mins)

The above sample output displays basic information on the configuration of the
host the database is running, and the period the rest of the report provides information
for.

A good place to start to understand the daatabase workload is the section ”Top 10
Foreground Events by Total Wait Time”. This section describes how the database on
the whole is performing for the snapshot period, which in this example is 1 hour.

Top 10 Foreground Events by Total Wait Time

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

Total Wait Wait % DB Wait

Event Waits Time (sec) Avg(ms) time Class

------------------------------ --------- --------- -------- ---- --------

Failed Logon Delay 240 240 1000.12 56.9 Other

DB CPU 126.6 30.0

CRS call completion 480 17.7 36.80 4.2 Other

cell single block physical rea 54,736 13.5 0.25 3.2 User I/O

Disk file operations I/O 2,654 7.7 2.89 1.8 User I/O

GPnP Initialization 480 7.6 15.90 1.8 Other

control file sequential read 33,962 6.6 0.20 1.6 System I

gc cr disk read 25,256 2.3 0.09 .5 Cluster

PX Deq: Slave Session Stats 21,246 2.2 0.11 .5 Other

Disk file Mirror Read 8,556 2.1 0.25 .5 User I/O

Wait Classes by Total Wait Time

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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Avg Avg

Total Wait Wait % DB Active

Wait Class Waits Time (sec) (ms) time Sessions

------------- ---------- ------------- ----------- ------ --------

Other 713,143 287 0.40 68.0 0.1

DB CPU 127 30.0 0.0

User I/O 71,906 25 0.35 6.0 0.0

System I/O 51,751 10 0.19 2.4 0.0

Cluster 39,833 4 0.10 1.0 0.0

Scheduler 5 3 543.10 .6 0.0

Concurrency 9,828 1 0.07 .2 0.0

Application 1,231 0 0.31 .1 0.0

Commit 235 0 0.29 .0 0.0

Network 16,599 0 0.00 .0 0.0

Configuratio 16 0 0.13 .0 0.0

Wait Classes by total wait time as shown above, gives the DBA a birds eye view
of, which database is suffering from excessive IO, CPU or other key areas the database
maybe waiting on. This information allows the DBA to focus on where potential bot-
tlenecks are, and if there is a monitoring role or capacity planing exercise, to extract
the maximum number from the report.

The AWR report also lists specific area’s relating to CPU, Memory and IO as listed
in the sample output below. Where we can see the CPU extract that would be similar
to the operating command ’TOP’ when execute on the host command line.

Host CPU

˜˜˜˜˜˜˜˜ Load Average

CPUs Cores Sockets Begin End %User %System %WIO %Idle

---- ----- ------- ------- ----- ------- --------- ----- ------

16 16 1 1.48 1.45 2.9 1.5 0.0 95.6

Instance CPU

˜˜˜˜˜˜˜˜˜˜˜˜

% of total CPU for Instance: 1.7

% of busy CPU for Instance: 38.3
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%DB time waiting for CPU - Resource Mgr: 0.6

IO Profile Read+Write/Second Read/Second Write/Second

˜˜˜˜˜˜˜˜˜˜ ----------------- ----------- -------------

Total Requests: 29.7 28.3 1.5

Database Requests: 15.8 15.2 0.6

Optimized Requests: 28.0 28.0 0.0

Redo Requests: 0.5 0.0 0.5

Total (MB): 0.3 0.3 0.0

Database (MB): 0.1 0.1 0.0

Optimized Total (MB): 0.3 0.3 0.0

Redo (MB): 0.0 0.0 0.0

Database (blocks): 16.0 15.2 0.8

Via Buffer Cache (blocks): 15.8 15.2 0.6

Direct (blocks): 0.2 0.0 0.2

Memory Statistics

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ Begin End

----------- ----------

Host Mem (MB): 64,547.7 64,547.7

SGA use (MB): 12,928.0 12,928.0

PGA use (MB): 5,264.4 5,270.4

% Host Mem used for SGA+PGA: 28.18 28.19

B.4 OEM SQL Queries

The main schema that houses configuration and performance data gathered by the
Intelligent OEM agent, is held under the SYSMAN user, and are predominately the
MGMT$ views. By extracting the GUID as the unique identifier we can create custom
SQL statements that can vastly reduce the laborious cumbersome tasks of manually
extracting metric data.
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B.4.1 SQL Statements - Extracting Database Entities that are Mon-
itored

