2,444 research outputs found

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Building Efficient Query Engines in a High-Level Language

    Get PDF
    Abstraction without regret refers to the vision of using high-level programming languages for systems development without experiencing a negative impact on performance. A database system designed according to this vision offers both increased productivity and high performance, instead of sacrificing the former for the latter as is the case with existing, monolithic implementations that are hard to maintain and extend. In this article, we realize this vision in the domain of analytical query processing. We present LegoBase, a query engine written in the high-level language Scala. The key technique to regain efficiency is to apply generative programming: LegoBase performs source-to-source compilation and optimizes the entire query engine by converting the high-level Scala code to specialized, low-level C code. We show how generative programming allows to easily implement a wide spectrum of optimizations, such as introducing data partitioning or switching from a row to a column data layout, which are difficult to achieve with existing low-level query compilers that handle only queries. We demonstrate that sufficiently powerful abstractions are essential for dealing with the complexity of the optimization effort, shielding developers from compiler internals and decoupling individual optimizations from each other. We evaluate our approach with the TPC-H benchmark and show that: (a) With all optimizations enabled, LegoBase significantly outperforms a commercial database and an existing query compiler. (b) Programmers need to provide just a few hundred lines of high-level code for implementing the optimizations, instead of complicated low-level code that is required by existing query compilation approaches. (c) The compilation overhead is low compared to the overall execution time, thus making our approach usable in practice for compiling query engines

    The AFIT ENgineer, Volume 2, Issue 4

    Get PDF
    In this issue: AFMC Spark Tank Semi-finalist New AFIT Patents 2020 Graduate School Award Winners Airmen and Artificial Intelligence Nuclear Treaty Monitorin

    The AFIT ENgineer, Volume 2, Issue 4

    Get PDF
    In this issue: AFMC Spark Tank Semi-finalist New AFIT Patents 2020 Graduate School Award Winners Airmen and Artificial Intelligence Nuclear Treaty Monitorin

    Enabling Scalable and Sustainable Softwarized 5G Environments

    Get PDF
    The fifth generation of telecommunication systems (5G) is foreseen to play a fundamental role in our socio-economic growth by supporting various and radically new vertical applications (such as Industry 4.0, eHealth, Smart Cities/Electrical Grids, to name a few), as a one-fits-all technology that is enabled by emerging softwarization solutions \u2013 specifically, the Fog, Multi-access Edge Computing (MEC), Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) paradigms. Notwithstanding the notable potential of the aforementioned technologies, a number of open issues still need to be addressed to ensure their complete rollout. This thesis is particularly developed towards addressing the scalability and sustainability issues in softwarized 5G environments through contributions in three research axes: a) Infrastructure Modeling and Analytics, b) Network Slicing and Mobility Management, and c) Network/Services Management and Control. The main contributions include a model-based analytics approach for real-time workload profiling and estimation of network key performance indicators (KPIs) in NFV infrastructures (NFVIs), as well as a SDN-based multi-clustering approach to scale geo-distributed virtual tenant networks (VTNs) and to support seamless user/service mobility; building on these, solutions to the problems of resource consolidation, service migration, and load balancing are also developed in the context of 5G. All in all, this generally entails the adoption of Stochastic Models, Mathematical Programming, Queueing Theory, Graph Theory and Team Theory principles, in the context of Green Networking, NFV and SDN

    ‎An Artificial Intelligence Framework for Supporting Coarse-Grained Workload Classification in Complex Virtual Environments

    Get PDF
    Cloud-based machine learning tools for enhanced Big Data applications}‎, ‎where the main idea is that of predicting the ``\emph{next}'' \emph{workload} occurring against the target Cloud infrastructure via an innovative \emph{ensemble-based approach} that combines the effectiveness of different well-known \emph{classifiers} in order to enhance the whole accuracy of the final classification‎, ‎which is very relevant at now in the specific context of \emph{Big Data}‎. ‎The so-called \emph{workload categorization problem} plays a critical role in improving the efficiency and reliability of Cloud-based big data applications‎. ‎Implementation-wise‎, ‎our method proposes deploying Cloud entities that participate in the distributed classification approach on top of \emph{virtual machines}‎, ‎which represent classical ``commodity'' settings for Cloud-based big data applications‎. ‎Given a number of known reference workloads‎, ‎and an unknown workload‎, ‎in this paper we deal with the problem of finding the reference workload which is most similar to the unknown one‎. ‎The depicted scenario turns out to be useful in a plethora of modern information system applications‎. ‎We name this problem as \emph{coarse-grained workload classification}‎, ‎because‎, ‎instead of characterizing the unknown workload in terms of finer behaviors‎, ‎such as CPU‎, ‎memory‎, ‎disk‎, ‎or network intensive patterns‎, ‎we classify the whole unknown workload as one of the (possible) reference workloads‎. ‎Reference workloads represent a category of workloads that are relevant in a given applicative environment‎. ‎In particular‎, ‎we focus our attention on the classification problem described above in the special case represented by \emph{virtualized environments}‎. ‎Today‎, ‎\emph{Virtual Machines} (VMs) have become very popular because they offer important advantages to modern computing environments such as cloud computing or server farms‎. ‎In virtualization frameworks‎, ‎workload classification is very useful for accounting‎, ‎security reasons‎, ‎or user profiling‎. ‎Hence‎, ‎our research makes more sense in such environments‎, ‎and it turns out to be very useful in a special context like Cloud Computing‎, ‎which is emerging now‎. ‎In this respect‎, ‎our approach consists of running several machine learning-based classifiers of different workload models‎, ‎and then deriving the best classifier produced by the \emph{Dempster-Shafer Fusion}‎, ‎in order to magnify the accuracy of the final classification‎. ‎Experimental assessment and analysis clearly confirm the benefits derived from our classification framework‎. ‎The running programs which produce unknown workloads to be classified are treated in a similar way‎. ‎A fundamental aspect of this paper concerns the successful use of data fusion in workload classification‎. ‎Different types of metrics are in fact fused together using the Dempster-Shafer theory of evidence combination‎, ‎giving a classification accuracy of slightly less than 80%80\%‎. ‎The acquisition of data from the running process‎, ‎the pre-processing algorithms‎, ‎and the workload classification are described in detail‎. ‎Various classical algorithms have been used for classification to classify the workloads‎, ‎and the results are compared‎