This SQL query can extract the database entities currently configured to be moni-
tored by the OEM Agents. Notice how the query brings back database entities that are
of type rac database (Clustered), oracle pdb (Pluggable) and oracle database (Normal-
database)

column target_guid format a55

column target_name format a35

column target_type format a35

SELECT

rownum,

DBMS_LOB.substr(target_guid, 50) as target_guid,

target_name,

target_type

FROM sysman.mgmt$target

WHERE target_type in (’rac_database’,’oracle_database’,’oracle_pdb’)

order by rownum, target_type asc

TARGET_GUID TARGET_NAME TARGET_TYPE

------------------------------ --------------- ------------------

602974144292644FE0532A03410A7BCD E3DE0003 oracle_database

4B0109D9AAD0470EAFB30BACF6DF2079 GSAPRMY oracle_database

8D72E86781E499FE0015AF16BB63AEA9 cdbm01_cdbm012 oracle_database

19AAD7189BFFC395002DDF5155DBA09E WIND12C1STBY1 oracle_pdb

8379BEDCA9921D42FE994B30394612A6 RAC1OLTP rac_database

77DE4012A795D47A400197B18AC52B72 cdbm01 rac_database

5884F18AB3CA210DE0532A03410A1D50 dbm01 rac_database

By extracting the GUID for each database we wish to extract data from, we can
then plug the relevant information
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B.4.2 SQL Statements - Extracting particular Metrics

The following SQL statements lists the metric data that are collected for a particular
instance. There are several things to note:

1. The target GUID is required

2. Metric name is a list of the category of metrics

select

distinct(b.metric_column),

b.metric_name

from mgmt$target a, mgmt$metric_details b

where a.target_guid=b.target_guid

and b.target_guid in (’8D72E86781E499FE0015AF16BB63AEA9’)

--and b.metric_name in (’DATABASE_SIZE’,’instance_throughput’)

order by metric_name asc;

The above query for extracting the list metric data is key because we can map this
data to the metrics provided by the Cloud Vendor. This is also important for workload
placement as we can place a workload on the max value extract from the metric over
a time series data. Sample output is provided below

METRIC_COLUMN METRIC_NAME

------------------ -------------------

ALLOCATED_GB DATABASE_SIZE

USED_GB DATABASE_SIZE

logons Database_Resource_Usage

max_tot_cpu_usage_ps db_inst_cpu_usage

cpu_time_pct instance_efficiency

cpuusage_ps instance_efficiency

cpuusage_pt instance_efficiency

physreads_ps instance_throughput

physreads_pt instance_throughput

physwrites_ps instance_throughput

physwrites_pt instance_throughput

total_memory memory_usage

logreads_ps instance_throughput

logreads_pt instance_throughput
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B.4.3 SQL Statements - Extracting Metric data at 10 minute inter-
vals

The following query extracts metric data from the OEM repository in its most
granular form at 10 minute intervals.

column target format a20

column metric format a25

column metric_type format a25

column value format a35

select

rownum,

a.target_name as target,

b.metric_name as metric,

b.metric_column as metric_type,

to_char(b.collection_timestamp, ’dd/mm/yyyy hh24:mi:ss’) as sample_time,

b.value as value

from mgmt$target a, mgmt$metric_details b

where a.target_guid=b.target_guid

and b.target_guid in (’8D72E86781E499FE0015AF16BB63AEA9’)

and b.metric_column =’logreads_ps’

and b.collection_timestamp between to_date(’01/11/2021 17:00’,

’dd/mm/yyyy hh24:mi:ss’) and to_date(’09/11/2021 17:00’,

’dd/mm/yyyy hh24:mi:ss’)

order by b.collection_timestamp

Producing the following sample output

instance METRIC METRIC_TYPE SAMPLE_TIME VALUE

-------------- ------------------- ----------- ------------------- ------

cdbm01_cdbm012 instance_throughput logreads_ps 01/11/2021 17:07:01 2339.7

cdbm01_cdbm012 instance_throughput logreads_ps 01/11/2021 17:17:01 1904.8

cdbm01_cdbm012 instance_throughput logreads_ps 01/11/2021 17:27:01 1807.2

cdbm01_cdbm012 instance_throughput logreads_ps 01/11/2021 17:37:01 2139.3

cdbm01_cdbm012 instance_throughput logreads_ps 01/11/2021 17:47:01 1824.2

cdbm01_cdbm012 instance_throughput logreads_ps 01/11/2021 17:57:01 1807.0
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cdbm01_cdbm012 instance_throughput logreads_ps 01/11/2021 18:07:01 2316.8

cdbm01_cdbm012 instance_throughput logreads_ps 01/11/2021 18:17:01 1896.6

B.4.4 SQL Statements - OEM Hourly Data Roll-up Procedure

Aggregation batch processing jobs are managed in the Oracle Enterprise Manager
repository (Oracle database) via the use of the database scheduler. Aggregating data
can be done manually by executing the following command. Substituting the parame-
ters for the correct job.

BEGIN

DBMS_SCHEDULER.RUN_JOB(

JOB_NAME => ’em_rollup()’,

USE_CURRENT_SESSION => FALSE);

END;

/

B.4.5 SQL Statements - Extracting Metric data at Hourly inter-
vals

column target format a25

column metric format a25

select

rownum,

a.target_name as target,

b.metric_column as metric_type,

to_char(b.rollup_timestamp, ’dd/mon/yyyy) hh24:mi:ss’) as sample_time,

b.maximum as value,

b.average as ave,

b.minimum as min

from mgmt$target a, mgmt$metric_hourly b

where a.target_guid=b.target_guid

and b.target_guid in (’4C9BC9D1BB2C73DAB9A286416DD337F4’)

and b.metric_column =’logreads_ps’

and b.rollup_timestamp between to_date(’01/11/2021 17:00’,
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’dd/mm/yyyy hh24:mi:ss’) and to_date(’10/11/2021 17:00’,

’dd/mm/yyyy hh24:mi:ss’)

order by b.rollup_timestamp

producing the following sample out

ROWNUM TARGET METRIC_TYPE SAMPLE_TIME VALUE AVE MIN

--------------- ----------- -------------------- -------- ---------- -----

1 cdbm01_cdbm011 logreads_ps 09/nov/2021 22:00:00 37409.616 8164.50867 24.165

2 cdbm01_cdbm011 logreads_ps 09/nov/2021 23:00:00 18803.573 3393.10217 19.097

B.5 Python

B.5.1 Python Libraries and Packages

There were several packages and libraries needed to build the algorithms program-
matically and these are listed in tables B.2 and B.3. All packages are available as
opensource and can be installed to a locally run IDE such as Pycharm Community as
long as the pip installer is configured.
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Library Description Specific Task
Pandas Pandas is a fast, powerful, flexible and easy to use open source data

analysis and manipulation tool, built on top of the Python programming
language. When the metric data is extracted using SQL it is passed into
a Pandas DataFrame or Series to be processed. It is especially powerful
when slicing and dicing metric data when the instances are joined in
one dataframe

• series,
• DataFrame,

Numpy NumPy is a library used for working with arrays and is used to reshape
or flatten any arrays when fitting values from workloads

OS OS Package provides functions for interacting with the Operating Sys-
tem. We store the target OCI configurations as templates (Excel) there-
fore OS allows us to read the path of where files are stored when reading
and writing files. We also write the placement to a file as a report.

• listdir

Operator Operator package constructs a callable that assumes an iterable object
(e.g. list, tuple, set) as input, and fetches the n-th element out of it. If we
need to extract the max value from a list of metrics in a list of instances
this is a library that facilitates that requirement.