    Lean and green approach: an evaluation tool for new product development focused on small and medium enterprises

    Get PDF
    SMEs are crucial for economic health in both high and low-income economies worldwide. In Brazil, they are responsible for around 50% of the national GDP. However, SMEs face considerable barriers such as difficulties in financing international activity, identifying opportunities and making appropriate contacts in their target markets. This paper investigates the adherence of both lean and green practices for the development of new products (NPD), as means to improve their efficiency (lean perspective) and manufacture environment-friendly products (green perspective). Through a systemic review, we present 16 lean and green enablers for NPD operations. These elements comprise a structure of building blocks to evaluate lean and green practices. Thus, we propose a model that ranks the incidence of these practices regardless of the NPD organization level. Using two MCDM tools: AHP and fuzzy-TOPSIS, each enabler is evaluated considering the SMEs context in Brazil. Firstly, AHP defines the relative importance of six SMEs' characteristics. Secondly, we applied an expansion of the TOPSIS technique, adequate when the values of each alternative are not clearly determined. Therefore, we organized a structured interview consisting of 96 evaluation questions for NPD stakeholders. We carried out this diagnosis in three companies from southern Brazil, analysing their NPD operations, which is useful to establish a future improvement agenda

    Data-Driven Methods for Data Center Operations Support

    Get PDF
    During the last decade, cloud technologies have been evolving at an impressive pace, such that we are now living in a cloud-native era where developers can leverage on an unprecedented landscape of (possibly managed) services for orchestration, compute, storage, load-balancing, monitoring, etc. The possibility to have on-demand access to a diverse set of configurable virtualized resources allows for building more elastic, flexible and highly-resilient distributed applications. Behind the scenes, cloud providers sustain the heavy burden of maintaining the underlying infrastructures, consisting in large-scale distributed systems, partitioned and replicated among many geographically dislocated data centers to guarantee scalability, robustness to failures, high availability and low latency. The larger the scale, the more cloud providers have to deal with complex interactions among the various components, such that monitoring, diagnosing and troubleshooting issues become incredibly daunting tasks. To keep up with these challenges, development and operations practices have undergone significant transformations, especially in terms of improving the automations that make releasing new software, and responding to unforeseen issues, faster and sustainable at scale. The resulting paradigm is nowadays referred to as DevOps. However, while such automations can be very sophisticated, traditional DevOps practices fundamentally rely on reactive mechanisms, that typically require careful manual tuning and supervision from human experts. To minimize the risk of outages—and the related costs—it is crucial to provide DevOps teams with suitable tools that can enable a proactive approach to data center operations. This work presents a comprehensive data-driven framework to address the most relevant problems that can be experienced in large-scale distributed cloud infrastructures. These environments are indeed characterized by a very large availability of diverse data, collected at each level of the stack, such as: time-series (e.g., physical host measurements, virtual machine or container metrics, networking components logs, application KPIs); graphs (e.g., network topologies, fault graphs reporting dependencies among hardware and software components, performance issues propagation networks); and text (e.g., source code, system logs, version control system history, code review feedbacks). Such data are also typically updated with relatively high frequency, and subject to distribution drifts caused by continuous configuration changes to the underlying infrastructure. In such a highly dynamic scenario, traditional model-driven approaches alone may be inadequate at capturing the complexity of the interactions among system components. DevOps teams would certainly benefit from having robust data-driven methods to support their decisions based on historical information. For instance, effective anomaly detection capabilities may also help in conducting more precise and efficient root-cause analysis. Also, leveraging on accurate forecasting and intelligent control strategies would improve resource management. Given their ability to deal with high-dimensional, complex data, Deep Learning-based methods are the most straightforward option for the realization of the aforementioned support tools. On the other hand, because of their complexity, this kind of models often requires huge processing power, and suitable hardware, to be operated effectively at scale. These aspects must be carefully addressed when applying such methods in the context of data center operations. Automated operations approaches must be dependable and cost-efficient, not to degrade the services they are built to improve. i
    • …
    corecore