• itemgetter

RE Re is a Regular Expression package that can be used to search for spe-
cific patterns in data. This is used alongside Operator in searching for
max values of a metric from an instance

Collections The collection Module in Python provides different types of containers.
A Container is an object that is used to store different objects and pro-
vide a way to access the contained objects and iterate over them. Some
of the built-in containers are Tuple, List, Dictionary. It is used to con-
vert list of lists to a dictionary

• defaultdict

binpacking Bin Packing contains greedy algorithms to solve two typical bin-
packing problems and is used to answer the minimum number of tar-
gets required and the consistent number of targets if all workloads are
treated equally.

cx Oracle cx Oracle is a Python extension module that enables access to Oracle
Database. It conforms to the Python database API specification. It is
used to connect to the OEM repository and extract data.

Table B.2: Table of Python Libraries Workload Placement
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Library Description Specific Task
pickle Serialising and de-serialising object structures to a byte-

stream. once a model is created in the format E.G. SARI-
MAX(1,0,0)(1,1,1,24) we serialise and store the model
against a metric and instance in a schema

Matplotlib Matplotlib is a plotting library for creating static, animated,
and interactive visualizations in Python. We use it to visu-
alise data from adfuller, plot acf, durbin watson

• style,
• dates,

statsmodels This package was used to perform forecasts and perform
particular statistical tests on the metric data. adfuller,
durbin watson and plot acf are tests that determine stationar-
iness, trend and seasonality. These tests determine if the data
should be differenced and influence the p,d,q,P,D,Q parame-
ters of ARIMA, SARIMA, SARIMAX. OLS is an Ordinary
Least Squares Linear regression algorithm

• OLS,
• adfuller,
• ARIMA,
• SARIMAX,
• TBATS,
• durbin watson,
• plot acf

Scipy SciPy is an opensource package to solve scientific and math-
ematical problems. fft, ifft and fftpack are related to Fast
Fourier Transforms, which are used to filter and improve the
accuracy of the forecast models. FFT works with the forecast
models

• fftpack,
• fft,
• ifft

time Time package is used to handle time-related tasks. Data ex-
tracted from the database may have a timestamp and thus
time is a module that can change a timestamp into a date,
character for processing

• datetime
• timedelta

Multiprocessing Multiprocessing supports the spawning of processes and is
used to split a job of work into parallel threaded tasks. If the
forecast models where taking a while with larger models, for
example, (30,0,0),..,(30,2,30). Using the Pool attribute cre-
ates a pool of resources that can help speed up the forecasting
time

• pool

sklearn.metrics Scikit-learn (Sklearn) is the most useful and robust library
for machine learning in Python. It provides a selection of ef-
ficient tools for machine learning and statistical modelling in-
cluding classification, regression, clustering and dimension-
ality reduction via a consistence interface in Python and was
used to learn the metric data. This package also calculated
the RMSE of each model.

• LinearRegression,
• preprocessing,
• cross validation,
•

mean squared error

codecs Codecs is a package to translate bytes into strings and was
used in conjunction with pickle. Once a forecast model is
found and stored in the database it needs to be translated from
or to a string within the python packages

Pandas Pandas is a fast, powerful, flexible and easy to use open
source data analysis and manipulation tool, built on top of
the Python programming language. When the metric data is
extracted using SQL it is passed into a Pandas DataFrame or
Series to be processed. Autocorrelation plot was called to
visualise the data and used to automate the d,D of the SARI-
MAX models if trend or seasonality was detected.

• series,
•

autocorrelation plot,
• DataFrame,

Numpy NumPy is a library used for working with arrays and is used
in-conjunction with SciPy and Fourier Transforms. It is also
used to plot graphs with matplotlib package and autocorrela-
tion plot package.

cx Oracle cx Oracle is a Python extension module that enables access
to Oracle Database. It conforms to the Python database API
specification. It is used to connect to the OEM repository and
extract data.

Table B.3: Table of Python Libraries Forecasting


